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Abstract: This article presents some methods for recognition and modelling of bursty period of event flow. The
flow of events represents generally 0/1 bit sequences. We used the Markov modulated Regular process (MMRP)
and Bernoulli process (MMBP) for the description of flows with bursty period. We derived probability distribu-
tion of spaces of MMRP processes and used it for estimation of unknown parameters of process. Because the
uncomfortableness of flows with MMP processes, we used a Effective bandwidth, to gain parameters of MMBP
and obtain a process which will over design considered flow.
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1 Introduction

The necessity of a recognition, analysis and modelling
of the bursty period of events flows occurs in differ-
ent informational applications fields. For example in
the transmission of speech signal through IP network
[KB], when encoding and decoding of add informa-
tion into the transmitted bit words [JU], in detection
and description of transmission errors [PI], in attacks
on SIP servers [PS], in simulation technology used for
the dealing with crisis situations in transport and so-
ciety, where the so-called social risk occurs. In the
case of simulation and analysis, of different transport
- communications networks, it is required to use mod-
els of flows, corresponding to real traffic in the field.
Using of flows with Burst period permits to analyse
model behaviour in sudden peak load. There is for ex-
ample the congestion of buffer and the lost of quality
of service v IP networks, SIP server crash in hackers
attack, and the formation of system error in transmis-
sion of signal or the formation of complicated situa-
tion in transport network in reality.

In our research flows will be represent with real
measured IPTV traffic. These measurements are part
of our project made with Slovak Telecom [5], one of
the largest providers in the Slovak Republic.

There are two main concepts for description of
traffic flow. One is based on analysis of random vari-
ablesτi, which describes slots between events (pakets,
frames, bits) in traffic. Other way, is description of
probability distribution of a number of arrival events
in a time interval〈a, a+ t〉, A(a, a+ t).

A(a, a+t) = 3

a a + t
3

t
1-kt kt

3
T

Figure 1: Flow described by variablesA(.) andτj.

If we consider flow as stationary process, stochas-
tic processA(a, a + t) has the same distribution as
processA(0, t) and we can mark it asA(t). Also the
random variablesτi have exactly the same probability
distribution. Therefore the traffic source is described
by arrival processA(.), the cumulative number of ar-
rivals by the timet, with incrementsa(.) and the num-

ber of arrivals at timet. There holds:A(t) =
t
∑

i=0
a(i).

Next we will consider an occurrence as occur-
rence number 1, so an investigated flow will represent
0/1 bit sequence and increases of flow in the timet
can acquire only valuesa(t) = 0 resp.a(t) = 1.

2 Independent arrivals: Bernoulli
process

In analyse of an input flow is suitable to verify the
independence of even occurrence. The stationary pro-
cess with independent increments with same probabi-
lity p is calledBernoulli process. Increments of the
processA(t) take values 1 and 0 with the probability
Pr(a(1) = 1) = p andPr(a(1) = 0) = 1 − p = q.
Bernoulli process is well-know process. The typical
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bit sequence with parameterp = 0.5:
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Figure 2: Bernoulli process withp = 0.5

There are several ways how to estimate probabil-
ity p from the data. The easiest way is to divide the
number ofN1 by all valuesN : p̂ = N1/N .

The other method is using the knowledge, that
variableT describing spaces between events, is a ge-
ometrical distribution. The variable coefficientνT has
a form

νT =
σT
ET

=

√

p/q

p/q2
=

1√
1− p

(1)

We can estimate the probability of meanET and dis-
persionDT from measured data. We obtain subse-
quently the estimation of thep from:

p̂ = 1− (ET )2

DT
(2)

Additionally, this method allows to exclude signif-
icantly different flows from Bernoulli processes in-
cluding probabilityp does not belong to the interval
〈0, 1〉. Otherwise the necessary condition forp is ful-
filled.

Verification of the accuracy of used Bernoulli
model with parameterp is simple. We estimate proba-
bility distribution ofA(n) from the captured data and
we compare the result with a binomial distribution:

Pr(A(n) = k) =

(

n

k

)

pkqn−k, k = 0, .., n (3)

Valuen determine the number of summed 0/1 slots.
Its dimension depends on the dimension of the mea-
surement. We could selectn in range from 4 to 8 slots
in our experiments.

Bernoulli process is not capable to model the flow
with burst periods. If we select average rate for exam-
ple λ = p = 0.8 events per time unit, we can expect
in during 10 time units the occurrence of 8 events,

EA(10) = 10 · 0.8 = 8 , In that flow there are not
changes of burst period (On) and empty period (off).
We use the flow withp = 0.8 for demonstrating:
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Figure 3: Bernoulli process withp = 0.8

We indicate the example with bursty period, but
we retain the same average rate per slot 0.8 or
EA(10) = 8 as in the previous one.
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Figure 4: Real process with bursty period

We compare Binomial distribution and empirical
distribution of measurement data:

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Binomical distribution 
Bi(4,0.8)        

empirical distribution

k

p
k

Figure 5: Binomical and empirical distribution
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For the comparison we used the sum of four 0/1
bit slots or we compared the distribution ofA(4) for
Bernoulli process and measurement process. We can
see the values of distribution are significantly differ-
ent. From this reason, we must find the other bit pro-
cess which be able to model bursty period.

3 Markov Modulated Regular Pro-
cess

The easiest 0/1 process which is capable to model flow
with bursty period is so-called Markov modulated reg-
ular process MMRP. This process consists of period
On and period Off. If the process is in period On,
it produces some events, and if it is in period Off, it
means that nothing is transmitted. The simplest sit-
uation is when regular (deterministic) flow of ones
turned on in period On. Whereas switching between
the states On and Off is controlled by Markov chain,
MMRP is process with i.i.d. incrementsa(i), which
take values 0 and 1.
First state of the chain describe the period On, second
state describe the period Off. Let’s designate proba-
bility of transitions between states asp1,2 = α and
p2,1 = β. Let π = (π1, π2) be steady-state distri-
bution of Markov chain. Using Queueing theory we
compute values of steady-state probabilities (see [6]):

αβ

1−α

1−β

1

2

111111111

000000000

Figure 6: Markov Modulated Regular Process

Let’s create a matrix of the probabilities of transi-
tionsP for Markov chain and equations for probabil-
ities of states for stabilized chainπ:

P =

(

1− α α
β 1− β

)

, π ·P = π ⇒

⇒ π1 =
β

α+ β
, π2 =

α

α+ β
(4)

Arrival process modeled using MMRP is very
easy to simulate. If the process is in the first state,

then 1 is generated, and if the process is in the second
state, 0 is generated. Switching between states is by
probabilityp1,2 = α ap2,1 = β.
The following example shows the increments in the
first row and the probability of switching between
them in the second row. Process starts ina(1) = 1,
and then process remains in first state (no switching),
i.e. probabilityP = P (a(2) = 1/a(1)) = 1−α, etc.:

a(i) 1 1 0 0 0 1 0 1 1
P 1 1-α α 1-β 1-β β α β 1-α

Theeasiest method to estimate parametersα andβ is
by individual pairs 0 a 1 directly in the measurement.
The number of pairs occurrence(i, j) we markNi,j:

α̂ =
N1,0

N1,0 +N1,1
, β̂ =

N0,1

N0,1 +N0,0
(5)

It is obvious, it remains to determine, if the measured
flow agree with MMRP with estimated parameters.

The other method, which is capable to determine
if the measured flow is significantly statistically dif-
ferent from MMRP, is to use the variableτ describing
spaces between events. Distribution of variableτ is:

Pr(T = 0) = 1− α (6)

Pr(T = t) = α(1 − β)t−1β, t = 1, 2, ... (7)

There are several examples of probability distribution
of variablesT for the cases when

α = β = 0.1, 0.3, 0.5, 0.7, 0.9:
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Figure 7: Probability distribution ofT , α = β

We calculate Moment Generation Function
(MGF)ϕ(θ) of random variableT :

ϕ(θ) =
∞
∑

t=0

eθt Pr(T = t) =

= 1− α+
∞
∑

t=1

eθtα(1 − β)t−1β
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⇒ ϕ(θ) = 1− α(1 − eθ)

1− (1− β)eθ
(8)

Using derivation of MGF we estimate the first and the
second initial moment:

ET = ϕ′(θ)
∣

∣

0 =
αβeθ

(1− (1− β)eθ)2

∣

∣

∣

∣

∣

0

=
α

β

ET 2 = ϕ′(θ)
∣

∣

0 =
αβeθ(1 + (1− β)eθ)

(1− (1− β)eθ)3

∣

∣

∣

∣

∣

0

⇒

⇒ ET 2 =
α

β2
[2− β]

Wededuced the mean and the dispersion of spacesT :

ET =
α

β
, DT =

α

β2
[2− (α+ β)] (9)

Variable coeficient ofT has a form of:

νT =
σT
ET

=

√

2− (α+ β)

α
(10)

We can use the following recurrence relations to de-
termine parametersα aβ :

DT =
α

β2
[2− (α+ β)] = ET

[

2

β
− (ET + 1)

]

⇒

⇒ β =
2ET

ET 2 + ET
, α = β · ET (11)

Parametersα andβ are transmit probabilities of
2-state Markov chain, therefore if their estimation
by recurrence relations is out of range〈0, 1〉 , the
measured processes are significantly different from
MMRP. Otherwise ifα, β ∈ 〈0, 1〉, we can consider
using of MMRP process.

In the case of Bernoulli process we used classi-
cal Binomial distribution for the verification of model,
A(n) ∼ Bi(n, p). The distribution ofA(n) for
MMRP is generally an unknown, we derived in [6]
the distribution of probability forn = 2, 3, 4.

Probability distribution of variableA(4):

p0 = π2(1− β)3

p1 = (π1α+ π2β)(1 − β)2 + 2αβ(1 − β)π2
p2 = (π1α+ π2β)(1 − α)(1− β)+

+αβ(π1α+ π2β + π1(1− β) + π2(1− α))
p3 = (π1α+ π2β)(1 − α)2 + 2αβ(1 − α)π1
p4 = π1(1− α)3

We compare Bernoulli process and MMRP with same
parameters (α = β) with average rateλavg = 2p/ts
and peak rateλpeak = 4p/ts:
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Figure 8: Distribution ofA(4) for Bernoulli and
MMRP process

We can see, the symetrical distributionBi(4, 0.5)
obtains the most frequently value in its average rate,
a(i) = 2. In the case of appropriate choosing of
MMRP, for exampleα = β = 0.01 we obtain
flow with bursty period, with the increments of flow
a(i) = 0 anda(i) = 4.

Next, we compare Bernoulli process and MMRP
process (3α = β) with average rateλavg = 3p/ts and
peak rateλpeak = 4p/ts:
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Figure 9: Distribution ofA(4) for Bernoulli and
MMRP process

We achieve a flow with significant burst periods
maintaining the same average rate and peak rate for
parametersα = 0.017 andβ = 0.050. The mean of
bursty period will be approximately three time higher
than the mean of Off-period.

Finally, we again compare Bernoulli process and
MMRP process with parametersα = 3β with average
rateλavg = 2p/ts and peak rateλpeak = 4p/ts. We
got a similar picture with the previous only the spins
symmetrically:
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Figure 10: Distribution ofA(4) for MMRP process

In this case the values of parameter are conversely
α = 0.050 andβ = 0.017. Mean of bursty period will
be approximately three times shorter than the mean of
Off-period. But the occurrence of bursty period can
cause more problems.

For completeness, we mention the probability dis-
tribution of variablesA(3) andA(2), although search-
ing the equality with measured process, they showed
up insufficient. Distribution ofA(3):

p0 = π2(1− β)2

p1 = (π1α+ π2β)(1− β) + αβπ2
p2 = (π1α+ π2β)(1− α) + αβπ1
p3 = π1(1− α)2

Probability distribution of variableA(2):

p0 = π2(1−β), p1 = π1α+π2β, p2 = π1(1−α)

In our experiments we have met the cases, when
the measured flow has characteristics of flow with
bursty periods, but the probabilities of transmit be-
tween states we have not estimated, or their values
have been off unit interval(0, 1). For example see
next figure.

From this reason, we were forced to deal with
more complicated 3 parameter MMP process.

4 Markov Modulated Bernoulli pro-
cess

The MMBP is the process modulated by 2-states
Mrakov Chain, while in the state On the Bernoulli’s
process with parameterp is switched, in the state Off
zeros are generated. Equations for probabilities of
states for stabilized chainπ are the same as in MMRP:

π1 =
β

α+ β
, π2 =

α

α+ β
(12)
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Figure 11: Non MMRP process withλavg = 8p/ms

In MMBP the zero can be generated by two dif-
ferent ways,therefore the analysis of probability distri-
bution of its variables is complicated. The distribution
of flow incrementsa(t) = 0, 1 has a form of:

p1 = π1p, p0 = π1(1− p) + π2 (13)

The following example shows the traffic increments
in the first row and the probability of switching be-
tween them in the second row. We show two prob-
ability sequences describing the same simulation of
increments:

a(i) 1 1 0 0 0 1 0

P1 1 (1-α)p α 1-β 1-β βp α
P2 1 (1-α)p (1-α)q α 1-β βp (1-α)q

We can see that given sequences of increments can
be generated in several different ways. That’s why
there is a problem to estimate parameters from some
measured flow.

We managed only to derive the probability distri-
bution of variablesA(2) for the MMBP :

p2 = π1(1-α)p2 (14)

p1 = 2π1(1-α)pq + p(π1α+ π2β) (15)

p0 = (1-α)q2 + (π1α+ π2β)q + π2(1 − β)(16)

Moments of variableA(2) have the form:,

EA(2) = 2π1p, (17)

DA(2) = 2π1π2p

[

1 + (1-α-β)p+
βq

α

]

(18)

The form of variation is complicated and gen-
erally it is not suitable for the parameter estimation
using moments method. We can notice, in the case,
whenα + β = 1 a p = 1, we obtain distribution and
moments of Bernoulli process,A(2) ∼ Bi(2, β).
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We show some examples of probability distribu-
tion of variableA(8) of MMBP process with signifi-
cant bursty period. We obtained values of distribution
using processes simulation.

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.10,0.10,0.90 

0.05,0.05,0.95 

0.05,0.20,0.95 

Probability distribution of variable  $A(8)$
with different parameters $α, β, p$

Figure 12: MMBP with bursty period, pdf ofA(8)

Generally, for variableA(n) (a(i) = 0, 1, ..., n) only
mean value and probability of peak rate are known:

EA(n) = nπ1p, ppeak = π1(1− α)n−1pn (19)

If we estimate average rateλavg = EA(n) and peak
probability ppeak = pn = Pr(a(i) = n), we can use
the next relationship for numerical calculation of pa-
rameters for MMBP (λpeak = n):

β =
λavg · α

p · n− λavg
(20)

(1− α)p =

(

ppeak ·
n

p · λavg

)
1

n−1

(21)

This way is numerically difficult and impracti-
cal;therefore we were searching for the other possibil-
ities for the parameters estimation.The advantage of
2-state MMP processes is the existention of analytical
form of Effective Bandwidth(EB). For the parameters
estimation MMBP we have used the upper limitation
for statistical estimation of Effective Bandwidth for
measurement flow. Firstly we noticed the basic char-
acteristics of EB.

5 Effective Bandwidth

The concept of effective bandwidth (EB) has gained
much attention due to the looming gain for network
analysis and design. The effective bandwidth of a gen-
eral cumulative arrival process has been defined [7] as

α(θ, t) =
1

θt
sup
s≥0

lnE
[

eθ(A(s+t)−A(s))
]

(22)

depending upon the space parameterθ and the time
parametert, 0 < θ, t < ∞. Theory of Large Devi-
ation Principles provides the tool for link dimension
with respect to probability of packet loss (see [8])

c = α(θ, t) ⇔ P (q > b) ≍ e−θb (23)

where constantb is size of queue (buffer) and vari-
able q is steady-state length of queue. if we pro-
pose the link capacity equal to effective bandwidth,
c = α(θ, t), then the probability of buffer overflow
decays (≍) exponentially with constantθ.

The value of Effective Bandwidth in0 equals aver-
age rateα(0, t) = λavg . If process has identical and
above bounded increments,∀t, a(t) ≤ λpeak, effec-
tive bandwidth is between average rate and peak rate:

∀θ, t ∈ R+, λavg ≤ α(θ, t) ≤ λpeak (24)

Let the process to have independent and identical
distribution (i.i.d.) incrementsa(t). Let ϕ(θ) =

E
[

eθa(1)
]

to be the moment generating function

(MGF) and functionλ(θ) = lnϕ(θ) to be the cumula-
tive generating function (CGF) of increments. Effec-
tive bandwidth has form ([8]):

α(θ, t) = α(θ) =
λ(θ)

θ
=

1

θ
lnϕ(θ) (25)

For example pre Bernoulli process (a(i) = 0, 1)
we gain simly form of EB:

α(θ) =
1

θ
ln
[

e−a(i)θ
]

=
1

θ
lnE

[

q + pe−a(i)
]

(26)
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Figure 13: Effective Bandwidth of Bernouilli process

In general ([8]) for any 2-states Markov modulated
process holds, that Moment generation functionϕ(θ)
of process equals to spectral radiussp(.) of matrix
φ(θ)P, whereφ(θ) is diagonal matrix of moment gen-
eration functionsϕi(θ) for the processes based oni’s

WSEAS TRANSACTIONS on COMMUNICATIONS Lucia Figuli, Juraj Smiesko

E-ISSN: 2224-2864 449 Volume 13, 2014



states of Markov chain,φ(θ) =

(

ϕ1(θ) 0
0 ϕ2(θ)

)

and P is the matrix of the state transition probabili-

ties,P =

(

1− α α
β 1− β

)

. Effective Bandwidth

for any MMP has the form:

α(θ) =
1

θ
lnϕ(θ) =

1

θ
ln sp [φ(θ)P] (27)

To determine the MGFϕ(θ), we must calculate max-
imum eigenvalue ofφ(θ)P.

In the case of MMBP, there are

ϕ1(θ) = E
[

eθ·a(t)
]

= q + peθ (28)

ϕ2(θ) = E
[

eθ·0
]

= 1 (29)

For the estimation of ϕ(θ) we have cal-
culate the highest eigenvalue of matrix

φ(θ)P =

(

ϕ1(1− α) ϕ1α
ϕ2β ϕ2(1− β)

)

. There

is analytic solution :

ϕ(θ) =

[

(q + peθ)(1-α) + (1-β) +
√
D

2

]

(30)

D = (q + peθ)(1-α)-(1-β)]2 + 4(q + peθ)αβ (31)

Effective bandwidth for 2-state MMBP is a so-
called scale cummulant generation functionα(θ) =
lnϕ(θ)/θ

Effective bandwidth uniquely identifies sta-
cionary stochastic process; therefore we can use it
searching the parameter processes estimation. At first
we calculate statistic Effective Bandwidth from mea-
sured data, for the observation process and conse-
quently we estimate the values of process parameters
using numerical methods, which EB has an analytical
expression, while we can use Mean-square method.
The process MMBP has three parameters;therefore its
using provides a high flexibility.

In engineering tasks, EB is used for the design of
a transport or a telecommunication node capacity, for
example,[?]. In this case it is not appropriate to use the
parameter estimation using Mean-square method, but
more efficient is, to create Effective bandwidth, which
is the upper limitation of EB estimated by data. If we
use so gained process in an analysis or in a simulation
of the node, we will achieved the higher capacity as in
original flow. We will design the node with a higher
safety factor.

6 Numerical Results

We have selected the IPTV process record for the pre-
sentation of described approach,expecialy1 channel of
Magio. The length of record was 2 minutesy, selecting
time slotts = 2ms we obtained 0/1 packet sequences
with average rateλavg = 0.8647p/ts and of course
λpeak = 1p/ts. Next figure shows the short example
of the reckord with the length.1.4s:
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Figure 14: IPTV 0/1 traffic of Maqio channel

TheIPTV flow does not correspond to MMRP, es-
timating parametersα a β we have obtained negative
values. We have decided using upper bound of statis-
tical estimate of EB for the determination of MMBP
parameters. There are several methods how to esti-
mate EB. We have have decided to estimate proba-
bility distribution of incrementspk = Pr(a(i) = k)
wherek = 0, 1, .., 4 and consequently we changed the
scale EB to 0/1 sequences:

α̂(θ) =
1

θ
ln

[

4
∑

k=0

ekθp̂k

]

(32)
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Figure 15: Statistical estimate of EB for IPTV traffic
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We use the relation of the mean values equality
for the estimation of MMBP parameters:

π1p =
βp

α+ β
= λavg ⇒ β =

λavgα

p− λavg
(33)

We use numerical methods for compute the minimum
upper bound of Effective Bandwidth of IPTV traffic.
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Figure 16: Comparation between IPTV and MMBP

Values of estimated parameters:

α = 0.9121, β = 0.5115, p = 0.8022 (34)

We can see in the figure, afterθ = 4 we can consider
the equality of analytical form of MMBP EB and sta-
tistical estimation of IPTV EB.

Parameterθ is so called space parameter. If we
consider the arrival process entering into some sin-
gle server queue (queueing system with one link), pa-
rameterθ is directly depending on a maximum delay
dmax events waiting in queue, and on probability of
lost plost events in the moment, when queue will fill.
If arrival process has EBα(θ) = lnλ(θ)/θ, than forθ
is valid ([6]):

θ = λ−1
[

ln plost
−dmax

]

(35)

For MMBP process:

θ = ln

[

p
−1/dmax

lost − 1 + β + p
1/dmax

lost (p− 1)

p(1− α) + p(α+ β − 1)p
1/dmax

lost

]

(36)

For normally used valuesdmax a plost for IPTV
does not exceed parameterθ value 2. In this case we
can replace examined IPTV traffic by process MMBP.

Generally if we use flow with EB upper limitation
of original real flow, in analysis and simulation of a
system, we obtain the oversized results depending on
tha fact, how close the upper bound original flow of
EB we obtained.

7 Conclusion
We have tried to analyse the basic model of 0/1 bit se-
quences, from Bernoulli’s process to Markovov Mod-
ulated processes. We have wanted to create the pa-
rameters estimation methodology for examined pro-
cesses. We have used Effective Bandwidth for the es-
timation of parameters in the case of Markov Modu-
lated Bernoulli process. We have showed, it is possi-
ble to obtain relevant results although without the ac-
cordance of examined process and MMBP processes
using this approach. The main of future research is to
identify and analyse complicated MMP process with
two Bernoilli’s floes or Poisson’s processes.
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