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Abstract: -In wireless sensor network, virtual backbone formulation is a cost effective method to complete the 
broadcasting. Minimum connected dominating set is an outstanding candidate of virtual backbone. However, it 
is NP-Hard to find a minimum connected dominating set in an arbitrary graph. In this paper, we propose a 
novel backbone formation algorithm to construct a connected dominating set. In the proposed method, a 
dominating set and action sets are got at first. Then, sink executes the pursuit algorithm, in which nodes are 
treated as learning automata and action probability vector is changed with time, and chooses actions from their 
action sets to construct a connected dominated set Finally, the automaton converges to a common policy and an 
approximate solution of the minimum connected dominating set is got. It is also shown that our method is ε-
optimality with the changing speed of learning parameter. The simulation results show that our algorithm has a 
good performance in terms on the size of backbone, the message overhead and average node degree. 
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1 Introduction 

A wireless sensor network (WSN) is composed 
by many sensor nodes and one or multiple sinks. In 
WSN, sensors gather data from the sensing 
environment and transfer those data to the sink 
nodes or base stations. Generally, WSNs are 
deployed in some emergent or temporary situation, 
for example accidents or environment gatherings. 
Broadcasting is a fundamental means in WSNs. 
However, the way of packet transmission in WSN is 
different from the way in the wired network. 
Generally, there are many redundant retransmissions 
in broadcasting because the omnidirectional radio 
propagation and a physical location may be covered 
by the transmission ranges of several nodes. Virtual 
backbones are usually used to support broadcasting 
and multicast in WSNs and a minimum connected 
dominating set (MCDS) is an outstanding candidate 
to work as a virtual backbone. 

In this paper, a graph G(V,E) is used to represent 
a WSN. In G, the vertexes set V represent the nodes 
in the WSN, and E represents all the links in the 
network. We also assume that all nodes have the 
same transmission range. Therefore, the graph G is 
also a unit disk graph. A dominating set (DS) of 
graph G is a subset of V such that each vertex which 
is not in set will be joined to at least one member of 

the set by an edge. A connected dominating set 
(CDS) is a DS that induces a connected subgraph of 
G. A minimum connected dominating set (MCDS) 
is a connected dominating set with the smallest 
cardinality among all possible connected 
dominating sets of G. However, it is NP-hard to find 
a MCDS of a graph [1]. 

We propose a quasi-distributed algorithm to 
construct a CDS of a WSN. The proposed method 
consists of two steps. At the first step, a DS and the 
action sets of the nodes in the DS are got. At the 
second step, according to the cross entropy method, 
the sink get a CDS based on those action sets. In 
detail, the DS is got by a color process. Then, each 
node in the DS (called dominator) gets its action set 
based on the connection path between itself and its 2 
or 3 hops dominator neighbors. When the sink 
receives the action sets from dominators, it treads 
those dominators as automata and executes the 
revised pursuit algorithm to form a CDS. In the 
pursuit algorithm, each automaton chooses an action 
from its action set to construct a CDS and updates 
the estimate vector and actions probability vector 
based on the size of the feedback. Finally, the 
automaton converges to a common policy that 
constructs an approximate solution of the MCDS of 
the network. 
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The organization of the rest of this paper is 
shown as follows. Section 2 shows the related works 
and Section 3 briefly presents the learning automata 
and the pursuit algorithm. The purposed CDS 
formation algorithm is presented in Section 4 and 
the ε-optimality of the purposed algorithm is proven 
in Section 5. In addition, the performance of the 
proposed algorithm is shown in Section 6. The 
conclusion is presented in Section 7. 
 
 
2 Related works 

Most of MCDS approximation algorithms 
construct a CDS based on a maximal independent 
set (MIS). A MIS is a set that every edge in G has at 
least one endpoint not in the set and every vertex not 
in the set has at least one neighbor in it. In [2], 
Alzoubi et al. proposed two MIS-based algorithms. 
The first algorithm requires a spanning tree to 
complete the process in which a CDS is generated. 
The second algorithm does not need the spanning 
tree and enables the maintenance of the weakly-
connected dominating set to be simpler. Bo [3] 
presents a zone-based distributed algorithm, in 
which every node is assigned “Zone” and “Level” 
marks to indicate its subtree and the distance to root 
of the subtree. Li et al. [4] put forward the S-MIS 
algorithm, which is a greedy algorithm and 
constructs a CDS with the help of Steiner tree. At 
the same time, a distributed version of this 
algorithm is also introduced. Gao et al. [5] purpose 
another MIS-based distributed algorithm that has a 
better message complexity compared with Alzoubi’s 
algorithm [2] and is stable and scalable in large and 
dense network.  

In [6], Wu and Li purpose a prune-based 
algorithm, in which prunes some redundant nodes 
from the original CDS that got by “Rule 1” and 
“Rule 2”. Another enhanced prune method, called 
Rule k, is introduced by Dai and Wu in [7]. In Rule 
k, a node will be removed from CDS if its 
neighborhoods are covered by a set of k neighbors 
with higher IDs and the node set is strongly 
connected.  

Akbari Torkestani and Meybodi [8] described an 
intelligent CDS-based backbone formation 
algorithm in which the learning automata are used to 
construct the CDS of the network. The automata 
will be rewarded, if it is the smallest one that has 
been constructed so far. Otherwise, it will be 
penalized. However, the learning automata apply a 
direct algorithm that only uses the environmental 
feedback of the current stage to update the 

probability vector. Akbari also purposes another 
backbone formation algorithm to the energy 
efficient in WSNs. In this algorithm [9], a learning 
automata-based heuristic is purposed for finding an 
optimal solution of the proxy equivalent constrained 
CDS problem. The degree and the backbone delay 
also considered in this algorithm to prolong the 
backbone duration and to shorten the delay of 
transmissions. In [10], a load-balanced virtual 
backbone construction algorithm is proposed by He 
et al. they consider the size and the load-balance 
factors when constructing the backbone of WSN. 
After a backbone is got, they propose an 
approximation algorithm by using the linear 
relaxing and random rounding technique to allocate 
non-backbone nodes to proper backbone nodes with 
an objective to minimize the maximum valid degree 
of all the backbone nodes [10]. 
 
 
3 Learning automata and pursuit 
algorithm 

A learning automaton consists of an adaptive 
learning agent operating in unknown environment 
[11]. It takes an action from its action set to 
maximize the probability of being rewarded from 
the environment. And the learning automaton tries 
to find optimal action through iterations. In each 
iteration, it gets a feedback from the environment 
and updates its action probability vector. An 
automaton can be represented as a 4-tuple (A, P, F, 
T) and environment can be represented as a 3-tuple 
(A, F, D). 

Where, A= 1 2{ , , , , , }i rα α α α  ,1 i r≤ ≤ ,is the set 
of actions andris the number of actions. 

T is a scheme that used to update the action 
probability vector as follows, 

( 1) ( ( ), ( ), ( ))t t t tα β+ =P T P .   (1) 
P is theaction probability vector of each action. 

1 2( ) [ ( ), ( ), , ( )]rt p t p t p t=P  is the probability vector 
at iteration t. In each iteration, the automaton selects 
an action form A with respective probabilities in 
P(t). 

Fis the set of the feedback from environment. 
The feedback at the iteration t is denoted 
asβ(t)(β(t)∈F). In this paper, β(t)=1 if the action get 
a reward form the environment. Otherwise, β(t)=0. 

1{ ( ), , ( ), ( )},1i rd t d t d t i r= ≤ ≤D   , is the set of 
average reward value, where

( ) [ ( ) | ( ) ]i id k E t tβ α α= = stands for the expectation 
of reward value when an automaton chooses the i-th 
action. If ( )id t  is independent of t for all 1 i r≤ ≤ , 
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the environment will be stationary. Otherwise,it will 
be non-stationary. In this paper, the environment is 
stationary, the expression of D can be simplified to 

1{ , , , }i rd d d=D   ,m is used to denote the index of 
the optimal action, max{d }m ii

d = . 

It is important to choose a scheme of T to get 
better performances, i.e. a better result or fast speed 
of convergence. Thathachar and Sastry [12] 
introduced the estimator algorithms where the 
automaton runs an estimator to provide guidance for 
updating the action probability vector. One of the 
estimator algorithms presented by Thathachar and 
Sastry in [13] is called the pursuit algorithm (PA) or 
continuous pursuit reward-penalty (CPRP) algorithm 
[14]. 

Table 1 
Algorithm PA 

Initialize t=1, (1) 1 /ip r= for all1 i r≤ ≤ . 
Initialize the estimate vector ˆ ( )td  by taking each 

action a small number of times. 
Repeat 
(1) At the iteration t, the automaton chooses an 

action iα in line with its action probability vector
( )tP . Let ( ) itα α= . 

(2) After getting the feedback ( )tβ , update the 
estimate vector ˆ ( )td  according to the following 
equations, 

( 1) ( ) ( )

( 1) ( ) 1

( 1)
ˆ ( 1)

( 1)

W t W t ti i
N t N ti i

W tid ti N ti

β+ = +

+ = +

+
+ =

+

.   (2) 

(3) Update the action probability vector ( )tP on 
the basis of the following equation 

( )( 1) (1 ) ( ) M tt tλ λ+ = − +P P e .   (3) 
End repeat 

Where 1̂
ˆˆ ( ) [ ( ), , ( )]rt d t d t=d   is the estimate 

vector and ˆ ( )id t refers to the average reward value of 
i-th action at the iterationt. 

1( ) [ ( ), , ( )]rt W t W t=W  is a vector and ( )iW t is 
the number of times that action iα  has been 
rewarded up to the time t. 

1( ) [ ( ), , ( )]rt N t N t=N  is a vector and ( )iN t is 
the number of times that the action iα  has been 
chosen up to the time t. 

λis the speed of a learning parameter and 
satisfies the condition 0<λ<1. 

( )M te is a r-vector with 1 in the M(t)-th 
coordinate, and the others are 0. ( )M t is theindex of 
the maximal component of ˆ ( )td , and 

( )
ˆ ˆ( ) max{ ( )}M t ii
d t d t= . 

Note that PA stops when the condition is 
satisfied. For instance, once one of the action 
probabilities is larger than 0.9 or other values, the 
repeat will be stopped. It is easy to observe that the 
automaton always pursues the ‘current’ action, i.e., 
optimal action, and hence the name pursuit 
algorithm [15]. 
 
 
4 Backbone formation algorithm 
based on the pursuit learning 
algorithm 

Our algorithm is clustering-based. In this 
algorithm, a MIS is generated at first. Next,every 
node in the MIS finds its action set. Then, those 
action sets are sent to the sink and the PA algorithm 
will be executed to get a CDS with small size. 
Finally, the topology of the CDS will send to each 
node in the MIS. 
 
 
4.1 Dominator selection process 

Before we get the dominator selection process, 
each node is marked with a unique rank, i.e., 
(degree, ID), where the degree refers to the number 
of neighbors and ID is the label of a node. We 
assume that rank(n1)is higher than rank(n2)if the 
degree of n1 is larger than the degree of n2 or the ID 
of n1 is larger than the ID of n2 when the degree of 
n1 is equal to the degree of n2. 

The way to select the dominator is given in the 
following content. 

(1) Initial all nodes with white color. 
(2) If a white node has a higher rank than all its 

white neighbors, it will be marked black and all of 
its neighbors will be marked gray. 

When a node is marked black, it broadcasts a 
BLACK message to its neighbors. As soon as a 
node receives a BLACK message, it changes its 
color to gray and records the ID of the black node. 
Similarly, once a node is marked gray, it will 
broadcast GRAY message to its neighbors to 
mentionthe change of its color. The white node 
compares its rank with all of its white neighbors 
whenit receives a GRAY message. If the condition 
(2) is satisfied, it will be marked black.After the 
color process, there are no white nodes in the 
network;all nodes will bemarked black or gray, and, 
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the black nodes form a MIS [16]. Therefore, each 
MIS is also a DS of the graph. The black node is 
also called dominator, while the gray node is called 
dominatee. 
 
 
4.2 The formation of action sets 

Every node in the MIS is treated as a learning 
automaton. To getting a CDS, each dominator 
selects some gray nodes as connectors to build 
connection paths to other dominators, which are 
three hops or two hops away. In this paper, if the 
connection paths between those dominators are 
replaced with edges, to getting a CDS with a small 
size, there is no cycle in the CDS. Thus, the 
topology of the CDS is a tree. Each dominator 
except the root of the tree will choose another 
dominator as its father node. An action of a 
dominator is its choice (the choice of the root is 
null). The action set consists of two parts. The first 
parts is those dominators that are three hops or two 
hops away (we call those nodes the dominators need 
to be connected (DNC)). The second part is the 
connection paths, which includes the connector. For 
example, as shown in Table2, d1 d2 and d3 are the 
DNC of dominator d. The connection paths form d 
to d1, d2 and d3 are (d, c1, d1), (d, c2, c3, d2) and 
(d, c4, c5, d3), respectively. Therefore, the 
connectors of those paths are c1, (c2, c3), (c4, c5), 
respectively. 

Table2. Anillustration of the action set of 
dominator d. 

DNC Connectors 

d1 c1 

d2 (c2,c3) 

d3 (c4,c5) 

⋯ ⋯ 
Generally, the formation of action setscan be 

divided into two stages.At the first, each dominatee 
broadcast a One-Hop-Dominator message in which 
the IDs of its neighbor dominator are added. Thus, 
each node will get the information of its two hops 
dominator neighbors. Then, every dominator adds 
the actions of those dominators, which are twohops 
away,to its action set. We use a triple (a1, a2, a3) to 
represent a path fromdominator a1 to another 
dominator a3 that is two hops away. If there are 
severalpaths between a1 and a3, the one with the 
maximum rank will be chose and added to the 
action set. For example, there are two routes 

between node 1 and node 8 in Fig.1, so the 
connector of the pathcould be node 4 or node 5. 
According to the principle we have mentioned 
before, node 4 will be chose because it has a larger 
rank than node 5. This principle can decrease the 
size of the final CDS because the chance that the 
connectorwith a larger rank is chose by other 
dominators is larger, for example, node 4 also is 
chose as a connector by node 10. 

At the second stage, every dominatee broadcast a 
Two-Hop-Dominator that includes its two hop 
dominator and the connector that connect the 
dominatee and the dominator. After this process, 
each dominator will get the information of the three 
hops away dominators and find connections path to 
its three hops dominator neighbors. A four-tuple 
(b1, b2, b3, b4) is used to signify a path from 
dominator b1 to another dominator b4, which is3 
hops away from b1. If there are multiple routes 
between them, the route that has a greater amount of 
degree (b2) and degree (b3)will be chose. For 
example, there are three routes from node 1 to node 
11 in Fig.1, i.e., (1, 2, 6, 11), (1, 3, 6, 11) and (1, 3, 
7, 11). Based on the principle, the route (1, 3, 7, 11) 
will be chose. 

 
Fig.1. An illustration for the formation of action 

sets. 
 
 
4.3 Getting the CDS based on the pursuit 
algorithm 

After the formation of action sets, every 
dominator sends its action set to the sink (so, our 
algorithm is quasi-distributed or quasi-global). 
Based on the action sets of dominators, sink finds 
nodes as little as possible to connect the dominators 
and get a small CDS. This is a Steiner tree problem. 
However, this version of the Steiner tree problem is 
NP-complete. The algorithm PA, in which the 
dominators are treated as automata, is used to get an 
approximate solution. More details about the 
algorithm and its parameters are described as 
follows. 
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To getting the feedback of the environment, the 
following principle is utilized. If the size of the CDS 
of current iteration t (we denote the size as V_t) is 
not greater than the best value (BV) of the sizes of 
CDSs that have been got so far, the value of the 
feedback β(t) will be set to 1 (as shown in formula 
(4)) and the values in the array also be 
updated.β(t)=1 means the actions adopted by the 
automata are rewarded by the environment. 

( ) { _ BV}t I V tβ = ≤ .   (4) 

Where 
1 _ BV)

{ _ }
0

V t
I V t BV

otherwise
≤

≤ =




. 

The speed of the learning parameter λcontrols 
the steps that can be taken fromP(t) toP(t+1). In 
general, for a fixed λ, a large valuewill lead to a 
higher rate of convergence; and vice versa. We 
follow [17] to take the situation thatλ changes with 
time (as shown in formula (5)) because they argue 
that a changing λ is consistent with the notion of 
convergence. 

1/( ) 1 ttλ θ= − ,   (5) 
whereθ∈(0,1). 

According to value of β(t) and λ(t), each 
dominator updates the values of parameters as 
shown in formula (2). Next, it updates the value of 
M(t) and the action probability vector P(t) according 
to formula (6) given below. However, in the process 
of initialization,the action probability vector P(t) 
keeps consistent. 

( ) ( )( 1) 1 ( ) ( ) ( ) M tt t t tλ λ+ = − +P P e    (6) 
We assume that the stop condition meets if one 

of the following conditions is satisfied. The first 
condition is that the number of iterations is equal to 
a threshold. The second one is that the values of the 
sizes of CDSs, which are obtained in the last K 
iterations, are the same (K is a positive 
integer).When the pursuit algorithm finishes, the 
CDS with the smallest size will be returned as the 
output of this algorithm. 

As mentioned in section 4.2, the topology of the 
CDS is a tree if we replace the connection paths 
between dominators with edges. On the other hand, 
each dominator stores the connection paths in the 
action. So, the sink just needs to send each 
dominator a message, which contains the dominator 
neighbors of the dominator in the tree, to make 
dominators establish necessary connections that 
included in the CDS. 
 
 
5 The convergence of our algorithm 

The convergence of a learning algorithm implies 
that the automaton will always implement the 

optimal action eventually. Such a kind of 
convergence is typically called ε-optimality. 
Rajaraman and Sastry [15] put forward a framework 
to analyse the finite time behaviour of the pursuit 
learning algorithm. However, the speed of learning 
parameters is a fixed value in their analysis. In this 
paper, following the framework, we analyse the 
convergence of the pursuit learning algorithm when 
λ changes with time, as shown in formula (5). 

Before we start to analyse ε-optimality of the 
algorithm, there are two lemmas that can contribute 
to the analysis of the convergence. 

Lemma 1: For any given positive constant δ>0 
and a positive integer 0<n<∞, there is 10 T< < ∞  
such that  

1
1,...,

Pr{min ( ) } 1ii r
Z t n t Tδ

=
≥ > − ∀ > .   (7) 

Proof: Proving (7) is equal to: for all i∈{1, 
2,…, r} 

Pr{ ( ) }iZ t n δ< < .   (8) 
That is, 

1

0
Pr{ ( ) j}

n

i
j

Z t δ
−

=

= <∑ . 

If for all j, 0≤j≤n-1, the inequality will follow 

Pr{ ( ) j}iZ t
n
δ

= < .  (9) 

At any iteration k, 

( )
1

Pr{ (k) } 1 (t) (0)
k

i i
t

pα α λ
=

= ≥ −∏  is always tenable 

because the action probability decreases by (1−λ(t)) 
at most at each iteration. 

Thus, 

( )
1

1/

1

Pr{ (k) } 1 1 (t) (0)

1 (0)

k

i i
t

k
t

i
t

p

p

α α λ

θ

=

=

 
≠ ≤ − − 

 
 

= −  
 

∏

∏
, 

where, θ∈(0,1) and (0) 1/ rip = . We can get 

1/k

1

1Pr{ (k) } 1

1 /

k

i
t r

r

α α θ

θ
=

 
≠ < −  

 
= −

∏ . 

Based on the foregoing inequality, we can get the 
following inequality. 

( )
( )

Pr{ ( ) j} 1 1 / r

1 / r

k jj j
i k

k jj j k j

Z t C

k k

θ

θ σ

−

− −

= < × × −

< × − =
, 

whereσ=θ/r. 
Define a function ( ) n x nx x σ −Ψ = ( >0). If we 

prove that there is a value T1 that makes Ψ( )<δ/n 
be always satisfied when > T1, the inequality (9) 
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will be proved and Lemma 1 will be proved as well. 
Where, 

1( ) ( ) / ( ln )n x nx d x dx x x nσ σ− −′Ψ = Ψ = ⋅ + . 
It is easy to get ( ) 0x′Ψ < when 

2/ ln(1 / )x n Tσ> = . 
Consequently, Ψ( ) is a decreasing function 

when >T2. If Ψ(T2)≤ δ/n, we can take 1 2T T=     to 
make Formula (9) and Lemma 1 be followed all the 
time. x   stands for the smallest integer that is equal 
to or larger than . When Ψ(T2)> δ/n, if we want to 
prove Lemma 1, it will be essential for us to prove 
that there is another value T3 that is larger than T2 
and Ψ(T3) = δ/n. We can get 

( )
lim ( ) lim lim

1/

n
n x n

x nx x x

xx x σ
σ

−
−→+∞ →+∞ →+∞

Ψ = = . 

By virtue of the L' Hôpital's rule and 1/σ>1, we 
can get 

( )

( ) [ ]

lim ( ) lim
1/
!lim 0

1/ ln(1 / )

n

x nx x

nx nx

xx

n
σ

σ σ

−→+∞ →+∞

−→+∞

Ψ =

= =
. 

Because Ψ( ) is a decreasing and continuous 
function when >T2, there must be a value T3 that is 
larger than T2 and Ψ(T3) = δ/n is satisfied. 
Therefore, Formula (9) and Lemma 1 always follow 
when 1 3T T=    .∎ 

Lemma2: For any given positive constant δ>0, 
κ>0 and i∈{1, 2,…,r}, there is 0< T*<∞ so that 

{ } *ˆPr ( ) 1i id t d t Tκ δ− ≤ > − ∀ > . 

Proof: According to the definition 
( ) { (t) } (t)ˆ ( )
( ) ( )

i i
i

i i

W t Id t
N t N t

α α β=
= = . 

We can find that ˆ ( )id t ∈ [0,1] acts as the 
estimate of di. For any iteration t, it is possible to get 
the following inequality by applying the Theorem 2 
of Hoeffding [18]. 

{ } 2ˆPr ( ) 2exp( 2 ( ) )i i id t d N tκ κ− > < − .   (10) 

In accordance with the laws of total probability, 
we can obtain 

{ }
{ } { }

{ } { }

{ } { }

ˆPr ( )

ˆPr ( ) | ( ) Pr ( )

ˆPr ( ) | ( ) Pr ( )

ˆPr ( ) | ( ) Pr ( )

i i

i i i i

i i i i

i i i i

d t d

d t d N t n N t n

d t d N t n N t n

d t d N t n N t n

κ

κ

κ

κ

− >

= − > ≥ ≥

+ − > < <

< − > ≥ + <

. 

(11). 
According to Inequality (10), 

{ } 2ˆPr ( ) | ( ) 2exp( 2n )i i id t d N t nκ κ− > ≥ < − . 

Set 2

1 4ln
2

n
κ δ

 =   
, then 

{ }ˆPr ( ) | ( )
2i i id t d N t n δκ− > ≥ < .   (12) 

According to Lemma 1, 

{ }Pr ( )
2iN t n δ

< < .   (13) 

The above inequality always follows when t>T*. 
Here, we will obtain T*= 2T    if Ψ(T2)≤ δ/(2n). 
Otherwise, T*= 4T   , where the value of T4 is larger 
than that of T2 and Ψ(T4) = δ/(2n). 

Combine (11)-(13), t the following inequality 
can be obtained: 

{ } *ˆPr ( )i id t d t Tκ δ− > < ∀ > .   (14) 

That is, 

{ } *ˆPr ( ) 1i id t d t Tκ δ− ≤ > − ∀ > .   (15) 

Hence, Lemma 2 is proved.∎ 
Theorem 1: For any given positive constant δ ∈ 

(0, 1) and ε ∈ (0, 1), there is 0<T ′<∞ such that  
Pr{ ( ) 1 } 1mp t t Tε δ ′> − > − ∀ > . 

Proof: According to Lemma 2 and by taking 
1 ( )
2 m jd dκ = − , j m∀ ≠ , we can get the probability 

that ˆ ( )m md t d κ− <  and ˆ ( )j jd t d κ− <  is larger 

than 1−δ when t>T*.  
Thus,  

{ }ˆ ˆPr ( ) ( ) 2 1m m j jd t d d t d κ δ− + − < > − . 

It is easy to get  
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ2 ( ) ( )

m m j j m m j j

m j

d t d d t d d d t d t d

d t d tκ

− + − > − + −

= − +

. 
Based on the inequalities, for all j m∀ ≠  and 

t>T*, we can get the following inequality. 
{ }ˆ ˆPr ( ) ( ) 1m jd t d t δ> > − .   (16) 
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According to the law of total probability, 
{ }

{ } { }
Pr ( ) 1

ˆ ˆ ˆ ˆPr ( ) 1 | ( ) ( ) Pr ( ) ( )

m

m m j m j

p t

p t d t d t d t d t

ε

ε

> −

> > − > >
.(17) 

Theorem 1 will be proved if 
{ }ˆ ˆPr ( ) 1 | ( ) ( )m m jp t d t d tε> − > =1, 

for all t>T ′≥T*. 
Assume *

1T t T′ = + , where t1>0. 
( ) 1 ( )m j

j m
p t p t

≠

= −∑
. 

Therefore, we can prove ( )j
j m

p t ε
≠

<∑  when 

ˆ ˆ( ) ( )m jd t d t>  and t>T ′ . 
1

1 1 *

*
1 1

* *

1

* 1/(T )

1 1

/(T )

(T ) (T ) [1 (T )]

[1 (T )]

t

j j
j m j m q

t t
q

q q

t t

p p q

q

λ

λ θ

θ

≠ ≠ =

+

= =

+

  ′ = − + 
  

< − + =

<

∑ ∑ ∏

∏ ∏ . 

If 
*

1 1/(T )t tθ ε+ < , the following inequality should 
be satisfied. 

*
1(ln ln ) t T lnθ ε ε− < . 

Take θ<ε, *
1

lnt T
ln ln

ε
θ ε

>
−

, *
1

lnt T
ln ln

ε
θ ε

 =  − 
 

and *
1T t T′ = + . 

According to (17), we could get 
{ }Pr ( ) 1 1mp t ε δ> − > − , 

for all t>T ′ .∎ 
Based on Theorem 1, it can be concluded that the 

choice probability of the expected action converges 
at an approximate solution to the MCDS for a larger 
iteration. 
 
 
6 Experiment results 

To investigate the performance of our algorithm, 
several experiments are shown in this section (the 
simulator is written in M language of Matlab 
2010b). We assume that an ideal MAC layer is used 
in those simulations. The packet can be transmitted 
without contention, packet losses or collision. In 
those simulations, nodes are uniformly distributed in 
a square area of 100 units by 100 units. The number 
of nodes in the network ranges from 100 to 500 (the 
number of nodes is presented by SN), and more than 
50 connected graphs are random generated for each 
given number of node (the simulation result are the 
average values of those graphs). In the simulation of 
BFA-PA, the threshold of iterations is set to 3000 

and the value of K is set to 20. The value of SN, the 
radio transmission range of nodes (presented by Tr), 
and the speed of learning parameters (presented by 
λ) are the parameters that influence the backbone of 
the network. 

We compare the performance of BFA-PA with 
Zone-based virtual backbone formation (ZVBF-
MD) [3] and Torkestani’s DAL-BF algorithm [8] in 
terms of the size of CDS, message overhead and the 
average node degree in the CDS. On the other hand, 
Butenko’s algorithm [19] is used to give a reference 
to the best solution of CDS. In our simulation, the 
dominator in ZVBF-MD uses the quasi-global 
version to get a smaller CDS [3]. In the simulation, 
the learning rate [8] of DAL-BF is 0.2, the PCDS 
[8] of DAL-BF is 0.9 and the maximum iterations of 
DAL-BF is 200. 

Accordance to the definition of λ, we change the 
value of θ to get the influences of λ. In the following 
experiment, the value of θ is set as 0.1, 0.2, 0.3, 0.4, 
0.5 and 0.6, respectively. At the same time, SN is 
set as 300 and the transmission range is varied from 
15 to 30 units. The size of CDS and the number of 
iterations are the metrics. The simulation results are 
shown in Fig. 2 and Fig. 3. Based on Fig. 2, we get 
that the size of CDS decreases slightly when θ 
increases. Fig. 3 shows that, in general, the number 
of iterations increase with the value of θ. This can 
be attached to the fact that the smaller value of θ 
make the algorithm has a larger value of λ, and led it 
converges quickly. On the other hand, rapid 
convergence leads to greater results about the size of 
CDS and the smaller result about the number of 
iterations. In the following simulations, we set the 
value of θ to 0.4 to make a trade-off between the 
convergence rate and the size of the CDS. 

 
Fig.2.The size of CDS when the value of θ is 

changed. 
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Fig.3.The number of iterationswhen the value of 

θ is changed. 
In the next simulation, we get the results when 

SN and Tr are changed. The transmission range 
Trchanges from 15 to 50 units andthe size of the 
network SN varies from 100 to 500. In Fig.4, the x-
axis denotes the value of SN and different curves 
have different values of Tr. According to the results 
shown in Fig. 4, we can get that the size of CDS 
increases with SN when Tr is small and the 
ascendant trend is not significantwhen Tr is large, 
i.e., Tr = 35. When SN is fixed, the size of CDS 
decreases with the increase of Tr becausea 
dominator node can cover more nodes when Tr 
increase. However, the decline trend of the size of 
CDS is slight when Tris greater than 45. 

 
Fig.4. The number of CDSs when SN and Tris 

changed. 
In the following experiments, we compare our 

algorithm BFA-PA, DAL-BF algorithm [8], 
Butenko’s algorithm and ZVBF-MD [3] in terms of 
the size of CDS, message overhead and average 
node degree in the CDS. 

Fig.5 and Fig.6show the resultswhen 
transmission range is 15 and 30 units, respectively, 
and SN is changed from 100 to 500. Those results 
show that the size of CDS increases when SN 
increases. However,when SN is a large number, the 
increase rate slows down because it makes the 
network denser and a dominator covers more nodes. 
Furthermore, it can be found that BFA-PA 
constructs the smaller CDS compared with ZVBF-
MD and DAL-BF when the network is dense (i.e., 

when SN is more than 300). We also make a 
comparison among those algorithms when the size 
of network is fixed and Tr is changed. Related 
results are shown in Fig.7 and Fig. 8, in which SN is 
set as 200 and Tr is changed from 15 to 50 with a 
step of 5 units. The size of CDS decreases whenTr 
increases because the increase of Tr results in higher 
density of the network. Consequently, a dominator 
can cover more nodes so that fewer dominators are 
needed. When Tr is a large number, the performance 
of ZVBF-MD, BFA-PA and DAL-BF are close. 

 
Fig.5. The size of CDS when SN is changed and 

Tr equals 15 units. 

 
Fig.6. The size of CDS when SN is changed and 

Tr equals 30 units. 

 
Fig.7.The size of CDS when Tr is changed and 

SN equals 100. 
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Fig.8. The size of CDS when Tr is changed and 

SN equals 200. 
Message overhead is another metric of the CDS 

formation algorithm. In the wireless sensor network, 
the hosts suffer from strict resource limitations so 
that the communication overhead should be kept as 
low as possible. Fig.9 and Fig. 10 show the message 
overhead of different algorithms when the size of 
the network is changedand Tr is set to15 and 30, 
respectively.The message overhead of DAL-BF is 
not shown in the figures because its message 
overhead is large. For example, when SN is 100 and 
Tr is 15 units, the message overhead DAL-BF is 
more than 400 thousands bytes. Based on those 
results, we can find that BFA-PA has alarge 
message overhead than ZVBF-MD. This is cause by 
the fact that, in BFA-PA, each dominator will get its 
action set and send the set to the sink. On the other 
hand, in ZVBF-MD, only the dominator at the zone 
border executes a similar process. We also could 
find that the number of message overhead increases 
when the number of nodes or Tr increases. 

 
Fig.9. The Average messageoverhead when SN 

is changed and Tr equals15 units. 

 
Fig.10. The Average messageoverhead when SN 

is changed and Tr equals 30 units. 
The average node degree in the CDS is another 

parameter proposed by Bo [3], which is also the 
average node degree in the induced sub graph of the 
constructed CDS. Bo believes that a low degree may 
cause less interference for communication. Both 
Fig. 11 and Fig. 12 show the experiment results 
when the value of SN changes from 100 to 500, and 
Tris set as 15 and 30 units, respectively. Based on 
those results, we can get that the node degree in the 
CDS increases when the size of network increases 
and Trincreases. When the network is dense (Tr is 
set as 30 units and SN is more than 300), the rising 
trends of those algorithms are not conspicuous any 
more, and BVF-PA has similar performance to 
ZVBF-MD. 

 
Fig.11.Average node degree in the CDS when 

SN is changed and Tr equals 15 units. 

 
Fig.12. Average node degree in the CDS when 

SN is changed and Tr equals 30 units. 
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7 Conclusion 
In this paper, based on the pursuit algorithm, we 

propose a novel backbone formation algorithm, 
called BFA-PA. In this algorithm, a DS is got at first 
and each node in the DS gets its action set based on 
the connection path between the dominator and their 
2 or 3 hops dominator neighbors. Sink executes the 
pursuit algorithm and treads dominators as automata 
with to get an approximate solution of MCDS of 
network. Moreover, a changing speed of learning 
parameter is used to avoid choosing a special 
learning rate, which should be carefully selected to 
make a trade-off between the convergence speed 
and the size of backbone. It is also shown that our 
method is ε-optimality to connect the DS with the 
changing speed of learning parameter. According to 
the results of the simulation, our algorithm generates 
a smaller CDS than ZVBF-MD and has a similar 
result with DLA-BF about the size of CDS. 
However, it is efficient than DLA-BF because it has 
a small overhead. 

However, in this algorithm, we assume that the 
network is stationary. When some new sensor nodes 
are added to the network or removed, the algorithm 
should be run again to get a backbone of network. 
Because the topology of network is changed, BFA-
PA is difficult to work on a dynamic network. Is 
there a simple method to fix the backbone when 
there are some additions or failures of nodes? The 
answer to this question is significant to the further 
application of this method, and it will be a guide for 
our future work. 
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