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Abstract: - An efficient method based on the hybrid model with breeding and subpopulations, between genetic 
algorithm and a modified particle swarm optimizer for the linear antenna arrays pattern synthesis with 
prescribed nulls in the interference direction and multi-lobe beam forming by the complex weights of each 
array element is presented. In general, the pattern synthesis technique that generates a desired pattern is a 
greatly nonlinear optimization problem. The proposed method is based on the hybrid model algorithm and the 
linear antenna array synthesis was modeled as a multi-objective optimization problem. Multi-objective 
optimization is concerned with the maximization of a vector of objectives functions in the directions of desired 
signal that can be subject of a number of constraints. Several numerical results with the imposed single, 
multiple and broad nulls sectors are provided and compared with published results to illustrate the performance 
of the proposed method. 
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1 Introduction 
The antenna array pattern synthesis in order to steer 
nulls to the direction of interference while 
maintaining the main beam directed to the desired 
signal has received much attention [1–5]. It plays an 
important role in communication system, sonar, and 
radar applications to improve the performance 
(maximizing signal to interference ratio) and to 
cancel the jammer signal [6]. Interference 
suppression in antenna arrays can be achieved by 
steering nulls in the directions of undesired signals 
while keeping the main lobe in the direction of user 
activity by adjusting the excitation amplitude and 
phase. Recently, evolutionary algorithms such as 
particle swarm optimization (PSO) [7], simulated 
annealing (SA) [1], and genetic algorithms (GA) [3] 
have been studied for array synthesis including null 
constrains. The evolutionary algorithms can be 
considered as a powerful and interesting technique 
for solving large kinds of electromagnetic problems. 
Advantages of evolutionary computation are the 
capability to find a global optimum, without being 
trapped in local optima, and the possibility to face 
nonlinear and discontinuous problems, with a great 
number of variables. On the other hand, these 
algorithms have strong stochastic bases, thus they 

require a great number of iterations to get significant 
results. To solve the antenna array pattern synthesis 
problems, among a number of optimization 
procedures, the artificial intelligence techniques 
such as genetic, simulated annealing and tabu search 
algorithms owing to their simplicity, flexibility and 
accuracy have received much attention. Genetic 
algorithm (GA) is a search technique based on an 
abstract model of Darwinian evolution. Simulated 
annealing (SA) technique is essentially a local 
search, in which a move to an inferior solution is 
allowed with a probability, according to some 
Boltzmann-type distribution, that decreases as the 
process progresses. Tabu search (TS) algorithm has 
been developed to be an effective and efficient 
scheme for combinatorial optimization that 
combines a hill-climbing search strategy based on a 
set of elementary moves and a heuristics to avoid to 
stops at sub-optimal points and the occurrence of 
cycles. Recently, particle swarm optimization 
algorithm (PSO) is proposed for solving global 
numerical optimization problem. The search 
techniques mentioned above are the probabilistic 
search techniques that are simple and easily be 
implemented without any gradient calculation. This 
study uses an electromagnetic optimization 
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technique, hybrid particle swarm optimizer with 
breeding and subpopulation [8]. The technique 
proposed in this paper is based on hybrid model 
algorithm to synthesis steered beams with zero in 
desired direction. The linear antenna array synthesis 
was modeled as a multi-objectives optimization 
problem. To verify the validity of the technique, 
several illustrative examples are simulated. 
 
 
2 Mathematical Formulation 
Consider a linear array composed by 2*N 
equispaced isotropic antenna elements with 
interelement spacing λ /2. If the element excitations 
are conjugate-symmetrical about the center of the 
array, the perturbed array pattern can be written as: 

 
                  (1) 
 

Where λ is the wavelength, θ denotes the angular 
direction, ak is the excitation amplitude, δk is the 
excitation phase and dk is the x coordinate, 
normalised to wavelength, of the nth array element. 

The radiation diagram of an antenna used in our 
applications is determined for substrate with the 
permittivity equal to 3.5, thickness equal to       
0.159 cm and operating at 5 GHz. 
The array factor in dB is given by: 

))(log(20)( normalisedFP θθ =                                    (2) 
The mathematical statement of the optimization 

process is: 

optvvfFind →)(max                                                  (3) 
Where f(v) is the objective function of parameter 

variables v.  
The optimization problem can be modeled by 

minimization the value of difference between the 
perturbed and the desired patterns. Mathematically, 
the optimization problem can be written as: 

∫ −−=
π

θθθ
0

)()( dFFMaxf d
                                   (4) 

 
3 Hybrid Particle Swarm Optimizer 
with Breeding and Subpopulations 
The hybrid model incorporates one major aspect of 
the standard GA into the PSO, the reproduction. In 
the following work, we will refer to the used 
reproduction and recombination of genes only as 
breeding. Breeding is one of the core elements that 
make the standard GA a powerful algorithm. Hence 
our hypothesis was that a PSO hybrid with breeding 
has the potential to reach a better solution than the 

standard PSO. In addition to breeding we introduce 
a hybrid with both breeding and subpopulations. 
Subpopulations have previously been introduced to 
standard GA models mainly to prevent premature 
convergence to suboptimal points [9]. Our 
motivation for this extension was that the PSO 
models, including the hybrid PSO with breeding, 
also reach suboptimal solutions. Breeding between 
particles in different subpopulations was also added 
as an interaction mechanism between 
subpopulations. The traditional PSO model, 
described by [10], consists of a number of particles 
moving around in the search space, each 
representing a possible solution to a numerical 
problem. Each particle has a position vector 
Xi=(xi1,…,xid,…,xiD), a velocity vector 
Vi=(vi1,…,vid,…,viD), the  position Pi=(pi1,…,pid,…,piD) 
and fitness of the best point encountered by the 
particle, and the index (g) of the best particle in the 
swarm. At each iteration the velocity of each 
particle is updated according to their best 
encountered position and the best position 
encountered by any particle, in the following way: 

)(())(() 21 idgdidididid xprandcxprandcvwv −××+−××+×=          (5) 
w is the inertia weight described in [11] and Pgd  

is the best position known for all particles. C1 and 
C2 are random values different for each particle and 
for each dimension. If the velocity is higher than a 
certain limit, called Vmax, this limit will be used as 
the new velocity for this particle in this dimension, 
thus keeping the particles within the search space. 
The position of each particle is updated at each 
iteration. This is done by adding the velocity vector 
to the position vector; 

ididid vxx +=                                                              (6) 
The particles have no neighbourhood restrictions, 

meaning that each particle can affect all other 
particles. This neighbourhood is of type star (fully 
connected network), which has been shown to be a 
good neighbourhood type in [12]. Fig.1 shows the 
structure illustration of the hybrid model. 
 
 

 
 

 
 

 

Fig.1 The structure of the hybrid model. 
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The breeding is done by first determining which 
of the particles that should breed. This is done by 
iterating through all the particles and with 
probability pb (breeding probability = 0.6), mark a 
given particle for breeding. Note that the fitness is 
not used when selecting particles for breeding. From 
the pool of marked particles we now select two 
random particles for breeding. This is done until the 
pool of marked particles is empty. The parent 
particles are replaced by their offspring particles, 
thereby keeping the population size fixed. The 
position of the offspring is found for each dimension 
by arithmetic crossover on the position of the 
parents: 

)(*)1()(*)( 211 iiiii xparentpxparentpxChild −+=          (7) 

)(*)1()(*)( 122 iiiii xparentpxparentpxChild −+=          (8) 

 
Where pi is a uniformly distributed random value 

between 0 and 1. The velocity vectors of the 
offspring are calculated as the sum of the velocity 
vectors of the parents normalized to the original 
length of each parent velocity vector.  
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The arithmetic crossover of positions in the 
search space is one of the most commonly used 
crossover methods with standard real valued GA, 
placing the offspring within the hypercube spanned 
by the parent particles. The main motivation behind 
the crossover is that offspring particles benefit from 
both parents. In theory this allows good examination 
of the search space between particles. Having two 
particles on different suboptimal peaks breed could 
result in an escape from a local optimum, and thus 
aid in achieving a better one. We used the same idea 
for the crossover of the velocity vector. Adding the 
velocity vectors of the parents results in the velocity 
vector of the offspring. Thus each parent affects the 
direction of each offspring velocity vector equally. 
In order to control that the offspring velocity was 
not getting too fast or too slow, the offspring 
velocity vector is normalized to the length of the 
velocity vector of one of the parent particles. The 
starting position of a new offspring particle is used 

as the initial value for this particle’s best found 
optimum ( ip ). The motivation for introducing 
subpopulations is to restrict the gene flow (keeping 
the diversity) and thereby attempt to evade 
suboptimal convergence. The subpopulation hybrid 
PSO model is an extension of the just described 
breeding hybrid PSO model. In this new model the 
particles are divided into a number of 
subpopulations. The purpose of the subpopulations 
is that each subpopulation has its own unique best 
known optimum. The velocity vector of a particle is 
updated as before except that the best known 
position (

gp  in the formula) now refers to the best 
known position within the subpopulation that the 
particle belongs to. In terms of the neighbourhood 
topology suggested by Kennedy in [10], each 
subpopulation has its own star neighbourhood. The 
only interaction between subpopulations is if parents 
from different subpopulations breed. Breeding is 
now possible both within a subpopulation but also 
between different subpopulations. An extra 
parameter called probability of same subpopulation 
breeding psb determines whether a given particle 
selected for breeding is to breed within the same 
subpopulation (probability psb = 0.6), or with a 
particle from another subpopulation (probability    
1-psb). Replacing each parent with an offspring 
particle ensures a constant subpopulation size. 
 

4 Numerical Results 

To demonstrate the validity of the proposed method 
that synthesizes the array pattern with suppress 
single, multiple, and broad-band interference signal 
with the imposed directions and maximum tolerance 
of SLL using complex current excitations, several 
computer simulation examples using an equispaced 
linear array with one half wave interelement spaced 
16 isotropic elements were performed. The 
simulation is run on hp Elitebook i5 computer with  
4 GB of RAM. The algorithm of hybrid model is 
implemented using Matlab. 

The results of steering beam in the direction of 
the desired signal and creating single suppressed 
wide band interferences are presented in Figs 2, 5 
and 8. 
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Fig.2 Pattern synthesis with a wide single null imposed at 
0° and steering lobe at −40°. 

The total numbers of function evaluations is 200 
iterations for this kind of excitation with 3          
sub-swarms of 40 particles each one. 
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Fig.3 Convergence of the algorithm versus the number of 
iterations. 

The hybrid model APSO-AG synthesis results of 
amplitudes phases are traced in Fig.4 and are given 
in Table 1. 
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Fig.4 The element excitation required to achieve the 
desired pattern. 

The array pattern synthesis is shown in Fig.5. 
From this figure we can see that the maximum 
sidelobe level is lower than -20 dB. 

 

Fig.5 Pattern synthesis with a wide single null imposed at 
30° and steering lobe at 0°. 

For the design specification of amplitude-phase 
synthesis APSO-AG is run for 200 generations. 
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Fig.6 Convergence of the algorithm versus the number of 
iterations. 
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Fig.7 The element excitation required to achieve the 
desired pattern. 

The Fig.8 shows the normalized absolute power 
pattern in dB, the maximum side lobe level reach     
- 20 dB with a wide and deep single null imposed at 
0° and steering lobe at 35°, we note that there is a 
very good agreement between desired and obtained 
results. The convergence of the algorithm is shown 
in Fig.9. 

 
Fig.8 Pattern synthesis with a wide single null imposed at 
0° and steering lobe at 35°. 
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Fig.9 Convergence of the algorithm versus the number 
ofiterations. 
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Fig.10 The element excitation required to achieve the 
desired pattern. 
 

The best results obtained by the hybrid model are 
shown in Fig.10, and the values are presented in 
Table1. 
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The proposed method can create the multiple 
mainbeams in the directions of the different users. 

Figs.11 and 14 have shown the result of a 
simulation with 16 isotropic elements, cancelling 
interferers with -60°, and two nulls at -60°and wide 
null at 0°, respectively. And two steering lobes at     
-20° and 40°. 
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Fig.11 The radiation pattern with a sector interference 
nulling around −60° and two steering lobes at −20° and 
40°. 

After 400 iterations, the fitness value reach to it 
maximum and the optimization process ended due 
to meeting the design goal. The convergence curve 
of fitness is presented in Fig.12. 
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Fig.12 Convergence of the algorithm versus the number 
ofiterations. 
 

The element excitations required to achieve the 
desired pattern are traced in Fig.13 and shown in 
Table 2. 

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sources

A
m

pl
itu

de

 

0 2 4 6 8 10 12 14 16

-300

-200

-100

0

100

200

300

Sources

Ph
as

e°

 
Fig.13 The element excitation required to achieve the 
desired pattern. 

We show the comparison of the far-field patterns 
among the hybrid model simulation results, and the 
sequential quadratic programming (SQP) algorithm 
simulated results in [13]. An improvement of about   
10 dB in the side lobe level is obtained. 
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Fig.14 The radiation pattern with a wide sectors 
interference nulling around 0° and two steering lobes at 
−20° and 40°. 
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Fig.15 Convergence of the algorithm versus the number 
of iterations. 
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Fig.16 The element excitation required to achieve the 
desired pattern. 

we introduce the cases of an array with 16 
equispaced isotropic elements with λ/2 interelement 
spacing, which is supposed to generate three beams 
steered towards the three angles θ1= -30°, θ2 = 0° 
and θ3=30° with interference nulling at -15° and 15° 
respectively. 
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Fig.17 The radiation pattern with interference nulling at -
15° and tree steering lobes at −30°, 0 and 30°. 

The corresponding number of iterations is 1000 
iterations as shown in Fig.18. 
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Fig.18  Convergence of the algorithm versus the number 
ofiterations. 
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Fig.19 The element excitation required to achieve the 
desired pattern.      
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Fig.20 The radiation pattern with interference nulling at 
15° and tree steering lobes at −30°, 0 and 30°. 

The best fitness value returned versus the number 
of calls to the fitness evaluator was achieved after 
2000.
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Fig.21 Convergence of the algorithm versus the number 
of iterations. 
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Fig.22 The element excitation required to achieve the 
desired pattern. 

With the same array as the last section, and the 
same type of synthesis, we present synthesis results 
of multibeam array as indicated in the Fig.23, it 
shows the radiation pattern with four steering lobes 
at 30°,0°, 14° and 38°, null at -30°. 

 
Fig.23 The radiation pattern with four steering lobes at               
-30°,0°,14° and 38°, and null around  -30°. 
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Fig.24 Convergence of the algorithm versus the number 
of iterations. 
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Fig.25 The element excitation required to achieve the 
desired pattern. 

The best results obtained by the hybrid model are 
listen in table 3. 
 
5 Conclusion 

A method for antenna array pattern synthesis based 
on the hybrid model algorithm has been presented. 
The problem can be modeled as a multicriteria 

optimization, where the optimization objectives are 
the maximum of the signal at the direction of wanted 
sources subject to the constraints of minimization of 
the signal at the direction of unwanted sources. The 
numerical results show that the complex excitation 
control using the hybrid model algorithm is efficient 
for prescribed single, multiple and broad nulls, and 
control the null depth and maximum of sidelobe 
level. 

Table 1. Amplitude and phase distributions 
N° Fig.2 Fig.5 Fig.8 

Amplitude Phase° Amplitude Phase° Amplitude Phase° 
1 0.3395 197.4527 0.0415 193.5967 0.1886 118.9861 
2 0.5283 55.0612   0.1741     220.7091 0.4125 252.0613   
3 0.5497 292.0538    0.2767     217.7984 0.5932 337.9592   
4 0.5268     166.3927   0.4947     198.4783 0.7315 101.6828   
5 0.5050 48.7243   0.6246     198.3637 0.6131 190.6975   
6 0.7350 302.8540   0.5982   175.5256 0.6393 290.0599 
7 0.8115     177.3132   0.7941     198.0944   0.8223 27.9489 
8 0.7835     61.4841   0.8008 170.3346   0.9206 126.6695 
9 0.7835     -61.4841   0.8008 -170.334 0.9206 -126.669 
10 0.8115     -177.313   0.7941     -198.094   0.8223 -27.9489 
11 0.7350     -302.854    0.5982     -175.525 0.6393     -290.059 
12 0.5050 -48.7243   0.6246     -198.363 0.6131 -190.697 
13 0.5268     -166.392   0.4947     -198.478 0.7315 -101.682   
14 0.5497 -292.053 0.2767     -217.798 0.5932 -337.959 
15 0.5283 -55.0612 0.1741     -220.709 0.4125 -252.061 
16 0.3395 -197.452 0.0415 -193.596 0.1886 -118.986 

 

Table 2. Amplitude and phase distributions 
 

N° 
Fig.11 Fig.14 Fig.17 

Amplitude Phase° 
 

Amplitude Phase° 
 

Amplitude Phase° 
 

1 0.1566 31.1001 0.1768 16.919 0.1064 297.416 
2 0.2501 195.178 0.2641 198.839 0.1972 281.666 
3 0.3189 243.358 0.3503 254.525 0.2533 142.448 
4 0.4457 75.8367 0.51 73.7454 0.5272 132.88 
5 0.4134 104.696 0.542 110.162 0.6225 259.24 
6 0.523 301.885 0.6921 303.822 0.5755 238.075 
7 0.6037 326.041 0.6645 320.747 0.7106 135.155 
8 0.6307 165.246 0.7186 163.344 0.823 126.549 
9 0.6307 -165.24 0.7186 -163.34 0.823 -126.54 
10 0.6037 -326.04 0.6645 -320.74 0.7106 -135.15 
11 0.523 -301.88 0.6921 -303.82 0.5755 -238.07 
12 0.4134 -104.69 0.542 -110.16 0.6225 -259.24 
13 0.4457 -75.836 0.51 -73.745 0.5272 -132.88 
14 0.3189 -243.35 0.3503 -254.52 0.2533 -142.44 
15 0.2501 -195.17 0.2641 -198.83 0.1972 -281.66 
16 0.1566 -31.100 0.1768 -16.919 0.1064 -297.41 

 

Table 3. Amplitude and phase distributions 

 
 

N° 
Fig.20 Fig.23 

Amplitude Phase° 
 

Amplitude Phase° 
 

1 0.0592 192.8 0.1244 248.509 
2 0.2465 120.762 0.2678 52.064 
3 0.3496 252.09 0.5634 200.122 
4 0.4516 267.748 0.169 236.001 
5 0.5649 147.559 0.2592 314.439 
6 0.6924 122.12 0.6237 195.034 
7 0.882 241.679 0.5956 41.367 
8 0.7826 235.972 0.841 181.117 
9 0.7826 -235.972 0.841 -181.117 

10 0.882 -241.679 0.5956 -41.367 
11 0.6924 -122.12 0.6237 -195.034 
12 0.5649 -147.559 0.2592 -314.439 
13 0.4516 -267.748 0.169 -236.001 
14 0.3496 -252.09 0.5634 -200.122 
15 0.2465 -120.762 0.2678 -52.064 
16 0.0592 -192.8 0.1244 -248.509 
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