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Abstract: - Cognitive radio is a promising technology to improve the utilization of wireless spectrum resources. 
A serious threat to cognitive radio networks (CRN) which sense the spectrum in a cooperative manner is the 
transmission of false spectrum sensing data by malicious secondary nodes, namely spectrum sensing data 
falsification (SSDF) attacks. SSDF attackers start to attack the network in the case of independent attacks or 
cooperative attacks and impair the process of data fusion, the performance is deteriorated. In this paper, we 
propose a scheme that can mitigate the effect of SSDF attacks and improve the robustness of cooperative 
spectrum sensing (CSS) based on hard decision regardless of independent attacks or cooperative attacks. 
Simulations verify the effectiveness of the proposed scheme. 
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1 Introduction 
Cognitive radio (CR) enables much higher spectrum 
efficiency by dynamic spectrum access, and it is a 
potential technique for future wireless 
communications to mitigate the spectrum scarcity 
issue [1]. The basic idea of CR is to dynamically 
sense electromagnetic environments, reliably detect 
the presence of licensed primary radios and 
opportunistically use the underutilized band for 
transmissions without causing harmful interference 
to authorized signals. Spectrum sensing is the key 
enabling functionality in cognitive radio networks 
(CRN). Each wireless sensor called secondary user 
(SU) detects whether the primary user (PU) be 
present or not periodically. 

The existing spectrum sensing techniques can be 
divided into three categories: energy detection [2], 
matched filter detection [3] and cyclostationary 
detection [4]. Due to the advantage of simple 
implementation, we use the energy detection to 
sense spectrum in practical situations. Cooperative 
spectrum sensing (CSS) can alleviate the problem of 
corrupted detection caused by destructive channel 
conditions between PU and SU. Each SU forwards 
its local sensing result to fusion center (FC), then 
FC decides whether the PU signal is present or not 
according to a fusion rule. Cooperative SUs would 

have a better chance of detecting the PU signal by 
combining the sensing information jointly. 

Recently, the security problem in CRN has 
attracted the attention of many researchers. The 
CRN is vulnerable to threats from malicious users 
(MU). In this paper, we consider spectrum sensing 
data falsification (SSDF) attacks in CRN. To 
counter SSDF attacks, we propose a scheme to 
identify the normal users (NU) and remove the MUs 
from the data fusion process with the help of trusted 
nodes (TN) such as access point, base station, 
cluster head, etc. The Gaussian approximation of 
Binomial distribution is used to decide the threshold 
for the identification of NUs. After the identifying 
stage, the remaining SUs are considered as NUs and 
permitted to send their local sensing results to FC. 

The remaining of this paper is organized as 
follows: In Section 2, system model for the 
spectrum sensing is presented. The definitions of 
two categories of SSDF attacks are illustrated in 
Section 3. The scheme to counter SSDF attacks is 
illustrated in Section 4. In Section 5, simulations are 
conducted to show the performance of the scheme 
proposed in this paper. Finally we make some 
conclusions in Section 6. 
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2 System Model 
In this section, we assume that the CRN includes 
N SUs (N0 MUs, N1 TNs and others are NUs). 
According to energy detection, the binary 
hypothesis test for spectrum sensing can be 
written as follows: 
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where the binary hypothesis H1 and H0 represent 
the PU is present and absent respectively. Ei(k) 
represents the received energy at the receiver of 
the ith SU (SUi) at kth sensing interval. hi(k) 
denotes the channel gain of the ith sensing 
channel at kth sensing interval. M is the number 
of samples. The sensing channel is block fading, 
i.e., the channel gain hi is considered as constant 
during one sensing interval, x(m) is the PU signal 
with mean zero and variance 2

xδ , ni(m) denotes 
the complex addictive white Gaussian noise 
(AWGN) with mean zero and variance 2

iδ , where 
ni(m) is uncorrelated with nj(m) (i≠j). Without 
loss of generality, x(m) and {ni(m)} are assumed 
to be independent of each other. 

According to the central limited theorem 
(CLT), if M is large enough (e.g., M≥10), Ei(k) is 
asymptotically normally distributed as [5]: 
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where γi(k) is the local sensing signal-to-noise 
ratio (SNR): 
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To maximize the probability of detection Pd 
for a given probability of false alarm Pf based on 
Neyman-Pearson (NP) criterion, the log-
likelihood ratio (LLR) can be given  by: 
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Hence, the local sensing result is: 
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where di(k) is the local sensing result of SUi 
(i=1,2,……,N) at kth sensing interval, and λi is the 
local detection threshold of LLR test for SUi. In this 
paper, we assume that CRN is localized in a small 
scale area, hence the local sensing SNR and λi are 
considered to be identical and the path loss is 
constant for all sensors. Each SU sends one-bit local 
sensing result to FC. Therefore, the global sensing 
result is obtained according to voting rule: 
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3 Spectrum Sensing Data Falsification 
Attacks 
Two threats to CRN have been defined as: 
primary user emulation attacks (PUEA) [6] and 
spectrum sensing data falsification (SSDF) 
attacks [7]. In PUEA, a MU forestalls vacant 
channels by impersonating the PU to prevent 
other SUs from accessing the idle frequency 
bands. In SSDF, some MUs introduce false 
sensing information in the fusion process to 
disrupt the CSS process. The two names, 
Malicious users and SSDF attackers, will be used 
alternatively. MUs attack CRN with a probability 
by modifying the local sensing results regarding 
the present state of the PU signal prior to their 
transmission to FC. The objective of SSDF 
attackers is to deteriorate the performance of 
CRN and increase spectrum efficiency or 
throughput for themselves. 

There are two categories of SSDF attacks: 
(1)Independent Attacks (IA), each MU starts 

attacking CRN independently only on its own 
observation from local energy detection.  

(2)Cooperative Attacks (CA), MUs decide the 
global sensing result cooperatively. Voting rule has 
been used for cooperation among MUs. Each MU 
sends the same decision to FC according to Pmal, the 
probability of altering the global decision of all 
MUs. 
 
4 Scheme to Counter SSDF Attacks 
In this section, the spectrum sensing process is 
divided into two stages: identifying stage and 
sensing stage. At the first stage i.e., identifying stage, 
we propose a scheme to identify reliable SUs in 
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CRN. Then at the sensing stage, FC receives 
decision reports from all NUs identified in the 
identifying stage and TNs to make the global 
decision. 

We denote the local sensing result of SUi at kth 
time interval as di(k), and the sensing result of SUi at 
kth time interval received by FC as Di(k). The 
reporting channel is perfect. 

The relationship between Di(k) and di(k) is given 
as follows: 

(1) for NUs and TNs, Di(k)=di(k);  
(2) for MUs, Di(k)≠di(k).  
Each SU in CRN detects PU signal 

independently, meanwhile all NUs and TNs have 
the same local probability of detection and local 
probability of false alarm i.e., 
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From the viewpoint of FC, the local probability 
of detection and local probability of false alarm of 
MU can be denoted as follows: 
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for the simplicity of analysis, we have Pmal,i=Pmal for 
all MUs. Therefore we can get that ( ) ( )

,
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( ) ( )
,
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The global sensing result D(k) can be decided 

only based on the cooperation of TNs at the 
identifying stage. Majority rule, a special issue of 
voting rule, is considered as the fusion rule in this 
paper: 
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Assuming T time intervals at the identifying stage, 
the indicator function of SUi at kth time interval is 
given by: 
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When the identifying stage is finished, the total 
number of Di(k)=D(k) can be written as 

1
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I I j

=
=∑ . Once Ii is greater or equal to a 

predefined threshold µ, SUi is identified as a NU; 
otherwise, not. We can get into the sensing stage 

after we decide whether each SU in CRN is NU or 
not. 

The probability for Ii(k)=1 at the identifying 
stage is obtained as: 
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for NUs: 

( )
( )( )
( )( )

( )

( ) ( )
0

( ) ( )
1

( ) 1

( ) 1 1

( ) 1 1

n
i

n n
f f f f

n n
d d d d

P P I k

P H P Q P Q

P H P Q P Q

= =

 = + − − 
 + + − − 

 

(11) 
for MUs: 

( )
( )( )
( )( )

( )

( ) ( )
0

( ) ( )
1

( ) 1

( ) 1 1

( ) 1 1

m
i

m m
f f f f

m m
d d d d

P P I k

P H P Q P Q

P H P Q P Q

= =

 = + − − 
 + + − − 

 

(12) 
where Qd, Qf are the global probability of detection 
and the global probability of false alarm only 
dependent on TNs, respectively: 
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Ii(k) is a independent Bernoulli random variable, 
therefore the sum of T independent identically 
distributed Bernoulli random variables follows 
Binomial distribution i.e., for NUs, Ii~B(T, P(n)); for 
MUs, Ii~B(T, P(m)). P1, P0 denote the probability of 
FC identifying a normal user correctly and the 
probability of FC mistaking a malicious user as 
normal user, respectively. P1, P0 can be written as: 
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And 
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at the identifying stage, we formulate the following 
optimization problem: 
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where θ is predetermined to be the minimum value 
of P1. For large CRN and reasonable time interval 
size T, we utilize the Gaussian approximation of 
Binomial distribution. 
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where Q(⋅) denotes the right tail probability of a 
normalized Gaussian distribution, also referred as 
Q-function. Q(⋅) is a monotonic decreasing function, 
therefore we can mimimize P0 by setting (18) to θ 
and substituting (18) into (19): 

( )( ) 1 ( ) ( )( ) 1n n nTP Q TP Pµ θ−= + −      (20) 

where the value of θ can be decided according to 
realistic situations. 
 
5 Simulations 
In this section, we consider five CSS situations as 
follows: 
• situation 1: there are no MUs and no TNs in CRN, 

only N normal SUs;  
• situation 2: there are N SUs in CRN, including N0 

MUs and N1 TNs; MUs attack CRN 
independently (IA); 

• situation 3: there are N SUs in CRN, including N0 
MUs and N1 TNs; MUs attack CRN 
cooperatively (CA); 

• situation 4: the proposed scheme for situation 2; 
• situation 5: the proposed scheme for situation 3; 

We consider a CRN with 50 SUs, including 30 
MUs and 5 TNs. The prior probability of H1 is 0.2. 
We set the local probability of detection and local 
probability of false alarm to 0.7, 0.2 respectively. 
The number of samples M=50, local sensing SNR 
γi(k)=  -5dB, 2 1iδ = . The number of time intervals at 
the identifying stage T=600. The number of Monte-
Carlo simulations is 10000. 

Fig.1 depicts the performance of CSS i.e., 
probability of detection (Pd) and probability of false 

alarm (Pf) respectively. We can see that the 
performance of CSS degrades badly as long as there 
exist SSDF attackers. Comparing the performance 
for situation 2 with that for situation 3, CA from 
MUs has a worse impact on the performance of CSS 
than IA from MUs. The curves for situation 4 and 
situation 5 approach the curve for situation 1. Hence, 
it proves that the proposed scheme in this paper 
improves the robustness of CRN under SSDF 
attacks regardless of IA or CA. Due to the existence 
of MUs, the curves for situation 4 and situation 5 
deviate from that for situation 1 to some extent. 
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(b) 

Fig. 1. Performance of cooperative spectrum 
sensing (Pmal=0.9, θ=0.9). (a) Probability of 
detection. (b) Probability of false alarm. 

Fig.2 shows the performance of CSS with the 
increase of percentage of MUs in CRN. According 
to Neyman-Pearson criterion, the threshold λ in (6) 
is that makes the Pf in situation 1 be equal to 0.01. It 
can be seen that CA deteriorates the performance 
badly. Obviously, the performance for situation 4 
and situation 5 outperform those for situation 2 and 
situation 3. That is to say, the proposed scheme in 
this paper improves the robustness of CRN under 
SSDF attacks regardless of percentage of MUs in 
CRN under IA and CA. 
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(b) 

Fig. 2. Performance of cooperative spectrum 
sensing versus the percentage of MUs in CRN. 
(Pmal=0.9, θ=0.9). (a) Probability of detection. (b) 
Probability of false alarm. 

Fig.3(a) and Fig.3(b) depict the probability of 
detection when Pmal=0.5 and θ=0.5, 0.9 respectively. 
We can see the proposed scheme mitigates the effect 
of SSDF attacks. However the number of identified 
NUs is not equal to N-N0 under the situation that θ is 
not large enough when Pmal=0.5 as shown in Fig.4(a) 
and Fig.4(c). In order to alleviate the impact of the 
decrement of Pmal, we can improve the requirement 
of minimum probability for FC identifying a NU 
correctly i.e., increasing the value of θ. When θ=0.9, 
the number of identified NUs under both IA and CA 
in Fig.4 is equal to N-N0. 
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(b) 

Fig. 3. Probability of detection for CSS in CRN 
(Pmal=0.5). (a) θ=0.5. (b) θ=0.9. 
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(a) T=600 Pmal=0.5 
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(b) T=600 Pmal =0.9 
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(c) T=1000 Pmal =0.5 
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(d) T=1000 Pmal =0.9 

Fig. 4. Number of identified NUs versus the 
maximum probability for FC mistaking a MU as 
a NU. 

In Fig.5, we set θ to 0.9. We can see the 
probability of mistaking MU as NU at FC via the 
probability of attacking for MUs with different 
values of T. In Fig.5, P0 decreases as Pmal increases. 
This is because the more greater Pmal is, the more 
easily FC identifies a MU and removes it from the 
data fusion process. The curve in Fig.5(c) 
approaches that in Fig.5(d) when T increases from 

600 to 1000. However, we set T to a relatively large 
value T=1000 to counter SSDF when MUs attack 
CRN with a relatively low probability according to 
Fig.4(a) and Fig.4(c). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Probability of Attacking for Malicious Users

P
ro

ba
bi

lit
y

 

 

probability of FC identifying NU correctly
probability of FC mistaking MU as NU

 
(a) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Probability of Attacking for Malicious Users

P
ro

ba
bi

lit
y

 

 

probability of FC identifying NU correctly
probability of FC mistaking MU as NU

 
(b)  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Probability of Attacking for Malicious Users

P
ro

ba
bi

lit
y

 

 

probability of FC identifying NU correctly
probability of FC mistaking MU as NU

 
(c)  
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(d) 

Fig. 5. Probability of identifying NUs at FC 
versus the probability of attacking for MUs. (a) 
T=10. (b) T=50. (c) T=600. (b) T=1000. 
 
6 Conclusions 
In this paper, we have proposed a scheme to counter 
SSDF attacks in cognitive radio networks. We have 
intensively analyzed the impact of parameters at the 
identifying stage. The proposed scheme is shown to 
be robust against SSDF attacks. The security issue 
in large scale cognitive radio networks and more 
effective ways of identifying normal users will be 
investigated in the future work. 
 
References: 
[1] S. Haykin, Cognitive radio: brain-empowered 

wireless communications, IEEE J. Select. 
Areas Commun, vol.23, 2005. 

[2] H. Urkowitz, Energy detection of Unknown 
Deterministic Signals, Proceedings of IEEE, 
Vol. 55, 1967, pp. 523-531. 

[3] A. Sahai, N. Hoven, R. Tandra, Some 
Fundamental Limits in Cognitive Radio. Proc. 
Allerton Conf Commun, 2004 

[4] P. D. Sutton, K. E. Nolan, L. E. Doyle, 
Cyclostationary Signatures in Practical 
Cognitive Radio Applications, IEEE J. Select. 
Areas Commun,   vol.26, 2005. 

[5] Zhi Quan, Shuguang Cui, Ali H. Sayed, 
Optimal Linear Cooperation for Spectrum 
Sensing in  Cognitive Radio Networks, IEEE J. 
Select. Topics Signal Processing, vol, 2, 2008. 

[6] Ruiliang Chen, Jung-Min Park, Jeffrey H. Reed, 
Defense against Primary User Emulation 
Attacks in Cognitive Radio Networks, IEEE J. 
Select. Areas Commun, vol.26, 2008. 

[7] Ruiliang Chen, Jung-Min Park, Kaigui Bian, 
Robust Distributed Spectrum Sensing in 
Cognitive Radio Networks, IEEE 
INFORMCOM, 2008, pp. 31-35. 

WSEAS TRANSACTIONS on COMMUNICATIONS Jianqi Lu, Ping Wei

E-ISSN: 2224-2864 248 Volume 13, 2014




