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Abstract:-The comprehensive analysis of the Spread Spectrum Responder (SSR) carrier tracking loops is 
presented. A mathematical model of a second-order FLL assisted third-order PLL is illustrated to study the 
performance in dynamics and noise. A fixed point method is used in the work to analyze the stable regions for 
the FLL, PLL and FLL assisted PLL. The Chapman-Kolmogorov (C-K) equation is utilized to express the 
steady-state Probability Density Function (PDF) of these three loops. The steady-state mean and variance are 
also be derived. At last, we discuss the optimizations for the combined loop due to the fact that the assisted 
tracking loop can be considered as an equivalent third-order PLL. This work will play an important role in 
designing the high dynamic carrier tracking.  
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1 Introduction 
The development of the aerospace measurement and 
control system (M&C) is based on the spacecraft’s 
demand. The function and structure of telemetry, 
tracking and command (TT&C) for the spacecraft in 
the early days are simplex. M&C were realized by 
separated devices at different frequency channel. 
The Unified S-Band System (USB) was first 
introduced at 1960s. This system integrates various 
functions into one structure so as to get a simple and 
reliable one. But it is difficult to improve the range 
accuracy and track and control different objectives. 
Meanwhile, it has poor ability to resist interference. 
At 1970s, the Unified Spread Spectrum TT&C 
System was used to meet the demand of the complex 
space mission. Thegood anti-interference 
performance, high concealment and united code 
structure make the device easy to manage by 
realizing TT&C with one satellite [1,2].  
Synchronization plays a key role in the receivers so 
as for the spread-spectrum responder (SSR): ±90kHz 
Doppler shift and 3kHz/s Doppler rates shall be 
compensated at the receiver side. This puts forward 
higher requirements for the carrier tracking structure 
due to the high dynamics. In this paper, we will 
study the tracking technique to meet the index [3].  
This work is organized as follows. Section 2 presents 
the trajectory and DPLL model for SSR receiver, the 

analysis of the loop input signal, discriminator noise 
characteristics. The stable region, oscillatory 
behavior and steps to convergence of the 
second-order FLL, the third-order PLL and the FLL 
assisted PLL in the absence of noise are analyzed in 
Section 3. The mean and variance in the presence of 
noise for these three loops are discussed in Section 4. 
Section 5 studies the optimization of the assisted 
tracking loop followed by the conclusions in Section 
6. 
 
 
2System Modeling 
Figure 1 shows the trajectory of the responder. At 
this point, we just consider the quadratic phase input 
as 

( ) ( )21
0 02

2

f
t f t t o fθ θ π= + + + 

 
 

     (1) 

Where f0 is Doppler shift and f1 is the Doppler rates. 
Although a great many literatures have discussed the 
methods to track Doppler rates such asKalman filter 
and the second-order PLL [4,5], we will study the 
second order FLL assisted thirdorder PLL due to the 
high dynamics and itssimplicity to implement on 
FPGA. The dynamic range, noise performance and 
loop optimization will be discussed in the paper. 
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Fig 1. Trajectory of the spread-spectrum responder 

 
 

2.1Loop Difference Equations 
 As shown in Figure 2, synchronization of PRN 
has achieved, we just focus on carrier 
synchronization. The NCO generates the local 
in-phase and quadrature reference signals at the 
sampling rate fsfor coherently correlating. The output 
of the loop filter modifies the phase and frequency 
of the NCO every NTs. The m-th sample digital 
baseband processor (DBP) received signal at 

baseband is[6] 

[ ] [ ] [ ]
[ ]( ) [ ]
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f mT m n mπ θ

= ×
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Where, P is the signal power, d[m] represents the 
baseband signal, c[m] is spread code, fc(1/Ts) 
represents the sample frequency.  
 The in-phase and in-quadrature correlation of 
the received signal with the locally generated 
replicas are inputs to the tracking loops. They can be 
expressed for the k-th integration interval as 
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Where, ( ) ( )sin 2k k k k LA Pd R c Tτ δω= is the results 

of correlation, ˆ
k k k kϕ δθ θ θ= = −  is the phase 

estimation error, τk、δθk and δωk are the averaged 
code phase, carrier phase estimation error and radian 
frequency estimation error. TL is the integrations 
time, R(·) is the code correlation function, and 
sinc(x)=sin(πx)/(πx). This expression assumes that 
the data bit d[m] and the received signal radian 
frequency ωk remain constant during the integration 
time. 
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Fig. 2. Structure of a second order FLL assisted third PLL 

   
Frequency error can be got by taking derivation of 
the two successive phases as[7] 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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(4) 

 The linear frequency discriminator and phase 
discriminator perform an four quadrant arctangent 
and an two quadrant arctangent, which have outputs 
as [8] 
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 Where gθ[·] and gω[·]are the characteristic 
functions of the frequency discriminator and phase 
discriminator, respectively. While φ(k) is the phase 
tracking error due to a noise-free incoming signal 
and nθ(k) ∈ (-π/2-gθ[φ(k)], +π/2-gθ[φ(k)]) is the 
phase disturbance due to the input noise; w(k) is the 
phase tracking error due to a noise-free incoming 
signal and nω(k)∈(-π-gω[φ(k)], +π-gω[φ(k)])/TL is 
the phase disturbance due to the input noise.Due to 
the linear characteristic of arctangent discriminators, 
the characteristic functions of this two discriminators 
are 
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 A mathematically equivalent model of the FLL 
assisted PLL is show in Fig. 1. With the NCO 
transfer function N(z)=z-1/(1-z-1) and loop filter Fθ(z) 
and Fω(z), the corresponding loop equations are 
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The expressions for D(z), N(z), Fω(z) and Fθ(z) are  
( ) 11D z z−= −                  (9) 
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 The filters’ structure of the second frequency 
locked loop (FLL) assisted the third order phase 
locked loop[7] (PLL) is illustrated in Figure 3.  
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Fig3. Filters’ structure of second order FLL assisted 
third order PLL 
 
 
2.2Characteristics of Discriminator Noise 
 The discussion below focuses on the noise 
distribution of phase discriminator, the calculation 
method also suits frequency discriminator by 
replacing the φkof eq. (19) with the frequency error 
wk. 
 The signal envelope and phase estimation error 
is obtain by 

2 2 , 0k k k kZ I Q Z= + ≥  (13) 
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(14) 

 It has been shown that ni and nq in (2) are 
Gaussian if N≥1, and the means and variances of Ik 
and Qk can be expressed as follows [6] 
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Where, Var(x) represents the variance of x. 
 Given the phase estimation error φk, the joint 
probability density function (PDF) between Ik and Qk 
is  

( ) ( )( )

( )( ) }

2

2 2

2

1 1, exp cos
2 2

sin

k k k k k k
k k

k k k

p I Q I A

Q A

ϕ ϕ
πσ σ

ϕ

 = − − 

+ −


(16) 

According to the following relationship between Ik, 
Qk and Zk, φk 
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The joint PDF of the envelope Zk and phase 
estimation error φk can be calculated by 
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Integrating (18) with respect to Zk from 0 to ∞, we 
obtain the conditional probability density 
function(CPDF) of phase error[9,10]. 
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(19) 
where ( )

2

0
2

x uerf x e duπ −= ⋅ ∫  is the Gaussian error 
function, SNR=Ak

2/2σk
2 is the signal to noise ratio 

(SNR) after correlation. Figure 4 depicts the CPDF 
at six different SNRs in the form of eq.(19).  
 

 
Fig 4. PDF of Discriminator Noise at Different 

SNRs 
 

According to (6), we have the PDF of the 
discriminator noise as 
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where nk is nk
ω or nk

θ depends on the discriminate 
parameter, that is frequency or phase. 
 From the above discussion, the output of the 
discriminators consist of both error g1[φk] or g2[wk] 
due to incoming signal phase dynamics and error 
nθ(k) or nω(k) due to incoming additive noise. In the 
following, we analyze the error component resulting 
from system dynamics in Section 3 and from noise 
in Section 4.  
 
 
3DYNAMIC PERFORMANCE IN 
THE ABSENCE OF NOISE 
 In this section, we will analyze the linearity of 
the loop by studying the equation as a fixed-point 
problem. This makes available contractive mapping 
theorems which determine convergence to a 

steady-state solution and gives results which are 
rigorously correct. What’s more, by using this 
theorems, we can obtain bounds on the rate of 
convergence (acquisition time) to the fixed point 
(steady-state solution) for a frequency ramp input.  
 We will first analyze the dynamic performance 
of the second-order FLL, because the stability of the 
FLL determines the overall stabilization of the 
combined tracking loops; then the third order PLL 
dynamics will be studied. At last, we will present the 
stable region of the assisted tracking loops. 
 
 
3.1 The Second-Order FLL  
 In the absence of input noise, the random 
frequency noise nω(k) vanish so that eω(k) =g1[w(k)] 
mod [-π,+π]. The frequency transfer function can be 
expressed in terms of the loop filter Fω(z), the 
numerically controlled oscillator N(z) and the 
discriminator function D(z) as[6] 
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where D(z)=1-Z-1, it’s the phase difference 
function.Θ(z) and Ф(z) are the z transformations of 
θ(k) and φ(k). 
 The loop locking condition and frequency 
tracking error in the absence of noise will be 
analyzed based on (22).The loop difference equation 
of the second order FLL is 
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where 1 1 2 2,o oG K K C G K K Cω ω ω ω ω ω= = . 
 Equation (21) defines the linear difference 
equation of loop operation for FLL. In studying the 
dynamical response of the loop to the Doppler rates 
inputs, we shall be concerned with the conditions 
under which the above equation exhibits a 
steady-state response since this indicates whether the 
loop will lock. This problem can be stated as a fixed 
point problem. The loop equation is of the 
form[11,12] 

( )1m mx G x+ =    (24) 
And what we are seeking is a solution x* such that 
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 If (25) is satisfied, then x* is called a fixed point 
of G, and under certain conditions, the sequence {xi} 
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defined by (24) will converge to the solution x*.  
We assume the input is a quadratic phase input, i.e., 

2 2
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It is easy to see that the fixed point is 
2

2

2a

Gω
ϕ∗ =     (29) 

 
 
3.1. 1 Range of Gain for Stability 
In order to apply the fixed point method, we must 
transform the equation into a system of two 
first-order equations, so it is in the form xk+1=G(xk).  
Thus, if yk=φk+1, xk=φk, then equation (28) becomes 
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where, xk=φk, x0=( φ0, φ1 )T.and 
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The Jacobian G’(x)=(∂gi/∂xj) is given by 
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In order to have the eigenvalues of G’(x) less than 1, 
we must have  
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4
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The conditions for faster convergence, i.e., ρ[G’(x*)] 
= 0, can be obtained by examining (32); these are 

1 11, 2G r Gω ω ω= =        (34) 
Then the matrix has three zero elements and its 
spectral radius is zero. Since the rate of convergence 
near the fixed point can be show to be governed by 
the spectral radius, we shall take G1

ω=1 and rG1
ω=2 

as our “optimum” values in terms of acquisition 
time. 
 It is to be noted that since the convergence 
condition (33) has been obtain assuming that φ(k)’s 
lie between –π and π, the condition guarantees 
locking only in the neighborhood of the steady-state 
error in which φ(k) does not cause φ(k+1) to be 

outside the interval (-π, π). Thus, for φ(k) to 
converge to the fixed point, independently of the 
initial phase error, another condition |φ(k+1)|<π for 
all k is required. This condition leads to the 
following four expressions[8]. 
 
a. when φ(k)=π and φ(k+1)=π, we have |φ(k+2)|<π, 
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d. when φ(k)=π and φ(k+1)=π, we have |φ(k+2)|<π, 
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From the above analysis, convergence conditions 
which are independent of the initial phase errors can 
be concluded as 
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The stable regions for the loop parameters are 
plotted on G1

ω-r plane in Fig. 5 with dynamic 
parameter: a2=π/4. The transient responses are 
plotted in Fig. 6 for G1

ω=1 and r=1.5, 2 and 2.5 with 
initial phase errors φ(0)=0 and φ(1)=1, given the 
input phase θ(k)=0.125k2+0.5k+1. It is observed that 
the steady-state phase tracking error reduces with the 
increase of loop parameter r and the fast 
convergence is achieved at r=2. This is in 
accordance with equation (34). 
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Fig. 5. The second order FLL stable region 

 

 
Fig. 6. The second order FLL transient response 

 
 
3.1.2Number of Steps for Convergence 
 In order to calculate the steps for convergence, 
we need first extend the theory in [12] to higher 
dimensions as: 
Theorem 1[12]: Suppose that X is a normed vector 
space and K is a subset of X such that the following 
conditions hold: 

1) G: K→K 
2) G(x*)=x*, x*∈ K 
3) There exists a constant L: 0≤L<1 such that 
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and x* is the unique fixed point of G in K. 
 2) 0

m
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Based on this theory, the steps for convergence to a 
radius ε beside the stationary point can be 
represented as[11,12] 
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Where φ0 and φ1 are the initial phase errors, φss is the 
stationary phase error, arguments ψ0 and ψ1 satisfy 
ψ0∈ [-φ0, φ0], ψ1∈ [-φ1, φ1]and L satisfies the 
following equation 
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(37) 
 
 
3.1.3 Oscillatory Behavior 
 We now examine the behavior of the phase 
error for loop parameters outside the bounds given in 
(3.1.13). An oscillatory solution exits[11,12] where 
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These yields 
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2
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a

Gω
ϕ ϕ =  

It is easy to see that these two oscillatory points are 
the same as the steady-state point and this situation 
also suits for the three oscillatory points. This result 
illustrates that if the loop oscillates at some 
particular points then these points are the same to the 
only one stationary point and loop operates on the 
stable regions. Otherwise, the loop will oscillate 
with increasing amplitude like Fig. 7.  
 

 
Fig. 7. Oscillatory Behavior of the second order FLL  
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3.2 The Third-Order PLL 
 As for the third order PLL, the loop transfer 
function is[6] 

( ) ( )
( ) ( )1

z
z

K F z N zθ θ

Θ
Φ =

+
   (39) 

By expending the function we have 
( )( )

( ) ( )
( ) ( )

1 2 3

1
1 2 3

2 3
1 2 1

1 3 3

1 3

2 3 1

z z z z

z G G G z

G G z G z

θ θ θ

θ θ θ

− − −

−

− −

Θ − + −

=Φ + + + −

− + − + −




   (40) 

The corresponding difference equation is 

( ) ( )
( )

1 2 3

1 1 1 2

1 3

3 3

3 1 3

1

k k k k

k k k

k

p G r G

G

θ θ θ θ

θ

θ θ θ θ

ϕ ϕ ϕ

ϕ

− − −

− −

−

− + −

= + − − + −

+ −

   (41) 

Here, the loop parameters are 

32 2

1 1 1

1 1,GG G
p r

G G G

θθ θ
θ θ

θ θ θ
= + + = +       (42) 

For a quadratic phase input, the difference equation 
can be expressed as 

( )
( ) ( )

3 1 2

1 1 1

3

1 3 1 0

k k

k k

p G

r G G

θ θ

θ θ θ

ϕ ϕ

ϕ ϕ

+ +

+

+ −

− + − + − =  
(43) 

It is easy to see that the stationary solution of (43) is 
0ϕ∗ =                 (44) 

 
 
3.2.1 Range of Gain for Stability 
The equation (43) can be expressed as a system of 
three first-order equations, so it is in the form 
xk+1=G(xk).  
Thus, if zk=φk+2, yk=φk+1, xk=φk, then equation (43) 
becomes 

( )
( ) ( )

1

1
1

1

1 1

3

1 3 1

k

k k

k
k

k

k k

y
x z
y p G z
z

r G y G x

θ θ

θ θ θ

+

+

+

=
− −

+ + − − −

 
  
  
  
         

 

(45) 
where, xk=φk, x0=( φ0, φ1, φ2 )T. 
The Jacobian G’(x)=(∂gi/∂xj) is given by 

( )

( )
'

1 1 1

0 1 0

0 0 1

1 1 3 3

G x

G r G p Gθ θ θ θ θ

=

− + − −

 
 
 
 
  

(46) 

At the fixed point x* = 0, we must have |λi|<1, i=1, 2, 
3. where the λ’s satisfy the characteristic equation 

|λI- G’(x*)|= 0 or  

( ) ( )3 2
1 1 13 3 1 1 0p G r G Gθ θ θ θ θλ λ λ+ − + − + + − =    

(47) 
The Routh-Hurwitz criteria can be used to obtain 
stability bounds for (46) if the following 
transformation is used to map the interior of the unit 
circle to the left half-plan[12]: 

1

1

v

v
λ

+
=

−
      (48) 

Substitute this transformation into (47), the resulting 
equation in v is 

( ) ( )
( )
( )

3 2
1 1 1 1 1

1 1 1

1 1 1

4

8 2 0

v p G r G v p G r G G

v p G r G G

p G r G G

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

− + + −

+ − + +

+ − − − =

(49) 

When applying the Routh-Hurwitz criteria[11,12], 
we have the stable conditions for the coefficients 

( )
( )

1

1

0

2 0

4 0

8 2 0

1 0

p r

p r

p r

G p r

G p p r

θ θ

θ θ

θ θ

θ θ θ

θ θ θ θ

− >

+ − >

− + >

− + + >

− − + >

  (50) 

 The faster convergence can be achieved when 
applying ρ[G’(x*)] = 0 by examining (46); these are 

1 1, 2, 3G r pθ θ θ= = =   (51) 
 It is also required that |φk+3|<π when |φk+2|=π, 
|φk+1|=π, |φk|=π [8]. So the overall loop stable 
conditions independent of the initial phase tracking 
error can be further derived asthe following 
expressions. 
 
a. when φ(k+2)=π, φ(k+1)=π and φ(k)=π, we have 
|φ(k+3)|<π, thus 

( ) 12 0r p Gθ θ θ− < − <  
b. when φ(k+2)=π, φ(k+1)=π and φ(k)=-π, we have 
|φ(k+3)|<π, thus 

( ) 10 2 2r p Gθ θ θ< + − <  
c. when φ(k+2)=π, φ(k+1)=-π and φ(k)=π, we have 
|φ(k+3)|<π, thus 

( ) 16 2 8p r Gθ θ θ< + + <  
d. when φ(k+2)=π, φ(k+1)=-π and φ(k)=-π, we have 
|φ(k+3)|<π, thus 

( ) 14 6p r Gθ θ θ< + <  
e. when φ(k+2)=-π, φ(k+1)=π and φ(k)=π, we have 
|φ(k+3)|<π, thus 
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( ) 14 6p r Gθ θ θ< + <  
f. when φ(k+2)=-π, φ(k+1)=π and φ(k)=-π, we have 
|φ(k+3)|<π, thus 

( ) 16 2 8p r Gθ θ θ< + + <  
g. when φ(k+2)=-π, φ(k+1)=-π and φ(k)=π, we have 
|φ(k+3)|<π, thus 

( ) 10 2 2r p Gθ θ θ< + − <  
h. when φ(k+2)=-π, φ(k+1)=-π and φ(k)=-π, we have 
|φ(k+3)|<π, thus 

( ) 12 0r p Gθ θ θ− < − <  
The above analysis can be concluded as 

( )
( )
( )
( )

1

1

1

1

2 0

0 2 2

6 2 8

4 6

r p G

r p G

p r G

p r G

θ θ θ

θ θ θ

θ θ θ

θ θ θ

− < − <

< + − <

< + + <

< + <

     (52) 

 According to (52), the stable region on the r-p 
plane of loop parameters is show in Fig. 8 with 
G1

θ=1. The stable regions are invariant when just 
consider the quadratic phase input. Figs. 9 and 10 
shows the loop transient responses with initial phase 
error φ(-2)= φ(-1)=0, φ(0)=1(rad) and G1

θ=1, rθ=1.5, 
2 ,3 and pθ=2.5, 3 ,3.5. It is noticed that whatever the 
loop gain parameters change while inside the stable 
regions, the loop will converge to zero steady-state 
phase error, and the fast convergence is achieved 
with G1

θ=1, rθ=2 and pθ=3. 
 

 
Fig. 8The third order PLL stable regions 

 
Fig. 9 FLL assisted PLL transient processes; 

G1=1.0, φ(-2)= φ(-1)=0, φ(0)=1(rad) 
p=3 and r=1.5, 2, 2.5 

 
Fig. 10 FLL assisted PLL transient processes; 

G1=1.0, φ(-2)= φ(-1)=0, φ(0)=1(rad) 
r=2 and p=2.5, 3, 3.5 

 
 
 
3.2.2 Number of Steps for Convergence 
 Applying the method of Section 3.1.2, the steps 
to convergences is 

( ) ( ) ( )
( )

2 2 2
0 1 2

ln

ln

ss ss ss
m

L

ε

ϕ ϕ ϕ ϕ ϕ ϕ− + − + −
<

 
 
      

(53) 
And L satisfies 
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( ) ( )( )
( )

( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

1 2 1 1

2

1 0

2 2 2
0 1 2

2
1

2 2 2
0 1 2

2
0

2 2 2
0 1 2

3 1 3

1

max

ss

ss ss ss

ss

ss ss ss

ss

ss ss ss

p G r G

G

L

θ θ θ θ

θ

ψ ψ

ψ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ψ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ψ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

− + + −

− − −

− + − + −

−
= +

− + − + −

−
+

− + − + −

  
  
    
  
 

   
 
 
    
 
  

Where φ0, φ1andφ2are the initial phase errors, φss is 
the stationary phase error, arguments ψ0, 
ψ1andψ2satisfy ψ0∈[-φ0, φ0], ψ1∈[-φ1, φ1], ψ2∈[-φ2, 
φ2]. 
 
 
3.2.3 Oscillatory Behavior 
We now examine the behavior of the phase error for 
loop parameters outside the bounds given in (50). An 
oscillatory solution exits where 

( ) ( ) ( )
( ) ( ) ( )

2 1 1 1 2 1 1

1 1 2 1 1 1 2

= 3 1 3 1

= 3 1 3 1

p G r G G

p G r G G

θ θ θ θ θ

θ θ θ θ θ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− − + − + −

− − + − + −

  
  

 

     (54) 
These yields 

1 2= 0ϕ ϕ =  
These two oscillatory points are the same as the 
steady-state point and this situation also suits for 
three or four oscillatory points. This situation is 
similar to that of the second FLL. The stable 
oscillatory point is unique and equals to zero. The 
other oscillatory situations occur at unstable regions 
as Fig. 11. 
 

 

Fig. 11. Oscillatory Behavior of the third order PLL  
3.3 The Combined Tracking Loop  
In the assisted carrier phase fine tracking, loop can 
be represented on z-plane as[6,8] 

( ) ( )
( ) ( ) ( ) ( )1

z
z

K F z D z K F z N zθ θ ω ω

Θ
Φ =

+ +  
(55) 

 Substitute (9)、(10)、(11) and (12) into (55), 
therefore, the combined tracking loop equation is 

( )( )
( ) ( )
( )
( )

1 2 3

1
1 2 3 1 2

2
1 2 1 2

3
1 1

1 3 3

1 3

2 2 3

1

z z z z

z G G G G G z

G G G G z

G G z

θ θ θ ω ω

θ θ ω ω

θ ω

− − −

−

−

−

Θ − + −

=Φ + + + + + −

− + + + −

+ + −
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(56) 

Where, the coefficients of the filter are 

1 1 2 2

3 3 1 1

2 2

,

,

o o

o o

o

G K K C G K K C

G K K C G K K C

G K K C

θ θ θ θ θ θ

θ θ θ ω ω ω

ω ω ω

= =

= =

=

  (57) 

The difference equation characterizing loop 
performance becomes 

1 2 3

1 1 2 2 3 3

3 3k k k k

k k k kK K K

θ θ θ θ

ϕ ϕ ϕ ϕ
− − −

− − −

− + −

= + − +
     (58) 

Where, the coefficients of the equation are 

( ) ( )

( ) ( )

( )

1 1 1 2 2 3

1 2 3

2 1 1 2 2

1 2

3 1 1 1

3

3

2 3

2 3

1 1

K G C G C G

G G G

K G G G G

G G

K G G G

θ ω θ ω θ

θ ω θ ω

θ ω

= + + + + −

+ + −

= + + + −

+ −

= + − −







(59) 

For the quadratic phase input, we have 
1 1 2 2 3 3 0k k k kK K Kϕ ϕ ϕ ϕ− − −+ − + =  (60) 

Also 
3 1 2 2 1 3 0k k k kK K Kϕ ϕ ϕ ϕ+ + ++ − + = (61) 

It is easy to see that the stationary solution of (3.3.7) 
is 

0ϕ∗ = (62) 
 
 
3.3.1Range of Gain for Stability 
 The combined difference equation can be 
represented in the form of a set of first-order, 
three-dimensional state equations as 
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k k
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where zk=φk+2, yk=φk+1, xk=φk, and x0=( φ0, φ1, φ2 )T. 
 The Jacobian G’(x)=(∂gi/∂xj) is given by 

( )'

3 2 1

0 1 0

0 0 1G x

K K K

=

− −

 
 
 
  

 (64) 

At the fixed point x* = 0, we must have |λi|<1, i=1, 2, 
3. where the λ’s satisfy the characteristic equation 
|λI- G’(x*)|= 0 or  

( ) ( )3 2
1 2 3 0K K Kλ λ λ+ + − + = (65) 

By using the transformation of (3.2.10), we can get 
the equation in v as 

( ) ( )
( ) ( )

3 2
1 2 3 1 2 3

1 2 3 1 2 3

1 3 3

3 3 1 0

v K K K v K K K

v K K K K K K

+ − + + + + −

+ − + + + − − − =
(66) 

When applying the Routh-Hurwitz criteria[12], we 
have 

1 2 3

1 2 3

1 2 3

1 2 3

1 0

3 3 0

3 3 0

1 0

K K K

K K K

K K K

K K K

+ − + >

+ + − >

− + + >

− − − >

 (67) 

So, we have the stable conditions for the parameters 

( )
( )

1

1

0

2 0

1 0

8 2 0

p r

p r

p G p r

p r G

− >

+ − >

− − + >

− + + >

    (68) 

where r=1+G2/G1, p=1+G2/G1+G3/G1. 
 The conditions for faster convergence, i.e., 
ρ[G’(x*)] = 0, can be obtained by examining (64); 
these are 

1 2 3 0K K K= ==   (69) 
This means 

1 2 3 1G G G= ==     (70) 
It is also required that |φk+3|<π when |φk+2|=π, |φk+1|=π, 
|φk|=π [8]. So the overall loop stable conditions 
independent of the initial phase tracking error can be 
further derived as 

( )
( )
( )
( )

1

1

1

1

2 0

4 6

6 2 8

0 2 2

r p G

p r G

p r G

r p G

− < − <

< + <

< + + <

< + − <

(71) 

 By comparing the analysis of this part with that 
of the third order PLL, it is possible to consider the 
combined loop as an equivalent PLL with filter 
coefficients G1

θ+G1
ω, G2

θ+G2
ω, G3

θ, instead of G1
θ, 

G2
θ and G3

θ. In this way the influence of the FLL can 
be inserted into the model of the PLL at a design 
stage. A wide bandwidth FLL allows the loop to 

keep stable working while the PLL is unlocked when 
the frequency error is within the linear range of its 
discriminator. At this time, the loop response is 
governed by the FLL and the phase error input acts 
like a zero-mean perturbation [18]. So from the 
design point, the second order FLL assisted third 
PLL can be optimized to a single third order PLL, 
this will be discussed at Section 5.  
 Due to the fact that the combined loop can be 
regarded as an equivalent third order PLL, so the 
convergence steps and the oscillatory behavior are 
almost the same as the third order PLL except that 
the loop parameters are different. The steps to 
convergences is the same as (53), 

( ) ( ) ( )
( )

2 2 2
0 1 2

ln

ln

ss ss ss
m

L

ε

ϕ ϕ ϕ ϕ ϕ ϕ− + − + −
<

 
 
      

(72) 
The difference comes up to the value of L which is 

[ ]
( ) ( ) ( )
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( )
( ) ( ) ( )
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1 2 2 1 3 0

2 2 2
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2
1

2 2 2
0 1 2

2
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2 2 2
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L

ψ ψ ψ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ψ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ψ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

− + − −

− + − + −

−
= +

− + − + −

−
+

− + − + −

 
 
    

 
 

   
 
 
    

 
The oscillatory behavior is the same as Section 3.3.2 
except for the loop parameters. 
 
 
4.Performance in the Presence of 
Dynamics and Noise 
 In this section we consider the behavior for an 
input with frequency ramp in the presence of noise. 
Due to the stochastic nature of the input phase noise, 
the phase tracking error is also a stochastic process. 
We will apply the C-K equation to study the PDF, 
mean and variance of the phase error. In the 
following, we will derive the mathematical 
expressions of the PDF and variance of phase error 
due to the input noise and present how the phase 
error depends on the loop parameters and input noise 
statistics. 
 
 
4.1 The Second Order FLL 
4.1.1 Steady State PDF 
 For the quadratic phase input, the loop equation 
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of the restricted (i.e. [-π, +π]) phase error process 
{φ(k)} is  

( ) ( )
2 1

2 1 1 1 1

2

2

k k k

k k k ka G n r G nω ω ω ω ω

ϕ ϕ ϕ

ϕ ϕ

+ +

+ +

− +

= + + − +
  (73) 

Note shall be taken that the frequency noise 
component nω are mutually dependent for the 
consecutive samples due to the difference 
discriminator. When given (φk, φk+1), the pdf of 
(φk+1,φk+2) can be achieved which is equal to that of 
nω. So the phase error tracking error process {φ(k)} 
can be regarded as a first-order, two-dimensional, 
discrete time, continuously variable Markov process. 
Therefore we may rewrite it in a set of first-order 
stochastic difference equations[13]. Before this, we 
define s(·) by 

( ) ( ) 2

2

2
1k

a
s k r s k

G
ω

ω
ϕ = − + +  (74) 

Equation (4.1) then becomes 
( ) ( ) ( )[ ]

( ) ( ) ( )[ ]
( ) ( )

( ) ( )

1

1 1

2 2 1

3 2 2 1

1

1 2

k

k

s k s k s k

r s k s k s k

G s k r s k n

r G s k r s k n

ω

ω ω ω

ω ω ω ω
+

+ − + +

− + − + + +

= − + +

− + − + +

  
  

    (75) 

Equation (75) may be broken up into two equivalent 
equations. Letting x1(k)=s(k) and x2(k)=s(k+1), one 
gets the following vector set of equations: 

( ) ( )

( ) ( ) ( )

( ) ( )

1 2

2 1 1

1 2 1

1

1 1

2 k

x k x k

x k G x k

r G x k G n

ω

ω ω ω ω

+ =

+ = −

+ − +

    (76) 

Note that φk=x1(k)-rωx2(k) +2a2/G2
ω according 

to(74). 
 The vector process {x1(k), x2(k)} can be 
regarded as a second-order, two dimensional Markov 
process. Consequently, the joint PDF of x1(k), x2(k) 
satisfies the vector Chapman-Kolmogorov equation. 
The steady-state joint PDF p(x1,x2) can be obtained 
by 

( )

( ) ( )
1 1 2 10 20

1 2 1 2 1 2 10 20 1 2

, ,

, , , ,

k

k k

p x x x x

q x x z z p z z x x dz dz

+

∞ ∞

−∞ −∞
= ∫ ∫

 

(77) 
where  
x10=x1(0)         initial value of x1(·) 
x20=x2(0)         initial value of x2(·) 
pk(·,·| x10, x20)  joint pdf of x1(k) and x2(k) given  
x10 and x20 
qk(x1,x2| z1, z2) transient joint pdf of x1(k+1),  
x2(k+1) and x3(k+1) given  
x1(k)=z1, x2(k)=z2 

we can derived from (76) that 
( )

( ) ( ) ( )

( ) ( )( ) }

1 1 2 1 2

1 2
1 1

2

, ,

exp 1
cos

2 2

exp sin 1 cos

kq x x z z
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x z x

G G

SNR x erf SNR x

ω ω
δ

ππ

+

∗

∗ ∗

−
= − × +

× − ⋅ × +





      
(78) 

which is independent of k and  

( ) ( ) }{ 2 1 2 1 1
1

1
2 1x x r G z G z

G
ω ω ω

ω
∗ = − − − −  

When k→∞, the steady-state pdf of the phase error φ 
is independent of initial phase error (φ0, φ1) which 
yields[13,14] 

( ) ( ) ( )1 1 2 2 1 2 1 1 1, , ,k k kp x x q x z z p z x dz
∞

+ −∞
= ∫   (79) 

Due to the periodicity of the discriminator, we have 

( ) ( )

( )

1 2 1 2

1 2 1
1

, 2 , 2

ˆ 2
, ,

k k
m n

k
n

P x x p x m x n

x n
K x x z q

Gω

π π

π

∞ ∞

=−∞ =−∞

∞

=−∞

= + +

+
=

 
 
 

∑ ∑

∑
 (80) 

where  

( ) ( )2 1 1 1 1ˆ 2 1 2x x r G x G z nω ω ω π= − − − − +    (81) 
Consequently, the steady-state PDF P(x1,x2) is the 
unique solution to the following steady-state integral 
equation 

( ) ( ) ( )1 2 1 2 1 1 1 1, , , z ,P x x K x x P z x dz
π

π−
= ∫    (82) 

 
 
4.1.2 Steady State Mean and Variance 
 The steady-state mean of the phase tracking 
error can be obtained by taking the expectations of 
both sides of (74) and (76) and letting k→∞,we 
have[14] 

[ ] [ ]
[ ] ( ) [ ]

( ) [ ]

[ ] [ ] [ ]

1 2

2 1 1

1 2 1

2
1 2

2

1

2 lim

2

ss ss

ss ss

ss k
k

ss ss ss

E x E x

E x G E x

r G E x G E n

a
E E x r E x

G

ω

ω ω ω ω

ω
ω

ϕ

→∞

=

= −

+ − +

= − +

   (83) 

 It is easy to see that E[nω(k)] is very small 
compared with other terms, so we have that the 
steady-state mean of the phase tracking error is 

[ ] 2

2

2
ss

a
E

Gω
ϕ =                (84) 

Modify (73) to yield 
( ) [ ]2 2 2

1 2 1 2var 2ss ss ss ss ssE x r E x rE x xϕ = + −        (85) 
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By multiplying x1ss with both sides of (76) and 
taking expectation of each term while considering 
the the dependency of the consecutive frequency 
samples, we have 

[ ] ( )
( ) [ ] ( )

2
1 2 1 1

2

1 1 2 1 1

1

2

ss ss ss

n
ss ss

E x x G E x

r G E x x G R

ω

ω ω ω

= −

+ − +

  
(86) 

Squaring both sides of (76) and taking the 
expectation of each term, we have 

( ) ( )
( ) ( ) ( )( ) [ ]

( )( )

2 2
1 2

2 22 2 2
2 1 1 1 2

2 2

1 1 1 1 2

2

1 1 1

1 2

2 1 2

2 2

ss ss

ss ss ss

k ss ss

n

E x E x

E x G E x r G E x

G E n G r G E x x

r G G R

ω ω ω

ω ω ω ω ω

ω ω ω

=

= − + −

+ + − −

+ −

      

          
 
  

(87) 
From (85)-(87) we have 

( )
( )

( )( )

( )( ) ( )

2

1 0 1 1 1 1

1 1

0
1 1 1

1 1 1

2 3
var

3 1

2
2 1

1 2

n n n

ss

n
n

R R G R G G

r G G

R
R G r G

G G r G

ω ω ω

ω ω ω

ω ω ω

ω ω ω ω

ϕ
− + + +

=
− +

− − − +
+ + −

      

(88) 
According to [10], the correlations of nk

ω are 

( )

( )

2

2

2
0.05243 0.50301

0

0.4864

1 0

2
1

3
1

1
2

n SNR SNR

n SNR n

R e e
SNR

R e R

π− ⋅ − ⋅

− ⋅

≈ − +

≈ − −

   (89) 

 
 
4.2 The Third Order PLL[8] 

 The third order case can be concluded from [8]  
while just considering the quadratic phase input. 
 
 
4.2.1 Steady State PDF 
 The third order loop difference equation can be 
expressed as 

( )
( ) ( ) ( )

3 2 1

1 2 2

1 1 1 1

3 3

1

k k k k

k k

k k k k

p G n

r G n G n

θ θ θ

θ θ θ θ θ

ϕ ϕ ϕ ϕ

ϕ

ϕ ϕ

+ + +

+ +

+ +

− + −

= − +

+ + + − +

(90) 

The loop equation can be represented in the form of 
a set of first-order, three-dimensional state equations 
as 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

2 3

3 1 1 1 2

1 3 1

1

1

1 1 1 3

3

x k x k

x k x k

x k G x k r G x k

p G x k G n k

θ θ θ

θ θ θ θ

+ =

+ =

+ = − + + −

+ − +

  
 

(91) 
The corresponding output equation is 

( ) ( ) ( ) ( )1 2 31k x k r x k p x kθ θϕ = − + + −    (92) 
The steady-state joint pdf p(x1,x2,x3) can be obtained 
by 

( )

( )

( )

1 1 2 3 10 20 30

1 2 3 1 2 3

1 2 3 10 20 30 1 2 3

, , , ,

, , , ,

, , , ,

k

k

k

p x x x x x x

q x x x z z z

p z z z x x x dz dz dz

+

∞ ∞ ∞

−∞ −∞ −∞
=

×

∫ ∫ ∫ (93) 

where  
x10=x1(0)           initial value of x1(·) 
x20=x2(0)           initial value of x2(·) 
x30=x3(0)           initial value of x3(·) 
 
Using the fact that the noise nθ(k) is independent of 
x1(k), x2(k) and x3(k), we can derived from () that 

( )
( ) ( )

( ) ( )

( ){ }
( )( )

1 1 2 3 1 2 3

1 2 2 3

1 1

2

, , , ,

1 1 1 1
exp cos

2 2

exp sin

1 cos

kq x x x z z z

x z x z

SNR
SNR x

G G

SNR x

erf SNR x

θ θ

δ δ

π π

+

∗

∗

∗

= − −

× − +

× − ⋅

× +  
(94) 

where 

( ) ( ){

( ) }

3 1 1 1 2
1

1 3

1
1 1 3

3

x x G z r G z
G

p G z

θ θ θ
θ

θ θ

∗ = − − − + −

− −

  
 

As for k→∞, the steady-state PDF of the phase error 
φ exists and is unique, independent of initial phase 
error φ0. Therefore, limk→∞pk(φ|φ0)≜p(φ) could be 
obtained by 

( )

( ) ( )
1 1 2 3

3 1 2 3 1 1 2 1

, ,

, , , ,

k

k k

p x x x

q x z z z p z x x dz

+

∞

−∞
= ∫

  (95) 

We introduce periodicity into the pdf of the phase 
tracking error as 

( )

( )

1 2 3

1 2 3

, ,

2 , 2 , 2

k

k
m n l

P x x x

p x m x n x lπ π π
∞ ∞ ∞

=−∞ =−∞ =−∞

= + + +∑ ∑ ∑
 

(96) 
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As for the conditional PDF of the phase tracking 
error, by using periodicity we have 

( )1 2 3 1
1

ˆ 2
, , , k

n

x n
K x x x z q

Gθ

π∞

=−∞

+
=

 
 
 

∑      (97) 

 
where the argument ẋ is  

( ) ( )
( )

3 1 2 1 1

1 1

ˆ 3 1 3

1 2

x x p G x r G x

G z n

θ θ θ θ

θ π

= − − − + −

− − +

    (98) 

Consequently, (95) becomes  
( )

( ) ( )
1 1 2 3

1 2 3 1 1 1 2 1

, ,

, , , z , ,

k

k

P x x x

K x x x P z x x dz
π

π

+

−
= ∫

 (99) 

As for k→∞, the steady-state PDF is independent of 
the subscript k, which yields 

( ) ( ) ( )1 2 3 1 2 3 1 1 1 2 1, , , , , z , ,P x x x K x x x P z x x dz
π

π−
= ∫  

(100) 
 
 
4.2.2 Steady State Mean and Variance 
 By taking the expectations of (91) the 
steady-state mean of the phase error is obtained as 

[ ] 0ssE ϕ =               (101) 
the steady-state variance of the phase error is [6] 
 

 
[ ] [ ]{ }

( ) ( )
( ) ( ) ( )( )

22

2 2 2 2 2 3 2
1

2 2 2 2 2
1 1

var

4 8 2 2 2 3

16 12 12 10 2 8 1 2 2

ss ss ssE E

r p rp p p rp rp r r r G E n

r p r p r p rp G r r r p p G

θ

ϕ ϕ ϕ= −

+ − + + + + − − −
=

− + − + − + + + + + − −

  
      (102) 

 
 
 

 
 

4.3 The Combined Tracking Loop 
4.3.1Steady-State PDF of Phase Error 
The phase tracking error in the presence of noise can 
be represented on z-plane as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 +

k kz n D z F z N z n F z N z
z

K F z D z K F z N z

ω ω θ θ

θ θ ω ω

Θ − −
Φ =

+   
(103) 

For the quadratic input phase, the loop difference 
equation of the restricted phase error process {φ(k)} 
is, from (103) which can be presented as 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

3 2 1

1 2 2 1 1 1

1 1 2 2

1 1 1 1

3 3

1

1

k k k k

k k k k

k k k k

k k k k

p G n r G n

G n r G n

r G n G n

θ θ θ θ θ θ

θ θ ω ω ω

ω ω ω ω ω

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

+ + +

+ + + +

+ +

+ +

− + −

= − + + + +

− + − +

+ + + − +

 

(104) 
In order to use the results of the third order PLL, we 
must do some modification on equation (104) as 

( ) ( )

( )

( ) ( )
( ) ( )

( )

1 1

1 1

1 1

1 1

1 1

1 2 1 2
2

1 1

1 1 1 1
1

1 1

1 1

1 1

1 1

1 1
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k

k k
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P
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r G r G
R
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G p G n r G n
N

p G r G

G r G n r G n
N

r G r G

G G n G n
N

G G

θ ω

θ θ ω ω

θ ω

θ θ ω ω

θ ω

θ θ θ ω ω ω

θ θ ω ω

θ θ θ ω ω ω

θ θ ω ω

θ θ ω ω

θ ω

+ +

+

+ +

+

= +

+
=

+

+ + +
=

+

+
=

+

+ + +
=

+ + +

+
=

+

  

 (105) 

By substituting (105) into (104) yields 

( )
( ) ( )

3 2 1

2 2

1 1

3 3k k k k

k k

k k k k

PG N

RG N G N

ϕ ϕ ϕ ϕ

ϕ

ϕ ϕ

+ + +

+ +

+ +

− + −

= − +

+ + − +

(106) 

Now the form of (106) is the same as that of 
(91)except of the loop parameters and noise 
character. So it can be represented in the form of a 
set of first-order, three-dimensional state equations 
as 
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( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 2

2 3

3 3 2

1

1

1

1 3 3

1 k

x k x k

x k x k

x k PG x k RG x k

G x k GN

+ =

+ =

+ = − + −

+ − +

 (107) 

The corresponding output equation is  
( ) ( ) ( )1 2 3k x k Rx k Px kϕ = − + −   (108) 

Comparing (107) and (108) with (91) and (92), we 
know that the equation form are the same. So, all the 
methods studying the steady-state character of the 
third-order PLL can be used to analyze that of the 
combined loop. Thus, steady-state PDF suits to the 
following equation 

( ) ( ) ( )1 2 3 1 2 3 1 1 1 2 1, , , , , z , ,P x x x K x x x P z x x dz
π

π−
= ∫  

(109) 
The expressions for K and P are 

( )

( )

1 2 3

1 2 3

, ,

2 , 2 , 2

k

k
m n l

P x x x

p x m x n x lπ π π
∞ ∞ ∞

=−∞ =−∞ =−∞

= + + +∑ ∑ ∑
 

(110) 

( )1 2 3 1

ˆ 2
, , , k

n

x n
K x x x z q

G

π∞

=−∞

+
=  

 
 

∑        (111) 

where the argument and transient PDF are 
( ) ( )

( )
3 2 1

1

ˆ 3 3

1 2

x x PG x RG x

G z nπ

= − − − −

− − +
       (112) 

( )
( ) ( )

( ) ( )
( ){ }
( )( )

1 2 3 1 2 3

1 2 2 3

2

, , , ,

1 1 1 1
exp cos

2 2

exp sin

1 cos

kq x x x z z z

x z x z

SNR
SNR x

G G

SNR x

erf SNR x

δ δ

π π
∗

∗

∗

= − −

× − +

× − ⋅

× +  

(113) 

and  

( ) ( ) ( )[ ]3 1 2 3

1
1 3 3x x G z RG z PG z

G
∗ = − − − − − −  

The illustrations for symbols P, K, q and z1, z2, z3 are 
the same as the explanations for equation (93). 
 

4.3.2 Steady-State Mean and Variance 
 By taking the expectations of (91) the 
steady-state mean of the phase error is obtained as 

[ ] 0ssE ϕ =      (114) 
the steady-state variance of the phase error is  

[ ] [ ]{ }

( ) ( ) [ ]

22

2 2 2
1 2 3

var

1 2 1

ss ss ss

ss ss ss

E E

R P E x R P E x x

ϕ ϕ ϕ= −

= + + − +

  
  

(115) 

Multiply x2(k) with both sides of (4107) and taking 
expectation of each term while considering the the 
dependency of the consecutive two samples, we 
have 

[ ] ( )

( ) [ ]

2
2 3 2

2
2 3 1

3

4

ss ss ss

N
ss ss

E x x RG E x

PG G E x x G R

= −

+ − − +

     (116)    

Squaring both sides of (107) and taking the 
expectation of each term, we have 

( ) ( ) ( )

( )( )[ ] [ ]
( )

2 2 22 2
3 3

2 3

2 2
1 0

3 3 1

2 3 4

2 3

ss ss

ss ss

N N

E x PG RG G E x

RG PG G E x x

G PG R G R

= − + − + −
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        
 

(117) 
 In equation (117), we have supposed that 
E[x1ssx2ss]=E[x2ssx3ss] for simplicity. According to the 
analysis of section 2, nθ and nω have the same PDF, 
so the correlations of Nk are 

( )
( )

( ) ( )
( )

22
1 1

1 2

1 1

2 22
1 0 1 0
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1 1

N

N

G G R
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G G

G G R G R
R

G G

ω ω

θ ω

θ θ ω ω

θ ω

=
+

+
=

+

 
  

   (118) 

Where R0
N, R1

N are the correlations of noise Nk with 
correlate spaces are zero and one respectively. R0

ω, 
R1

ω are the correlations of nω; R0
θ, R1

θ are the 
correlations of nθ.  
 From equations (116), (117) and (118), we have 
the variance of the combined loop as

 

[ ]
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( )
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   


( ) ( )2 29 6 8 5 6 5 18 30 6 18P PR P R R G P R− + − + + − + − + +

 

(119)
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5 Loop Optimization 
 This section will discuss the optimization for 
the FLL assisted PLL at a design stage. The aim is to 
find the optimal loop filter structure. The method to 
design the digital loop filters is based on an 
optimization process that poses the tradeoff between 
noise bandwidth and dynamics in a quadratic 
function which is minimized for a particular 
dynamic input.  
 
 
5.1 Optimum Filter for Arbitrary Input 
 Assuming the performance function to be[15, 
16] 

( ) ( )2 2

0
k

Q E n k e kλ= +   ∑      (120) 

Where ( ) ( ) ( )ˆe k k kθ θ= −  is the deterministic 
component of the phase difference between 
incoming and generated phase. The parameter λ is 
determined on the basis of noise bandwidth 
considerations. The noise part of (120) can be 
expressed in terms of the closed loop transfer 
function H(z) as 

( ) ( )
0 0

2

0

1

1

2 n n

z

dz
E n k z

j zπ =

= Φ   ∫       (121) 

Where Фn0n0 is the noise spectral density of noise n0 
and is related to the input noise spectral density as 

 
( ) ( ) ( ) ( )

0 0

1

i in n n nz H z H z z−Φ = Φ      (122) 
And the closed loop transfer function is 

( ) ( ) ( )
( ) ( )1

F z N z
H z

F z N z
=

+
          (123) 

According to Parseval equation, the second part of 
the performance function can be rewritten as 

( ) ( )[ ] ( ) ( )2 1

1

1
1 1

2k z

dz
e k H z H z z

j zθθπ
−

=

= − − Φ  ∑ ∫  

(124) 
Where Θ(z) is the z transformation of θ(k) and Θθθ(z) 
= Θ(z) Θ(z-1).  
 From (121) and (124), equation (120) can be 
expressed as 

( ) ( ) ( ) ( )[

( ) ( ) ( ) ( ) ( ) ( )]

1

1

1 1

1

2 z

Q z P z W z W z
j

dz
W z N z z W z N z z

z

θθ

θθ θθ

λ
π

λ λ

−

=

− −

= Φ +

− Φ − Φ

∫

 
(125) 

Where 
( ) ( ) ( )H z W z N z=        (126) 

And  
( ) ( ) ( ) ( ) ( )1

i in nP z z z N z N zθθλ −= Φ + Φ      (127) 

Let ( ) ( ) ( )0 +W z W z zεη= , where W0(z) is the 
optimal loop transfer function and εη(z) is the 
variation to be minimized on the true optimum 
W0(z). Substitute this equation into (125) and setting 
the variation of Q to zero at ε equals zero completes 
the standard vibrational procedure[16]. 

( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )
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∂
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



∫

(128) 
In order to keep all the terms in (128) split into 
factors having poles in either, but not both, the inside 
or outside the unit circle, it is convenient to define 

( ) ( ) ( )P z P z P z+ −=           (129) 
Where all the poles in P+(z) are inside the unit circle 
and P-(z) has all the poles outside the unit circle. So, 
we have from (128) that 
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+

∂   
∂

  Φ  = −
  

 Φ − 
  

∫

 
(130) 

From (130), we can find that the poles in the first 
part are zi and those in the second part are zi

-1, and 
we have[17] 

( ) ( )1 dz dz
f z f z

z z
− =∫ ∫ 

 

So, (130) can be reduced to be 
( ) ( )[ ]
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−

∂
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−
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∫   (131) 

Taking (131) equal to zero yields 
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( )

( ) ( )
( )

( )

1

0

N z z
z

z P z
W z

P z

θθλ −

−

+

+

Φ
⋅

⋅
=

 
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Where [ ]+ illustrates that all the poles are outside the 
unit circle. The corresponding optimal loop filters 

are 
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Fig. 12. The structure of the optimum PLL for tracking Doppler rates 

 
 
5.2Optimal Filter for Doppler Rates 
 Utilizing the analysis method of Section 5.1, the 
optimum filter for a Doppler rate signal can be 
derived. According to [17,18], the optimal filter for a 
frequency ramp signal can be expressed as 

( )
( ) ( )

1 2

31 11 1

A Bz cz
F z

z cz

− −

− −

− +
=

− +
        (134) 

For the purpose of implementation, it is desirable to 
use a cascade of accumulators. Then (134) can be 
rewritten as 

( )
( )( ) ( )( )

( ) ( )

21 1

3 2 2 1 1

31 1

1

1 1

1 1

p f p z f p z
F z

z p z

− −

− −

+ + − + + −
=

− +
 

(135) 
Where f1 + p1=C, f2 + p2=B– 2C and p3=A– B+C. The 
corresponding structure of the optimum loop is 
illustrated in Figure 12.And A, B and C satisfy the  
 
following equations 

1 2 3 1 2 3 1 2 1 3 2 3

6 3 , 8 3 , 3

, ,
s d s p s

s p d

A z z B z z C z

z z z z z z z z z z z z z z z

= − + = − + = −

= + + = = + +
 (136) 

Where z1, z2 and z3 are the solutions of the following 
equations 

1 3
1,2 1,2

1 3
3 3

2 4 2

1 3
2

2

2

j
z z

z z

T

ν

ν

ν ω γ

−

−

±
+ = −

+ = +

= ∆

       (137) 

And the corresponding frequency ramp is 

( )
( )

2

311

T
z

z

ω
−

∆
Φ =

−



              (138) 

The relationship of loop noise equivalent bandwidth 
versus loop parameter ν is shown in Figure 13. 
When designing a loop, we shall first choose the 
appropriate noise bandwidth so as to get the ν value 
and substitute it into (137), z1, z2 and z3 will be 
calculated, then A, B and C will be derived by using 
equation (136). Thus, we get f1 and f2, p1, p2 and p3.  
 

 
Fig. 13. Loop noise equivalent bandwidth 

 
5.3 Design Example: Loops for Responders 
 Taking the trajectory in Section 1 into account, 
we model the input dynamic as an acceleration step, 
which becomes quadratic ramp in terms of phase and 
a linear one in term of frequency. For these inputs, 
the optimal loop filter was obtained in Section 5.2.  
 A typical rule of thumb for keeping a 
reasonable distance from the pull-out values of the 
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loop is that the peak of the error transient has a 
maximum value given by half the linear range of the 
phase discriminator, an eight of cycle [17]. Always 
we takeBNT<1 to keep loop stable. So, we have 
BNT=0.125(i.e. -0.9 for log(·)) which means 
ν=3×10-4. Substitute this values into (137), (136) and 
(135) yields A=0.6173, B=1.105 and C=0.5.  
 
 
5.4Stable Range for the Optimum Loop 
 The optimal loop has an extra pole at z= – C 
compared with the traditional one. So, the loop 
transfer function is 
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 2 3 4

1 2

1 2 3

3 4

1 2 1

1 3 3 1 3 1

1 3 3 3

3 2 1
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+ − − − + −

  
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(139) 

So, we have corresponding difference equation as 
( ) ( ) ( )

( ) ( )
( ) ( )

4 3 2 1

4 3 1 2 3 2

1 2 1 1

3 3 1 3 1

3 3 3
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+

+ − + − + − −

= + − + + + − +

+ − − − + −

(140) 
As for the quadratic phase input like (26), we have 

( ) ( )
( ) ( )

4 3 1 2 3 2

1 2 1 1

3 3 3

2 1 3
k k k

k k

C p p p C

p p C C p
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+

= − − + + − +

+ + + − + −
  (141) 

It’s easy to see that the fixed point is 
0ϕ∗ =                  (142) 

This equation can be rewritten in a set of first-order 
difference equations as 

1
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1 1 2 3 4

k k

k k
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w x

x y
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z z y x wκ κ κ κ
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    (143) 

where wk=φk, w0=(φ0, φ1, φ2, φ3)T and the loop 
parameters are 

( )
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     (144) 

wherer = 1 + p2/p1, p = r + p3/p1. 
The Jacobian G’(x)=(∂gi/∂xj) is given by 

( )'

4 3 2 1

0 1 0 0

0 0 1 0
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G x

κ κ κ κ

=

−

 
 
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(145) 

At the fixed point x* = 0, we must have |λi|<1, i=1, 2, 
3. where the λ’s satisfy the characteristic equation 
|λI- G’(x*)|= 0 or  

( ) ( ) ( ) ( )4 3 2
1 2 3 4 0λ λ κ λ κ λ κ κ+ − + + − + − =  

(146) 
By utilizing (48) in (146), we have 
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(147) 
When the Routh-Hurwitz criteria is applied, we have 

2 1 3 4
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Also we have from (144) and (148) that 
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From (149), we can derive the region for C as 
 

( ) ( )1 1

1 1,

3 4 2 8
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4 8

C for r and p

r p p r p
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− < <

+ − + + +
< <

(150) 
 
 
6 Conclusion 
 The performance of a second order FLL assisted 
third order PLL for the spread spectrum responder 
carrier phase tracking has been investigated. Stable 
regions, oscillatory behavior and steps for 
convergence for the FLL, PLL and the combined 
loop have been derived by taking them as a fixed 
point problem in the absence of noise.The mean and 
variance of these three loops have been studied in 
the presence of noise. At last, we have discussed the 
optimizations for the assisted tracking loop. This 
work provides an important reference in the design 
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for high dynamic carrier tracking in digital domain.  
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