
A Backbone Formation Algorithm in Wireless Sensor Network Based
on Pursuit Algorithm

YISONG JIANG, WEIREN SHI

College of Automation
Chongqing University

No. 174 Shazhengjie, Shapingba, Chongqing
China

jys12398@126.com, wrs@cqu.edu.cn

Abstract: -In wireless sensor network, virtual backbone formulation is a cost effective method to complete the
broadcasting. Minimum connected dominating set is an outstanding candidate of virtual backbone. However, it
is NP-Hard to find a minimum connected dominating set in an arbitrary graph. In this paper, we propose a
novel backbone formation algorithm to construct a connected dominating set. In the proposed method, a
dominating set and action sets are got at first. Then, sink executes the pursuit algorithm, in which nodes are
treated as learning automata and action probability vector is changed with time, and chooses actions from their
action sets to construct a connected dominated set Finally, the automaton converges to a common policy and an
approximate solution of the minimum connected dominating set is got. It is also shown that our method is ε-
optimality with the changing speed of learning parameter. The simulation results show that our algorithm has a
good performance in terms on the size of backbone, the message overhead and average node degree.

Key-Words: -Backbone; Wireless sensor network; connected dominating set; pursuit algorithm

1 Introduction

A wireless sensor network (WSN) is composed
by many sensor nodes and one or multiple sinks. In
WSN, sensors gather data from the sensing
environment and transfer those data to the sink
nodes or base stations. Generally, WSNs are
deployed in some emergent or temporary situation,
for example accidents or environment gatherings.
Broadcasting is a fundamental means in WSNs.
However, the way of packet transmission in WSN is
different from the way in the wired network.
Generally, there are many redundant retransmissions
in broadcasting because the omnidirectional radio
propagation and a physical location may be covered
by the transmission ranges of several nodes. Virtual
backbones are usually used to support broadcasting
and multicast in WSNs and a minimum connected
dominating set (MCDS) is an outstanding candidate
to work as a virtual backbone.

In this paper, a graph G(V,E) is used to represent
a WSN. In G, the vertexes set V represent the nodes
in the WSN, and E represents all the links in the
network. We also assume that all nodes have the
same transmission range. Therefore, the graph G is
also a unit disk graph. A dominating set (DS) of
graph G is a subset of V such that each vertex which
is not in set will be joined to at least one member of

the set by an edge. A connected dominating set
(CDS) is a DS that induces a connected subgraph of
G. A minimum connected dominating set (MCDS)
is a connected dominating set with the smallest
cardinality among all possible connected
dominating sets of G. However, it is NP-hard to find
a MCDS of a graph [1].

We propose a quasi-distributed algorithm to
construct a CDS of a WSN. The proposed method
consists of two steps. At the first step, a DS and the
action sets of the nodes in the DS are got. At the
second step, according to the cross entropy method,
the sink get a CDS based on those action sets. In
detail, the DS is got by a color process. Then, each
node in the DS (called dominator) gets its action set
based on the connection path between itself and its 2
or 3 hops dominator neighbors. When the sink
receives the action sets from dominators, it treads
those dominators as automata and executes the
revised pursuit algorithm to form a CDS. In the
pursuit algorithm, each automaton chooses an action
from its action set to construct a CDS and updates
the estimate vector and actions probability vector
based on the size of the feedback. Finally, the
automaton converges to a common policy that
constructs an approximate solution of the MCDS of
the network.

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 523 Volume 13, 2014

The organization of the rest of this paper is
shown as follows. Section 2 shows the related works
and Section 3 briefly presents the learning automata
and the pursuit algorithm. The purposed CDS
formation algorithm is presented in Section 4 and
the ε-optimality of the purposed algorithm is proven
in Section 5. In addition, the performance of the
proposed algorithm is shown in Section 6. The
conclusion is presented in Section 7.

2 Related works

Most of MCDS approximation algorithms
construct a CDS based on a maximal independent
set (MIS). A MIS is a set that every edge in G has at
least one endpoint not in the set and every vertex not
in the set has at least one neighbor in it. In [2],
Alzoubi et al. proposed two MIS-based algorithms.
The first algorithm requires a spanning tree to
complete the process in which a CDS is generated.
The second algorithm does not need the spanning
tree and enables the maintenance of the weakly-
connected dominating set to be simpler. Bo [3]
presents a zone-based distributed algorithm, in
which every node is assigned “Zone” and “Level”
marks to indicate its subtree and the distance to root
of the subtree. Li et al. [4] put forward the S-MIS
algorithm, which is a greedy algorithm and
constructs a CDS with the help of Steiner tree. At
the same time, a distributed version of this
algorithm is also introduced. Gao et al. [5] purpose
another MIS-based distributed algorithm that has a
better message complexity compared with Alzoubi’s
algorithm [2] and is stable and scalable in large and
dense network.

In [6], Wu and Li purpose a prune-based
algorithm, in which prunes some redundant nodes
from the original CDS that got by “Rule 1” and
“Rule 2”. Another enhanced prune method, called
Rule k, is introduced by Dai and Wu in [7]. In Rule
k, a node will be removed from CDS if its
neighborhoods are covered by a set of k neighbors
with higher IDs and the node set is strongly
connected.

Akbari Torkestani and Meybodi [8] described an
intelligent CDS-based backbone formation
algorithm in which the learning automata are used to
construct the CDS of the network. The automata
will be rewarded, if it is the smallest one that has
been constructed so far. Otherwise, it will be
penalized. However, the learning automata apply a
direct algorithm that only uses the environmental
feedback of the current stage to update the

probability vector. Akbari also purposes another
backbone formation algorithm to the energy
efficient in WSNs. In this algorithm [9], a learning
automata-based heuristic is purposed for finding an
optimal solution of the proxy equivalent constrained
CDS problem. The degree and the backbone delay
also considered in this algorithm to prolong the
backbone duration and to shorten the delay of
transmissions. In [10], a load-balanced virtual
backbone construction algorithm is proposed by He
et al. they consider the size and the load-balance
factors when constructing the backbone of WSN.
After a backbone is got, they propose an
approximation algorithm by using the linear
relaxing and random rounding technique to allocate
non-backbone nodes to proper backbone nodes with
an objective to minimize the maximum valid degree
of all the backbone nodes [10].

3 Learning automata and pursuit
algorithm

A learning automaton consists of an adaptive
learning agent operating in unknown environment
[11]. It takes an action from its action set to
maximize the probability of being rewarded from
the environment. And the learning automaton tries
to find optimal action through iterations. In each
iteration, it gets a feedback from the environment
and updates its action probability vector. An
automaton can be represented as a 4-tuple (A, P, F,
T) and environment can be represented as a 3-tuple
(A, F, D).

Where, A= 1 2{ , , , , , }i rα α α α  ,1 i r≤ ≤ ,is the set
of actions andris the number of actions.

T is a scheme that used to update the action
probability vector as follows,

(1) ((), (), ())t t t tα β+ =P T P . (1)
P is theaction probability vector of each action.

1 2() [(), (), , ()]rt p t p t p t=P  is the probability vector
at iteration t. In each iteration, the automaton selects
an action form A with respective probabilities in
P(t).

Fis the set of the feedback from environment.
The feedback at the iteration t is denoted
asβ(t)(β(t)∈F). In this paper, β(t)=1 if the action get
a reward form the environment. Otherwise, β(t)=0.

1{ (), , (), ()},1i rd t d t d t i r= ≤ ≤D   , is the set of
average reward value, where

() [() | ()]i id k E t tβ α α= = stands for the expectation
of reward value when an automaton chooses the i-th
action. If ()id t is independent of t for all 1 i r≤ ≤ ,

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 524 Volume 13, 2014

the environment will be stationary. Otherwise,it will
be non-stationary. In this paper, the environment is
stationary, the expression of D can be simplified to

1{ , , , }i rd d d=D   ,m is used to denote the index of
the optimal action, max{d }m ii

d = .

It is important to choose a scheme of T to get
better performances, i.e. a better result or fast speed
of convergence. Thathachar and Sastry [12]
introduced the estimator algorithms where the
automaton runs an estimator to provide guidance for
updating the action probability vector. One of the
estimator algorithms presented by Thathachar and
Sastry in [13] is called the pursuit algorithm (PA) or
continuous pursuit reward-penalty (CPRP) algorithm
[14].

Table 1
Algorithm PA

Initialize t=1, (1) 1 /ip r= for all1 i r≤ ≤ .
Initialize the estimate vector ˆ ()td by taking each

action a small number of times.
Repeat
(1) At the iteration t, the automaton chooses an

action iα in line with its action probability vector
()tP . Let () itα α= .

(2) After getting the feedback ()tβ , update the
estimate vector ˆ ()td according to the following
equations,

(1) () ()

(1) () 1

(1)
ˆ (1)

(1)

W t W t ti i
N t N ti i

W tid ti N ti

β+ = +

+ = +

+
+ =

+

. (2)

(3) Update the action probability vector ()tP on
the basis of the following equation

()(1) (1) () M tt tλ λ+ = − +P P e . (3)
End repeat

Where 1̂
ˆˆ () [(), , ()]rt d t d t=d  is the estimate

vector and ˆ ()id t refers to the average reward value of
i-th action at the iterationt.

1() [(), , ()]rt W t W t=W  is a vector and ()iW t is
the number of times that action iα has been
rewarded up to the time t.

1() [(), , ()]rt N t N t=N  is a vector and ()iN t is
the number of times that the action iα has been
chosen up to the time t.

λis the speed of a learning parameter and
satisfies the condition 0<λ<1.

()M te is a r-vector with 1 in the M(t)-th
coordinate, and the others are 0. ()M t is theindex of
the maximal component of ˆ ()td , and

()
ˆ ˆ() max{ ()}M t ii
d t d t= .

Note that PA stops when the condition is
satisfied. For instance, once one of the action
probabilities is larger than 0.9 or other values, the
repeat will be stopped. It is easy to observe that the
automaton always pursues the ‘current’ action, i.e.,
optimal action, and hence the name pursuit
algorithm [15].

4 Backbone formation algorithm
based on the pursuit learning
algorithm

Our algorithm is clustering-based. In this
algorithm, a MIS is generated at first. Next,every
node in the MIS finds its action set. Then, those
action sets are sent to the sink and the PA algorithm
will be executed to get a CDS with small size.
Finally, the topology of the CDS will send to each
node in the MIS.

4.1 Dominator selection process

Before we get the dominator selection process,
each node is marked with a unique rank, i.e.,
(degree, ID), where the degree refers to the number
of neighbors and ID is the label of a node. We
assume that rank(n1)is higher than rank(n2)if the
degree of n1 is larger than the degree of n2 or the ID
of n1 is larger than the ID of n2 when the degree of
n1 is equal to the degree of n2.

The way to select the dominator is given in the
following content.

(1) Initial all nodes with white color.
(2) If a white node has a higher rank than all its

white neighbors, it will be marked black and all of
its neighbors will be marked gray.

When a node is marked black, it broadcasts a
BLACK message to its neighbors. As soon as a
node receives a BLACK message, it changes its
color to gray and records the ID of the black node.
Similarly, once a node is marked gray, it will
broadcast GRAY message to its neighbors to
mentionthe change of its color. The white node
compares its rank with all of its white neighbors
whenit receives a GRAY message. If the condition
(2) is satisfied, it will be marked black.After the
color process, there are no white nodes in the
network;all nodes will bemarked black or gray, and,

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 525 Volume 13, 2014

the black nodes form a MIS [16]. Therefore, each
MIS is also a DS of the graph. The black node is
also called dominator, while the gray node is called
dominatee.

4.2 The formation of action sets

Every node in the MIS is treated as a learning
automaton. To getting a CDS, each dominator
selects some gray nodes as connectors to build
connection paths to other dominators, which are
three hops or two hops away. In this paper, if the
connection paths between those dominators are
replaced with edges, to getting a CDS with a small
size, there is no cycle in the CDS. Thus, the
topology of the CDS is a tree. Each dominator
except the root of the tree will choose another
dominator as its father node. An action of a
dominator is its choice (the choice of the root is
null). The action set consists of two parts. The first
parts is those dominators that are three hops or two
hops away (we call those nodes the dominators need
to be connected (DNC)). The second part is the
connection paths, which includes the connector. For
example, as shown in Table2, d1 d2 and d3 are the
DNC of dominator d. The connection paths form d
to d1, d2 and d3 are (d, c1, d1), (d, c2, c3, d2) and
(d, c4, c5, d3), respectively. Therefore, the
connectors of those paths are c1, (c2, c3), (c4, c5),
respectively.

Table2. Anillustration of the action set of
dominator d.

DNC Connectors

d1 c1

d2 (c2,c3)

d3 (c4,c5)

⋯ ⋯
Generally, the formation of action setscan be

divided into two stages.At the first, each dominatee
broadcast a One-Hop-Dominator message in which
the IDs of its neighbor dominator are added. Thus,
each node will get the information of its two hops
dominator neighbors. Then, every dominator adds
the actions of those dominators, which are twohops
away,to its action set. We use a triple (a1, a2, a3) to
represent a path fromdominator a1 to another
dominator a3 that is two hops away. If there are
severalpaths between a1 and a3, the one with the
maximum rank will be chose and added to the
action set. For example, there are two routes

between node 1 and node 8 in Fig.1, so the
connector of the pathcould be node 4 or node 5.
According to the principle we have mentioned
before, node 4 will be chose because it has a larger
rank than node 5. This principle can decrease the
size of the final CDS because the chance that the
connectorwith a larger rank is chose by other
dominators is larger, for example, node 4 also is
chose as a connector by node 10.

At the second stage, every dominatee broadcast a
Two-Hop-Dominator that includes its two hop
dominator and the connector that connect the
dominatee and the dominator. After this process,
each dominator will get the information of the three
hops away dominators and find connections path to
its three hops dominator neighbors. A four-tuple
(b1, b2, b3, b4) is used to signify a path from
dominator b1 to another dominator b4, which is3
hops away from b1. If there are multiple routes
between them, the route that has a greater amount of
degree (b2) and degree (b3)will be chose. For
example, there are three routes from node 1 to node
11 in Fig.1, i.e., (1, 2, 6, 11), (1, 3, 6, 11) and (1, 3,
7, 11). Based on the principle, the route (1, 3, 7, 11)
will be chose.

Fig.1. An illustration for the formation of action

sets.

4.3 Getting the CDS based on the pursuit
algorithm

After the formation of action sets, every
dominator sends its action set to the sink (so, our
algorithm is quasi-distributed or quasi-global).
Based on the action sets of dominators, sink finds
nodes as little as possible to connect the dominators
and get a small CDS. This is a Steiner tree problem.
However, this version of the Steiner tree problem is
NP-complete. The algorithm PA, in which the
dominators are treated as automata, is used to get an
approximate solution. More details about the
algorithm and its parameters are described as
follows.

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 526 Volume 13, 2014

To getting the feedback of the environment, the
following principle is utilized. If the size of the CDS
of current iteration t (we denote the size as V_t) is
not greater than the best value (BV) of the sizes of
CDSs that have been got so far, the value of the
feedback β(t) will be set to 1 (as shown in formula
(4)) and the values in the array also be
updated.β(t)=1 means the actions adopted by the
automata are rewarded by the environment.

() { _ BV}t I V tβ = ≤ . (4)

Where
1 _ BV)

{ _ }
0

V t
I V t BV

otherwise
≤

≤ =




.

The speed of the learning parameter λcontrols
the steps that can be taken fromP(t) toP(t+1). In
general, for a fixed λ, a large valuewill lead to a
higher rate of convergence; and vice versa. We
follow [17] to take the situation thatλ changes with
time (as shown in formula (5)) because they argue
that a changing λ is consistent with the notion of
convergence.

1/() 1 ttλ θ= − , (5)
whereθ∈(0,1).

According to value of β(t) and λ(t), each
dominator updates the values of parameters as
shown in formula (2). Next, it updates the value of
M(t) and the action probability vector P(t) according
to formula (6) given below. However, in the process
of initialization,the action probability vector P(t)
keeps consistent.

() ()(1) 1 () () () M tt t t tλ λ+ = − +P P e (6)
We assume that the stop condition meets if one

of the following conditions is satisfied. The first
condition is that the number of iterations is equal to
a threshold. The second one is that the values of the
sizes of CDSs, which are obtained in the last K
iterations, are the same (K is a positive
integer).When the pursuit algorithm finishes, the
CDS with the smallest size will be returned as the
output of this algorithm.

As mentioned in section 4.2, the topology of the
CDS is a tree if we replace the connection paths
between dominators with edges. On the other hand,
each dominator stores the connection paths in the
action. So, the sink just needs to send each
dominator a message, which contains the dominator
neighbors of the dominator in the tree, to make
dominators establish necessary connections that
included in the CDS.

5 The convergence of our algorithm

The convergence of a learning algorithm implies
that the automaton will always implement the

optimal action eventually. Such a kind of
convergence is typically called ε-optimality.
Rajaraman and Sastry [15] put forward a framework
to analyse the finite time behaviour of the pursuit
learning algorithm. However, the speed of learning
parameters is a fixed value in their analysis. In this
paper, following the framework, we analyse the
convergence of the pursuit learning algorithm when
λ changes with time, as shown in formula (5).

Before we start to analyse ε-optimality of the
algorithm, there are two lemmas that can contribute
to the analysis of the convergence.

Lemma 1: For any given positive constant δ>0
and a positive integer 0<n<∞, there is 10 T< < ∞
such that

1
1,...,

Pr{min () } 1ii r
Z t n t Tδ

=
≥ > − ∀ > . (7)

Proof: Proving (7) is equal to: for all i∈{1,
2,…, r}

Pr{ () }iZ t n δ< < . (8)
That is,

1

0
Pr{ () j}

n

i
j

Z t δ
−

=

= <∑ .

If for all j, 0≤j≤n-1, the inequality will follow

Pr{ () j}iZ t
n
δ

= < . (9)

At any iteration k,

()
1

Pr{ (k) } 1 (t) (0)
k

i i
t

pα α λ
=

= ≥ −∏ is always tenable

because the action probability decreases by (1−λ(t))
at most at each iteration.

Thus,

()
1

1/

1

Pr{ (k) } 1 1 (t) (0)

1 (0)

k

i i
t

k
t

i
t

p

p

α α λ

θ

=

=

 
≠ ≤ − − 

 
 

= −  
 

∏

∏
,

where, θ∈(0,1) and (0) 1/ rip = . We can get

1/k

1

1Pr{ (k) } 1

1 /

k

i
t r

r

α α θ

θ
=

 
≠ < −  

 
= −

∏ .

Based on the foregoing inequality, we can get the
following inequality.

()
()

Pr{ () j} 1 1 / r

1 / r

k jj j
i k

k jj j k j

Z t C

k k

θ

θ σ

−

− −

= < × × −

< × − =
,

whereσ=θ/r.
Define a function () n x nx x σ −Ψ = (>0). If we

prove that there is a value T1 that makes Ψ()<δ/n
be always satisfied when > T1, the inequality (9)

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 527 Volume 13, 2014

will be proved and Lemma 1 will be proved as well.
Where,

1() () / (ln)n x nx d x dx x x nσ σ− −′Ψ = Ψ = ⋅ + .
It is easy to get () 0x′Ψ < when

2/ ln(1 /)x n Tσ> = .
Consequently, Ψ() is a decreasing function

when >T2. If Ψ(T2)≤ δ/n, we can take 1 2T T=    to
make Formula (9) and Lemma 1 be followed all the
time. x   stands for the smallest integer that is equal
to or larger than . When Ψ(T2)> δ/n, if we want to
prove Lemma 1, it will be essential for us to prove
that there is another value T3 that is larger than T2
and Ψ(T3) = δ/n. We can get

()
lim () lim lim

1/

n
n x n

x nx x x

xx x σ
σ

−
−→+∞ →+∞ →+∞

Ψ = = .

By virtue of the L' Hôpital's rule and 1/σ>1, we
can get

()

() []

lim () lim
1/
!lim 0

1/ ln(1 /)

n

x nx x

nx nx

xx

n
σ

σ σ

−→+∞ →+∞

−→+∞

Ψ =

= =
.

Because Ψ() is a decreasing and continuous
function when >T2, there must be a value T3 that is
larger than T2 and Ψ(T3) = δ/n is satisfied.
Therefore, Formula (9) and Lemma 1 always follow
when 1 3T T=    .∎

Lemma2: For any given positive constant δ>0,
κ>0 and i∈{1, 2,…,r}, there is 0< T*<∞ so that

{ } *ˆPr () 1i id t d t Tκ δ− ≤ > − ∀ > .

Proof: According to the definition
() { (t) } (t)ˆ ()
() ()

i i
i

i i

W t Id t
N t N t

α α β=
= = .

We can find that ˆ ()id t ∈ [0,1] acts as the
estimate of di. For any iteration t, it is possible to get
the following inequality by applying the Theorem 2
of Hoeffding [18].

{ } 2ˆPr () 2exp(2 ())i i id t d N tκ κ− > < − . (10)

In accordance with the laws of total probability,
we can obtain

{ }
{ } { }

{ } { }

{ } { }

ˆPr ()

ˆPr () | () Pr ()

ˆPr () | () Pr ()

ˆPr () | () Pr ()

i i

i i i i

i i i i

i i i i

d t d

d t d N t n N t n

d t d N t n N t n

d t d N t n N t n

κ

κ

κ

κ

− >

= − > ≥ ≥

+ − > < <

< − > ≥ + <

.

(11).
According to Inequality (10),

{ } 2ˆPr () | () 2exp(2n)i i id t d N t nκ κ− > ≥ < − .

Set 2

1 4ln
2

n
κ δ

 =   
, then

{ }ˆPr () | ()
2i i id t d N t n δκ− > ≥ < . (12)

According to Lemma 1,

{ }Pr ()
2iN t n δ

< < . (13)

The above inequality always follows when t>T*.
Here, we will obtain T*= 2T   if Ψ(T2)≤ δ/(2n).
Otherwise, T*= 4T   , where the value of T4 is larger
than that of T2 and Ψ(T4) = δ/(2n).

Combine (11)-(13), t the following inequality
can be obtained:

{ } *ˆPr ()i id t d t Tκ δ− > < ∀ > . (14)

That is,

{ } *ˆPr () 1i id t d t Tκ δ− ≤ > − ∀ > . (15)

Hence, Lemma 2 is proved.∎
Theorem 1: For any given positive constant δ ∈

(0, 1) and ε ∈ (0, 1), there is 0<T ′<∞ such that
Pr{ () 1 } 1mp t t Tε δ ′> − > − ∀ > .

Proof: According to Lemma 2 and by taking
1 ()
2 m jd dκ = − , j m∀ ≠ , we can get the probability

that ˆ ()m md t d κ− < and ˆ ()j jd t d κ− < is larger

than 1−δ when t>T*.
Thus,

{ }ˆ ˆPr () () 2 1m m j jd t d d t d κ δ− + − < > − .

It is easy to get
ˆ ˆ ˆ ˆ() () () ()

ˆ ˆ2 () ()

m m j j m m j j

m j

d t d d t d d d t d t d

d t d tκ

− + − > − + −

= − +

.
Based on the inequalities, for all j m∀ ≠ and

t>T*, we can get the following inequality.
{ }ˆ ˆPr () () 1m jd t d t δ> > − . (16)

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 528 Volume 13, 2014

According to the law of total probability,
{ }

{ } { }
Pr () 1

ˆ ˆ ˆ ˆPr () 1 | () () Pr () ()

m

m m j m j

p t

p t d t d t d t d t

ε

ε

> −

> > − > >
.(17)

Theorem 1 will be proved if
{ }ˆ ˆPr () 1 | () ()m m jp t d t d tε> − > =1,

for all t>T ′≥T*.
Assume *

1T t T′ = + , where t1>0.
() 1 ()m j

j m
p t p t

≠

= −∑
.

Therefore, we can prove ()j
j m

p t ε
≠

<∑ when

ˆ ˆ() ()m jd t d t> and t>T ′ .
1

1 1 *

*
1 1

* *

1

* 1/(T)

1 1

/(T)

(T) (T) [1 (T)]

[1 (T)]

t

j j
j m j m q

t t
q

q q

t t

p p q

q

λ

λ θ

θ

≠ ≠ =

+

= =

+

  ′ = − + 
  

< − + =

<

∑ ∑ ∏

∏ ∏ .

If
*

1 1/(T)t tθ ε+ < , the following inequality should
be satisfied.

*
1(ln ln) t T lnθ ε ε− < .

Take θ<ε, *
1

lnt T
ln ln

ε
θ ε

>
−

, *
1

lnt T
ln ln

ε
θ ε

 =  − 

and *
1T t T′ = + .

According to (17), we could get
{ }Pr () 1 1mp t ε δ> − > − ,

for all t>T ′ .∎
Based on Theorem 1, it can be concluded that the

choice probability of the expected action converges
at an approximate solution to the MCDS for a larger
iteration.

6 Experiment results

To investigate the performance of our algorithm,
several experiments are shown in this section (the
simulator is written in M language of Matlab
2010b). We assume that an ideal MAC layer is used
in those simulations. The packet can be transmitted
without contention, packet losses or collision. In
those simulations, nodes are uniformly distributed in
a square area of 100 units by 100 units. The number
of nodes in the network ranges from 100 to 500 (the
number of nodes is presented by SN), and more than
50 connected graphs are random generated for each
given number of node (the simulation result are the
average values of those graphs). In the simulation of
BFA-PA, the threshold of iterations is set to 3000

and the value of K is set to 20. The value of SN, the
radio transmission range of nodes (presented by Tr),
and the speed of learning parameters (presented by
λ) are the parameters that influence the backbone of
the network.

We compare the performance of BFA-PA with
Zone-based virtual backbone formation (ZVBF-
MD) [3] and Torkestani’s DAL-BF algorithm [8] in
terms of the size of CDS, message overhead and the
average node degree in the CDS. On the other hand,
Butenko’s algorithm [19] is used to give a reference
to the best solution of CDS. In our simulation, the
dominator in ZVBF-MD uses the quasi-global
version to get a smaller CDS [3]. In the simulation,
the learning rate [8] of DAL-BF is 0.2, the PCDS
[8] of DAL-BF is 0.9 and the maximum iterations of
DAL-BF is 200.

Accordance to the definition of λ, we change the
value of θ to get the influences of λ. In the following
experiment, the value of θ is set as 0.1, 0.2, 0.3, 0.4,
0.5 and 0.6, respectively. At the same time, SN is
set as 300 and the transmission range is varied from
15 to 30 units. The size of CDS and the number of
iterations are the metrics. The simulation results are
shown in Fig. 2 and Fig. 3. Based on Fig. 2, we get
that the size of CDS decreases slightly when θ
increases. Fig. 3 shows that, in general, the number
of iterations increase with the value of θ. This can
be attached to the fact that the smaller value of θ
make the algorithm has a larger value of λ, and led it
converges quickly. On the other hand, rapid
convergence leads to greater results about the size of
CDS and the smaller result about the number of
iterations. In the following simulations, we set the
value of θ to 0.4 to make a trade-off between the
convergence rate and the size of the CDS.

Fig.2.The size of CDS when the value of θ is

changed.

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 529 Volume 13, 2014

Fig.3.The number of iterationswhen the value of

θ is changed.
In the next simulation, we get the results when

SN and Tr are changed. The transmission range
Trchanges from 15 to 50 units andthe size of the
network SN varies from 100 to 500. In Fig.4, the x-
axis denotes the value of SN and different curves
have different values of Tr. According to the results
shown in Fig. 4, we can get that the size of CDS
increases with SN when Tr is small and the
ascendant trend is not significantwhen Tr is large,
i.e., Tr = 35. When SN is fixed, the size of CDS
decreases with the increase of Tr becausea
dominator node can cover more nodes when Tr
increase. However, the decline trend of the size of
CDS is slight when Tris greater than 45.

Fig.4. The number of CDSs when SN and Tris

changed.
In the following experiments, we compare our

algorithm BFA-PA, DAL-BF algorithm [8],
Butenko’s algorithm and ZVBF-MD [3] in terms of
the size of CDS, message overhead and average
node degree in the CDS.

Fig.5 and Fig.6show the resultswhen
transmission range is 15 and 30 units, respectively,
and SN is changed from 100 to 500. Those results
show that the size of CDS increases when SN
increases. However,when SN is a large number, the
increase rate slows down because it makes the
network denser and a dominator covers more nodes.
Furthermore, it can be found that BFA-PA
constructs the smaller CDS compared with ZVBF-
MD and DAL-BF when the network is dense (i.e.,

when SN is more than 300). We also make a
comparison among those algorithms when the size
of network is fixed and Tr is changed. Related
results are shown in Fig.7 and Fig. 8, in which SN is
set as 200 and Tr is changed from 15 to 50 with a
step of 5 units. The size of CDS decreases whenTr
increases because the increase of Tr results in higher
density of the network. Consequently, a dominator
can cover more nodes so that fewer dominators are
needed. When Tr is a large number, the performance
of ZVBF-MD, BFA-PA and DAL-BF are close.

Fig.5. The size of CDS when SN is changed and

Tr equals 15 units.

Fig.6. The size of CDS when SN is changed and

Tr equals 30 units.

Fig.7.The size of CDS when Tr is changed and

SN equals 100.

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 530 Volume 13, 2014

Fig.8. The size of CDS when Tr is changed and

SN equals 200.
Message overhead is another metric of the CDS

formation algorithm. In the wireless sensor network,
the hosts suffer from strict resource limitations so
that the communication overhead should be kept as
low as possible. Fig.9 and Fig. 10 show the message
overhead of different algorithms when the size of
the network is changedand Tr is set to15 and 30,
respectively.The message overhead of DAL-BF is
not shown in the figures because its message
overhead is large. For example, when SN is 100 and
Tr is 15 units, the message overhead DAL-BF is
more than 400 thousands bytes. Based on those
results, we can find that BFA-PA has alarge
message overhead than ZVBF-MD. This is cause by
the fact that, in BFA-PA, each dominator will get its
action set and send the set to the sink. On the other
hand, in ZVBF-MD, only the dominator at the zone
border executes a similar process. We also could
find that the number of message overhead increases
when the number of nodes or Tr increases.

Fig.9. The Average messageoverhead when SN

is changed and Tr equals15 units.

Fig.10. The Average messageoverhead when SN

is changed and Tr equals 30 units.
The average node degree in the CDS is another

parameter proposed by Bo [3], which is also the
average node degree in the induced sub graph of the
constructed CDS. Bo believes that a low degree may
cause less interference for communication. Both
Fig. 11 and Fig. 12 show the experiment results
when the value of SN changes from 100 to 500, and
Tris set as 15 and 30 units, respectively. Based on
those results, we can get that the node degree in the
CDS increases when the size of network increases
and Trincreases. When the network is dense (Tr is
set as 30 units and SN is more than 300), the rising
trends of those algorithms are not conspicuous any
more, and BVF-PA has similar performance to
ZVBF-MD.

Fig.11.Average node degree in the CDS when

SN is changed and Tr equals 15 units.

Fig.12. Average node degree in the CDS when

SN is changed and Tr equals 30 units.

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 531 Volume 13, 2014

7 Conclusion
In this paper, based on the pursuit algorithm, we

propose a novel backbone formation algorithm,
called BFA-PA. In this algorithm, a DS is got at first
and each node in the DS gets its action set based on
the connection path between the dominator and their
2 or 3 hops dominator neighbors. Sink executes the
pursuit algorithm and treads dominators as automata
with to get an approximate solution of MCDS of
network. Moreover, a changing speed of learning
parameter is used to avoid choosing a special
learning rate, which should be carefully selected to
make a trade-off between the convergence speed
and the size of backbone. It is also shown that our
method is ε-optimality to connect the DS with the
changing speed of learning parameter. According to
the results of the simulation, our algorithm generates
a smaller CDS than ZVBF-MD and has a similar
result with DLA-BF about the size of CDS.
However, it is efficient than DLA-BF because it has
a small overhead.

However, in this algorithm, we assume that the
network is stationary. When some new sensor nodes
are added to the network or removed, the algorithm
should be run again to get a backbone of network.
Because the topology of network is changed, BFA-
PA is difficult to work on a dynamic network. Is
there a simple method to fix the backbone when
there are some additions or failures of nodes? The
answer to this question is significant to the further
application of this method, and it will be a guide for
our future work.

8 Acknowledgements

This work is supported partially bythe science
and technology project of CQ CSTC (No.
cstc2012jjA40037).

References:
[1] Yu J, Wang N, Wang G, et al. Connected

dominating sets in wireless ad hoc and sensor
networks–A comprehensive survey [J].
Computer Communications, 2013, 36(2): 121-
134.

[2] Alzoubi K M, Wan P J, Frieder O. Maximal
independent set, weakly-connected dominating
set, and induced spanners in wireless ad hoc
networks [J]. International Journal of
Foundations of Computer Science, 2003,
14(02): 287-303.

[3] Han, Bo. Zone-based virtual backbone
formation in wireless ad hoc networks [J]. Ad
Hoc Networks 7.1 (2009): 183-200.

[4] Li Y, Thai MT, Wang F, Yi C-W, Wang P-J,
Du D-Z. On greedy construction of connected
dominating sets in wireless networks [J].
Special issue of Wireless Communications and
Mobile Computing (WCMC), 2005.

[5] Gao B, Yang Y, Ma H. A new distributed
approximation algorithm for constructing
minimum connected dominating set in wireless
ad hoc networks [J]. International Journal of
Communication Systems 2005, 18(8), 734–
762.

[6] Jie. Wu, Hailan. Li. On calculating connected
dominating set for efficient routing in ad hoc
wireless networks [C]. The Third ACM
International Workshop on Discrete Algorithms
and Methods for Mobile Computing and
Communications (ACM DIALM 1999),
August 1999, 7–14.

[7] Fei Dai and Jie Wu. An extended localized
algorithm for connected dominating set
formation in ad hoc wireless networks [J].
IEEE Transactions on Parallel and Distributed
Systems 15 (10) (2004), 908–920.

[8] J. Akbari Torkestani, M.R. Meybodi. An
intelligent backbone formation algorithm in
wireless ad hoc networks based on distributed
learning automata [J]. Computer Networks 54
(2010) 826–843.

[9] Akbari Torkestani J. Energy-efficient backbone
formation in wireless sensor networks [J].
Computers & Electrical Engineering, 2013,
39(6): 1800-1811.

[10] He Jing, JiShoujing, Pan Yi, et al.
Approximation algorithms for load-balanced
virtual backbone construction in wireless
sensor networks [J]. Theoretical Computer
Science, 2013, 507: 2-16.

[11] Narendra, K. S. and Thathachar, M. A. L.
Learning automata: An introduction.
Englewood Cliffs, NJ: Prentice Hall (1989).

[12] M. A. L. Thathachar and P.S. Sastry. A Class
of Rapidly Converging Algorithms for
Learning Automata [C]. IEEE Int. Conf. on
Cybernetics and Society, Bombay, India, Jan.
1984.

[13] M. A. L. Thathachar and P.S. Sastry. Estimator
Algorithms for Learning Automata [J]. Proc.
Platinum Jubilee Conf. on Syst. Signal
Processing, Dept. Elec. Eng., Indian Institute of
Science, Bangalore, India, Dec. 1986.

[14] Oommen B J, Agache M. Continuous and
discretized pursuit learning schemes: Various

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 532 Volume 13, 2014

algorithms and their comparison [J]. Systems,
Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 2001, 31(3): 277-287.

[15] Rajaraman, K. and Sastry, P. S.. Finite time
analysis of the pursuit algorithm for learning
automata [J]. IEEE Trans. Systems Man
CybernetB(1996), 26, 590–598.

[16] Kaled M. Alzoubi, Peng-Jun Wan, Ophir
Frieder. Maximal independent set, weakly
connected dominating set, and induced
spanners for mobile ad hoc networks [C].
International Journal of Foundations of
Computer Science 2003 14(2), 287–303.

[17] Tilak, O., Martin, R., and Mukhopadhyay, S.,A
decentralized, indirect method for learning
automata games [J]. IEEE Trans. Systems Man
Cybernet B (2011), 41, 1213–1223.

[18] W. Hoeffding. Probability inequalities for sums
of bounded random variables [J]. Journal of the
American Statistical Association, 1963, vol. 58,
pp. 13-30.

[19] Butenko S, Cheng X, Oliveira C A, et al. A
new heuristic for the minimum connected
dominating set problem on ad hoc wireless
networks [M]. Recent Developments in
Cooperative Control and Optimization.
Springer US, 2004: 61-73.

WSEAS TRANSACTIONS on COMMUNICATIONS Yisong Jiang, Weiren Shi

E-ISSN: 2224-2864 533 Volume 13, 2014

