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Abstract: - In this paper, the ratio of product of two α-k-µ random variables and α-k-µ random variable 
is analyzed. The closed form expression for average level crossing rate (LCR) of the ratio of product 
of two α-k-µ random variables and α-k-µ random variable is determined. The expression for level 
crossing rate of the ratio of product of two α-k-µ random variables and α-k-µ random variable can be 
used for calculation of average fade duration of wireless communication system operating over 
composite α-k-µ multipath fading environment in the presence of cochannel interference subjected to 
α-k-µ multipath fading. The α-k-µ distribution can be used to describe small scale signal envelope 
variations in non linear line-of-sight multipath fading environments. 
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1 Introduction 
The short term fading and long term fading or 
shadowing can seriously degrade and limit 
performance and capacity of wireless 
communication systems. Received signal suffer 
multipath fading and shadowing which resulting in 
signal envelope variation. There are some 
distributions using for describing signal envelope 
variation in fading environments depend on 
propagation channels and communication scenario 
[1], [2]. 

For small scale signal envelope variation in 
linear non line-of-sight multipath fading 
environments Rayleigh and Nakagami-m 
distributions are used. Nakagami-m distribution is 
determined by parameter m. If parameter m is equal 
to 1, Nakagami-m distribution moved in Rayleigh 
distribution. The parameter m is fading severity. 
Nakagami-m fading is more severe for lower values 
of parameter m. 

The Rician distribution is used in linear line-of-
sight multipath fading environments. It describes 
small scale signal envelope variation. It is 
characterized by factor k, which can be calculated as 
ratio of dominant component power and scattering 
components power. Rice fading is more severe for 
smaller values of Rice factor k. 

The Rayleigh distribution can be obtained from 
Rician distribution by setting for parameter k=0. As 
Rice factor increases, power of scattering 
component decreases and fading severity decreases 
also. 

The α-µ and Weibull distributions can be used to 
analyze small scale signal variations in non linear, 
non line-of-sight multipath fading environments. 

The α-µ distribution has two parameters where 
parameter α is related to non linearity of 
communication channel and parameter µ is tied to 
the number of clusters in propagation environments. 
The α-µ distribution is general distribution [3]. 
Rayleigh, Weibull and Nakagami-m distributions 
can be obtained from α-µ distribution as special 
cases. By setting for α=2, the α-µ distribution 
reduces to Nakagami-m distribution. Weibull 
distribution can be derived from α-µ distribution by 
setting for µ =1. For α=2 and µ =1, the α-µ 
distribution becomes Weibull distribution. 

In this paper, α-k-µ distribution is observed. This 
distribution is used to describe signal envelope 
variation in multipath fading channels. The closed 
form expressions for average level crossing rate of 
product of two α-k-µ random variables are derived. 
The results obtained in this paper can be used for 
calculation of average fade duration of wireless 
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systems operating over α-k-µ multipath fading 
channels. 

The average level crossing rate (LCR) and 
average fade duration (AFD) are the second order 
performance measures of wireless communication 
system. The average level crossing rate can be 
calculated as average value of the first derivative of 
random process. It is necessary to determine the 
joint probability density function of random variable 
and first derivative of random variable for 
determination of average value of the first derivative 
of random process. The average fade duration of 
communication system can be calculated as a ratio 
of outage probability and average level crossing rate 
of system’s output signal envelope. 

In interference limited environment, the outage 
probability is equal to probability that ratio of the 
useful signal’s envelope and co-channel envelope 
less than the threshold. In noise limited 
environment, the outage probability is defined as the 
probability that ratio of signal envelope power and 
noise power is below the defined threshold. When 
the noise power is equal in both branches, the 
outage probability is defined as probability that 
signal power is less than the threshold. In 
interference and noise limited environment, the 
outage probability is equal to probability that the 
ratio of the useful signal’s power and sum of co-
channel and noise powers is less than the threshold. 
The average level crossing rate and average fade 
duration show the influence of correlation to system 
performance. 

The important functions should to be considered 
are: sum of two random variables, product of two 
random variables, ratio of two random variables, 
maximum of two random variables. 

The output signal from dual equal gain combiner 
(EGC) is equal to the sum of signals from its inputs. 
When two fading affect together at the combiner 
inputs, the equivalent envelope is equal to product 
of two random variables. 

The selection combiner (SC) output signal is 
equal to the maximum of two random variables. For 
determining the probability of relay system 
envelope, the probability of minimum of two 
random variables is needed to be determined. 

Also, important functions are: product of three 
random variables, sum of three random variables, 
quotient of one random variable and the product of 
two random variables and quotient of two products 
of two random variables. For all these functions, it 
is necessary to designate the probability density, 
cumulative probability density, characteristic 
function, the average level crossing rate and 
moments.   

2 Related Works 
There are more papers in the literature considering 
the second order statistic analysis of wireless 
communication system with SC receiver in the 
presence of multipath fading with different 
distributions (Rayleigh, Rician, Weibull or 
Nakagami-m) [4]-[7]. 

The second order statistic analysis of selection 
macro-diversity combining over Gama shadowed 
Rayleigh fading environments is given in [4] and the 
second order statistics of the signal in Ricean-
lognormal fading channel with selection combining 
in [5]. 

The wireless communication system with SIR 
based dual branches selection combining (SC) 
diversity receiver operating over correlated Rician 
multipath fading channels in the presence of 
cochannel interference subjected to multipath 
Rayleigh fading is analyzed in [6]. Average level 
crossing rate of such system is determined and 
results are presented to highlight the effects of 
branch correlation and fading severity on the 
average level crossing rate. 

The average fade duration of dual selection 
diversity combiner over correlated unbalanced 
Nakagami-m fading channels in the presence of 
cochannel interference is calculated in [7].  

Average LCR and AFD for SC diversity over 
correlated Weibull fading channels are investigate in 
[8]. The two formulae for the average LCR and 
AFD at the output of dual-branch selection diversity 
receivers are performed and some earlier published 
results given in a more general and compared. 

Some expressions for average LCR and AFD for 
dual-branch maximum ratio combining (MRC) and 
selection combining (SC) schemes operating in the 
correlated fading channel are derived in [9]. It is 
supposed that channel model of the diversity 
branches is correlated small scale with Nakagami-m 
statistics. The numerical results point out that the 
average LCR and AFD of MRC and SC schemes are 
significantly affected by the correlation between 
each branch when they are working in the correlated 
environments. 

Spectral efficiency comparison of TDMA and 
DS-CDMA in cellular mobile radio systems in a 
Rayleigh fading environment is given in [10], and 
statistics of the channel capacity for a DS/FFH-
CDMA system in [11] by Varzakas. The 
performance evaluation for the cooperative 
communication systems in decode-and-forward 
mode with a Maximal Ratio Combining scheme are 
presented in [12]. 

The formulation and derivation of the α-k-
μ/gamma distribution which corresponds to a 
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physical fading model is shown in [13]. It is 
composite and constituted by the α-k-μ non-linear 
generalized multi-path model. That represents  the 
basis for deriving the α-k-μ extreme /gamma model 
which accounts for non-linear severe multipath and 
shadowing effects and also includes the more 
widely known α-μ and k-μ models which includes 
as special cases the Rice, Weibull, Nakagami-m and 
Rayleigh distributions. This is achieved thanks to 
the significant flexibility of their parameters which 
have been shown to make them capable to provide 
good concurrence to experimental data associated 
with realistic communication scenarios. 

The paper [14] presents two newer fading 
distributions, the α-η-μ and the α-k-µ. The α-η-μ 
distribution includes α-μ, Nakagami-m, Nakagami-
q, Weibull, Hoyt, Rayleigh, Exponential, and the 
One-Sided Gaussian distributions as special cases. 
The α-k-μ distribution includes α-μ, Nakagami-m, 
Weibull, Rice, Rayleigh, Exponential, and the One-
Sided Gaussian distributions as special cases. 
Furthermore, it proposes estimators for the involved 
parameters and uses field measurements to validate 
the distributions. The performance analysis of 
wireless communication system in α-k-μ 
environment subjected to shadowing is done in [15]. 
Second-order statistics for the envelope of α-κ-μ 
fading channels are derived in [16] and second order 
statistics of SC receiver output SIR in the presence 
of α-k-μ multipath fading and co-channel 
interference in [17]. 

In [18] the level crossing rate α-k-µ multipath 
fading at combiner inputs is determined. The 
expression for level crossing rate of product of two 
α-k-µ random variables is derived. In this paper, the 
LCR for the ratio of product of two α-k-µ random 
variables and α-k-µ random variable will be 
derived. Numerical results will be presented to show 
the influence of α-k-µ fading parameters on average 
level crossing rate. To the best author knowledge 
the results obtained in this paper are not published 
in the open technical literature up to now.  
 
 
3 Product of two α-k-µ random 
variables 
The α-k-µ distribution can be used to describe small 
scale signal envelope variation in non linear, line-of-
sight multipath fading environment. This 
distribution has three parameters. The parameter α is 
related to nonlinearity of environment. The 
parameter k is related to ratio of dominant 
components power and scattering components 

power. The parameter µ is associated to the number 
of clusters in propagation environment. The α-k-µ 
multipath fading is more severe for lower value of 
parameter k, lower values of parameter µ, and 
higher values of parameter α [19]. 

The α-k-µ distribution is general distribution. 
Rayleigh, Nakagami-m, Rician, Weibull, α- µ and α-
k distributions can be obtained from α-k-µ 
distribution as special cases. By setting for α=2, α-k-
µ distribution reduces to k-µ distribution; by setting 
for k=0, α-µ distribution can be derived from α-k-µ 
distribution and for µ=1 Weibull distribution can be 
obtained from α-k-µ distribution. By setting α=2 and 
k=0, α-k-µ distribution approximates Nakagami-m 
distribution, α=2 and µ =1, α-k-µ distribution 
reduces to Rician distribution. Finaly, for k=0 and 
µ=1, Weibull distribution can be acquired from α-k-
µ distribution. 

The product of two α-k-µ random variables x and 
y is: 

( )α
2

11 yxyxz ⋅=⋅=     or 

2
1

2
1 yxz ⋅=α , 11

2 yxz ⋅=
α

       (1) 

where x1 and y1 are squared k-µ random variables. 
Squared k-µ random variables x1 and y1 are: 

2
12

2
12

2
11

2
1 µxxxx +⋅⋅⋅++=  

2
12

2
12

2
11

2
1 µxxxy +⋅⋅⋅++=      (2) 

Squared k-µ random variable is equal to the sum 
of 2µ independent Gaussian random variables with 
the same variances. The first derivative of the 
product of two α-k-µ random variables is: 

( )1111
1

2

2 yxyx
z

z  +=
−

α

α
  (3) 

The first derivatives of α-k-µ random variables 
1x  and 1y  are: 

( )µµ 121212121111
1

1
1 xxxxxx
x

x  +⋅⋅⋅++=  

( )µµ 121212121111
1

1
1 yyyyyy
y

y  +⋅⋅⋅++=  

(4) 
After substituting (4) in (3), the expression for 

the first derivative of product of two α-k-µ random 
variables becomes: 

( )



++⋅⋅⋅++=

−
µµα

α
121212121111

1

1

1
2

2 xxxxxx
x
y

z
z 
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( )



+⋅⋅⋅++ µµ 121212121111

1

1 yyyyyy
y
x

  (5) 

The first derivative of Gaussian random variable 
is Gaussian random variable and linear 
transformation of Gaussian random variable is also 
Gaussian random variable. 

Thus, µ121211 ,...,, xxx  , µ121211 ,...,, yyy   are 
independent zero mean Gaussian random variable. 
Therefore, product of two α-k-µ random variables 
follows conditional Gaussian distribution. The mean 
of z  is: 

0=z ,                (6) 
since 

0121211 ==⋅⋅⋅== µxxx  ,       (7) 
and 

0121211 ==⋅⋅⋅== µyyy        (8) 

The variance of z  is: 
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where  
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After substituting (10) in (9), the expression for 
variance of the first derivative of product of two α-
k-µ random variables becomes: 
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The joint probability density function of z, z and 
y1 is:  

( ) ( ) ( ) =⋅= 111 11
/ yzpyzzpyzzp yzzyzz 


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where conditional probability density function of z 
is: 

( ) 


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The joint probability density function of α-k-µ 
random variable and the first derivative of α-k-µ 
random variable can be calculated as integral of 
previous expression with respect to y1:  
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The first derivative of the α-k-µ random variable 
can be calculated as average value of the first 
derivative of α-k-µ random variable: 
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The random variable x1 and y1 are k-µ distributed: 
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After substituting (19) in (18), the expression for 
average level crossing rate of the product of two α-
k-µ random variables becomes: 
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4 Ratio of product of two α-k-µ 
random variables and α-k-µ random 
variable 
Ratio of product of two α-k-µ random variables and 
α-k-µ random variable is: 
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where x1, y1 and z1 are α-k-µ random variables and 
x, y and z are k-µ random variables. The first 
derivative of w is: 
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Squared k-µ random variables x,  y and z are: 
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where x1, x2, ..., x2µ, are independent Gaussian random 
variables with variances 2

1σ , y1, y2, ..., y2µ, are 
independent Gaussian random variables with 
variances 2

2σ , and z1, z2, ..., z2µ, are independent 
Gaussian random variables with variances 2

3σ . The 
first derivative of x,  y and z are: 
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After substituting (24) in (22), the expression for 
w  becomes: 
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The first derivative of ratio of product of two α-
k-µ random variables and α-k-µ random variable 
follows conditional Gaussian distribution. The main 
of w  is zero due to 0221 ==⋅⋅⋅== µxxx  , 

0221 ==⋅⋅⋅== µyyy   and 0221 ==⋅⋅⋅== µzzz  . 
The variance of w  is  
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        (27) 

After substituting (27) in (26), the expression for 
variance of the first derivative of ratio of product of 
two α-k-µ random variables and α-k-µ random 
variable becomes:  

( )++⋅⋅⋅++




=

−
2
2

2
2

2
122

2
1

222

22
2 4

µα

σπ

α
σ xxx

xz
fy

w
m

w  

( )++⋅⋅⋅+++ 2
2

2
2

2
122

2
2

222

µ

σπ
yyy

yz
fx m  

( ) =




+⋅⋅⋅+++ 2

2
2
2

2
16

2
3

2222

µ

σπ
zzz

z
fyx m  











++=

−
2
32

2
22

2
12

2

22

224
σσσ

α
π αα

α z
w

y
w

z
y

w
f m      (28) 

The joint probability density function of w, w , y 
and z is  
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where conditional probability density function of w 
is: 
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After substituting, the joint probability density 

function of w and w  becomes: 
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 The level crossing rate of the ratio of product of 
two α-k-µ random variables and α-k-µ random 
variable is: 
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The random variables x,  y and z follows k-µ 
distribution. 
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where 2
11 2µσ=Ω , 2

22 2µσ=Ω  and 2
33 2µσ=Ω . 
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5 Numerical results 
In Fig. 1, the level crossing rate of product of two  
α-k-µ random variables versus signal envelope is 
presented for different values of Rice factor k, the 
number of clusters in propagation environment µ (m 
in the figures) and signal power Ω  (r in the figures). 
Parameter α is constant for all curves and equal to 3. 
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It can be seen from Fig. 2. that an increasing of 
parameter α affects the shapes of LCR curves. They 
are not approximately constant any more, but the 
LCR growth for small amplitude, reaches a 
maximum and begins to decline slowly. For bigger 
values of parameter α, the LCR tends to zero. 

One can also see the influence of distribution’s 
parameters on the level crossing rate of α-k-µ 
random variable versus envelope z, Rician factor k, 
parameter α, and y. 

The parameter m has greater influence on 
average level crossing rate for lower values of 
parameter k. The level crossing rate increases as 
parameter k decreases. The system performances are 
better for lower values of average level crossing 
rate. 
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Fig. 1. The level crossing rate (LCR) of α-k-µ 

random variable versus signal envelope z  
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 Fig. 2. The LCR versus parameter α, for r =1 and 
some values of parameters m, k and y 

 

As parameter α increases, the average level 
crossing rate decreases. The parameter α has greater 
influence on average level crossing rate for lower 
values of parameter α. The parameter k has greater 
influence on average level crossing rate for lower 
values of parameter k and parameter α. 

The system performances are better for lower 
values of average level crossing rate. The outage 
probability is better for lower values of parameter α 
and higher values of parameters k and m. 
 
 
6 Conclusion 
In this paper, α-k-µ multipath fading is considered. 
Rayleigh, Nakagami-m, Weibull, Rician and α-
µ distributions can be performed from α-k-µ 
distribution as special cases. The parameter α is 
connected to nonlinearity of environments. The 
parameter µ is referred to the number of 
clusters. The Rice factor k is a ratio of dominant 
components power and scattering components 
power. 

The closed form expression for level crossing 
rate of product of two α-k-µ random variables is 
determined. Then, the expression for level crossing 
rate of the ratio of product of two α-k-µ random 
variables and α-k-µ random variable is 
calculated. 

The expression for level crossing rate of the ratio 
of product of two α-k-µ random variables and α-k-µ 
random variable can be used for calculation of 
average fade duration of wireless communication 
system operating over composite α-k-µ multipath 
fading environment in the presence of cochannel 
interference subjected to α-k-µ multipath fading.  

 The numerical results are presented graphically 
to pointed out the influence of fading parameters on 
average level crossing rate. 
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