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Abstract: - Modern communication systems extensively use Code Division Multiple Access (CDMA) 
technology that associates one unique code to each user. Therefore the generation of these spreading codes has 
drawn considerable attention amongst the researchers with a fundamental requirement of having as much 
distinct members as possible along with a constraint of minimizing the inter-code correlation. Since the 
operation of trade-off between the number of unique codes and peak cross-correlation value is nothing but a 
task of optimization; one such intelligent technique called Genetic Algorithm (GA) has been employed in this 
paper for the design of spreading codes. This has proved the uniqueness of our code generation algorithm over 
existing ones as it provides flexibility in selecting the number of orthogonal code pairs even when the code-
length is constant. Interdependence between the characteristics of the designed code and the parameters of 
genetic optimization has been revealed by means of a number of design examples. Inherent properties of the 
GA-optimized spreading code have been analyzed from a number of perspectives. Finally, the worth of the 
proposed code in current wireless system has been substantiated by comparing its performance with other state-
of-the-art spreading codes.  

 

Key-words: - Code Division Multiple Access (CDMA), Genetic Algorithm (GA), Kasami sequence, 
Orthogonal Gold code, Semi-Orthogonal Modified Large Set Kasami (SOMLK) sequence, Small Set 
Orthogonal Kasami  (SSOK) code, Walsh code 
 

1 Introduction 
Modern wireless communication system has been 
employing Walsh code for spreading the base-band 
message signal in a downlink synchronous CDMA 
environment since long because of a number of 
useful advantages like orthogonality, ease of 
generation and simplicity of this code family [1]. 
However, it is heavily challenged by other state-of-
the-art orthogonal, near-orthogonal and semi-
orthogonal spreading codes [2-4] in various 
perspectives. Extensive research in this field yields a 
number of promising contributions [5-9] which 
outweigh the limitation of Walsh code. Application 
specific spreading sequences like short length 
CDMA codes for wireless sensor networks [10] 
have also been proposed in recent times. Other 
methods of code design have gradually been 
proposed in [11-12] to enhance the capacity of the 
system.  

One efficient method for generating orthogonal 
sets of sequences has been described in [13] which 
comprises of  number of orthogonal code 

sets, each containing N orthogonal sequences of 
length N. It has been further shown that maximum 
cross-correlation value improves for sets of size 32 
and above as it becomes less than half the sequence 
length [13].  

New sets of Walsh-like nonlinear phase 
orthogonal codes for synchronous and asynchronous 
CDMA communication system has been developed 
in [14]. Authors have claimed that the proposed 
code outperforms the popularly known Walsh code 
in an Additive White Gaussian Noise (AWGN) 
channel and the performances of all the binary codes 
are comparable to each other in a Rayleigh flat-
fading channel.  

In this communication, we have made one non-
conventional attempt towards the design of CDMA 
spreading code using an artificially intelligent 
optimization technique, namely Genetic Algorithm 
(GA). Design objective of the proposed approach 
has been the proper trade-off between number of 
unique sequences and the cross-correlation amongst 
them. Parameters of the resulting code set have been 
selected in accordance with the user requirement. 
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Supremacy of the proposed code has finally been 
established by referring to a number of existing 
spreading sequences from the literature.  
  
2 Theoretical Background of 
Spreading Codes 
Various spreading codes have been proposed by a 
number of researchers across the globe for more 
than a decade and they are becoming very much 
acceptable to be utilized in present and future 
generation CDMA networks. Some of these 
popularly known codes are briefly described in this 
section.  
 
2.1 Walsh code 
Walsh code set [1] is one of the most popular 
spreading code families which is presently being 
used in synchronous downlink Direct Sequence 
CDMA (DS-CDMA) communication system as all 
the members in this code set are purely orthogonal 
to each other. The length of an individual member in 
Walsh code set is always in the form of for any 
even number ‘n’ and can be recursively constructed 
as follows: 
 

 With and 

 
                              (1)

 

As can be noticed from (1), an N-length Walsh code 
can serve at most N distinct users simultaneously. 
System capacity is therefore one area where Walsh 
code is continuously being challenged by other 
spreading codes of interest. However, it has already 
been reported in the literature that Walsh code 
shows very poor performance in asynchronous 
multi-user CDMA system [11], [14]. 
 
2.2 Orthogonal Gold code 
Being urged for enhancing the number of distinct 
code members, a new type of near-orthogonal code 
set has been developed from a set of sequences 
known as Gold code and the new code is called as 
Orthogonal Gold code [13]. Gold sequences are 
constructed from a preferred pair of maximal length 
sequences (m-sequence) by the element-by-element 
multiplication of one sequence with every time shift 
of the second sequence. Orthogonal Gold code set 

enhances the number of distinct code members as 
described in [13] and eventually produces as high as 

 number of semi-orthogonal code 
members each of length . 
 
2.3 Kasami sequence 
Kasami sequence demands for significant 
importance in present generation CDMA system due 
to its very low cross–correlation values [14] and can 
be directly generated from m-sequence. There are 
two different sets for this code, namely Small Set 
Kasami and Large Set Kasami code. Small Set 
Kasami sequence is therefore capable of producing 

number of binary sequences each of 
length  [1-2]. The autocorrelation and 
cross-correlation values of Small Set Kasami 
sequence of a particular length N can take only three 
values, namely  [1].  
This code has been converted into an even length 
semi-orthogonal code by using one efficient 
algorithm [2]. This produces a new type of 
spreading code named as Small Set Orthogonal 
Kasami (SSOK) code. Large Set Kasami code has 
Gold code and Small Set Kasami code as its subsets. 
It can generate  number of 
unique codes of length   [1], [3]. In an 
attempt for enhancing the capacity of CDMA 
system, one semi orthogonal code has been 
proposed in [3] which consider Large Set Kasami 
code as the basic sequence to start with. This new 
code set is termed as Semi-orthogonal Modified 
Large Set Kasami Sequence (SOMLK).  
 
3. Major Design Challenges 
This section briefly highlights the major design 
challenges faced due to the interdependence of the 
system parameters in CDMA communication as 
described in the previous section. Researchers are 
always in search of a code set that can accommodate 
a large number of users with minimum possible 
inter-user interference. Hence it becomes a common 
practice among the designers to trade off one 
parameter for another. New code sets are generally 
formulated based on some deterministic sequences 
like Pseudo noise sequence, Gold sequence, Small 
set Kasami sequence, Large set Kasami sequence 
and consequently the result obtained becomes 
purely deterministic in the sense that no flexibility 
exists between the total number of members in the 
code set and number of orthogonal pairs. Some 
numerical examples may clarify this point in a better 
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way. Computation of zero-lag cross-correlation for 
different 16-length spreading codes shows that 
Walsh code can generate only 16 codes while all the 
code members are purely orthogonal (100% 
orthogonality) to each other [1]. Orthogonal Gold 
code, on the other hand, can generate 240 codes 
while all the code members are not purely 
orthogonal to each other. Out of 57360 possible 
combinations of cross-correlation, only around 41% 
of them are zero [13]. This code set exhibits a peak 
cross-correlation value of 8. SSOK code makes one 
optimization between the codes generated in [1] and 
[13]. More specifically, it generates 60 unique codes 
while the maximum value of cross-correlation drops 
from that of Orthogonal Gold code. However, 
orthogonality among code members reduces to a 
value around 25% only [2]. Further optimization has 
been carried out during the generation of SOMLK 
sequence.  While producing the total number of 
unique codes to a value of 95, effectively it 
increases the peak cross-correlation value among the 
code members too as compared to others. The 
biggest advantage that can be identified from its 
characteristics is that the generated code set shows 
an orthogonality which is as high as around 49% 
[3]. 

In comparison with these previously mentioned 
spreading codes, proposed code set is more flexible 
in nature as it is capable of producing variable 
number of distinct code members with a 
continuously varying orthogonality for a fixed 
length of the code. This feature was entirely absent 
in all of the codes proposed earlier and opens a new 
door in spreading code design. Detailed analytical 
comparisons have been illustrated with the help of 
numerical data and graphical representation in the 
later section.   

 
4 Genetic Algorithm and Its 
Application in Designing Spreading 
Code 
 
4.1 Genetic Algorithm 
Biologically inspired algorithms have received 
considerable attention in many engineering 
applications of late [15]. These algorithms are 
influenced by numerous natural phenomenon which 
may be classified into two categories, namely 
evolutionary algorithm and swarm optimization. 
Various such algorithms are available in literature, 
among which Genetic Algorithm (GA) is the most 
simplest and easy to implement [11], [16-18].  

GA operates through simple cycle of stages like 
creation of a ‘population’ of strings, evaluation of 
each string, selection of best string and the process 
of genetic manipulation towards the creation of 
better population of strings [19-20]. These four steps 
have been summarized by means of a flow chart as 
in Fig. 1 which illustrates the basic idea of GA 
implementation. 

 
Fig. 1 Cycle of Genetic Algorithm  

Each cycle in GA produces a new generation of 
possible solutions for a given problem. In the first 
phase, an initial population, describing 
representatives of the potential solution, is created to 
initiate the search process. The elements of the 
population are encoded into bit-strings, called 
chromosomes. The performance of the strings, often 
called fitness, is then evaluated with the help of 
some functions, representing the constraints of the 
problem under consideration. The analysis of fitness 
function in context to GA is perhaps best described 
in [21]. Depending upon the fitness of each 
chromosome, they are either selected for taking part 
into subsequent genetic manipulation process or 
discarded from the population. It should be noted 
that the selection process is mainly responsible for 
assuring survival of the best-fit individuals. Detail 
analysis of selection process has been illustrated 
lucidly in [22]. Genetic manipulation process 
consists of two steps, namely cross-over and 
mutation. In the first step, two selected strings 
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(chromosomes) exchange their body parts (genes) 
and the operation is rightly termed as cross-over. In 
this context, different cross-over mechanisms have 
been proposed in the literature [23]. The second step 
in the genetic manipulation process is termed as 
mutation where the bits (genes) at one or more 
randomly selected positions of the chromosomes are 
altered. The mutation process helps the chromosome 
to overcome trapping at local minima. The offspring 
produced by the current genetic manipulation 
process become the next set of population which 
would be evaluated in similar manner. 
  
4.2 Application of GA in the design of 
spreading code 
Genetic Algorithm (GA) has found widespread 
applications in the field of machine learning [24], 
intelligent search [11] and derivative-free 
optimization problems [25] as reported in the 
literature. This optimization technique is now being 
implemented to increase the efficiency of many 
artificial systems [26]. Moreover, programming 
environments to apply this technique in such 
systems are also getting advanced with large 
diversification [27-28]. It has already been 
highlighted in the previous section that design of 
spreading code in CDMA system is purely a task of 
optimization as a trade-off between total number of 
distinct codes and the peak cross-correlation value 
in the code set. Individual code member from the 
spreading code family may be regarded as a stream 
of bits which can be encoded into chromosome in a 
standard GA operation. Purpose of GA in this 
context is to optimize the set of chromosome (code) 
in the sense that for a considerably larger size of 
population, peak cross-correlation between any two 
arbitrarily chosen codes is within a specified limit. 
Moreover, the encoding scheme makes it possible to 
trade one parameter for the other as per requirement. 
It has been observed that the crossover and mutation 
operations have significantly altered the cross-
correlation value of the offspring from that of the 
parents. Through the process of selection, the best 
offspring have been chosen to come up with a more 
efficient code set. Entire process of GA has been 
executed iteratively and finally the semi-orthogonal 
code set for CDMA communication has been 
produced. Code generation process has been 
elaborately discussed in the section to follow. 
 

5 Novel Algorithm for the 
Generation of the Proposed Code 
As the proposed algorithm deals with the 
application of Genetic Algorithm (GA) in the design 
of CDMA spreading code; initial set of population is 
one of the most important factors to be considered. 
It has been reported in many articles that the 
application of GA in many engineering problems 
suffers due to the proper choice of initial population 
which leads to confinement to local minima point. 
This issue has been seriously taken care by our 
design process by considering a wide range of such 
populations. It has been described as follows:  
Binary set  consisting of  members each of 
length   has been selected initially in a random 
manner with the constraint . Cross-
correlation matrix  of size  is then 
calculated from the elements of the set A, out of 
which  elements are auto-correlation and the rest 
are cross-correlations. Every element of  can be 
represented as:  
 

                                                  (2) 

, where  is the element in matrix  placed in   
row and  column.  signifies all the elements 
from the    row of  where the bit 0 is encoded as 
-1. The sign ‘`’ and ‘*’ in (2) symbolize transpose 
and matrix multiplication operation respectively. 
The element  therefore is nothing but the cross-
correlation between the and the  member in 
the population set computed at zero-lag when  
and autocorrelation of the  code at zero-lag when 

.  
Calculation of cross-correlation between all 

possible members in the code set expedites the 
selection phase efficiently. In our design process, 
different thresholds are assigned for best parents and 
worst parents. These thresholds are identified as 

 for selecting the best parents and  for 
selecting the worst parents. Each row of  is then 
scanned to evaluate the occurrence of zeroes 
(signifying orthogonal pair) as well as the highest 
possible cross-correlation (signifying identical pair). 
If the number of zeroes  in a row is higher 
than the given threshold , the code 
corresponding to that row is selected as one of the 
best parents and consequently stored in a matrix, 
called .  

Conversely, if the number of highest cross-
correlation  in any row of  is found to be 
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greater than the given threshold ; the code 
corresponding to that row is pointed out as one of 
the worst parents and stored in another separate 
matrix, called . 

Formulation of the matrices  and 
enables our algorithm to take part into 

genetic operations like cross-over and mutation. 
Although variety of crossover processes is available 
in literature [29], the simplest one has been 
employed in our algorithm. This step requires one 
best parent and one worst parent which are selected 
from the  and  matrix randomly. In 
theory of GA, cross-over operation has been 
considered as a probabilistic phenomenon in nature 
with a strong dependence on the crossover 
probability pc. However, in this work, we have 
considered a value of 1 for crossover probability, 
making the crossover event entirely deterministic. 
The certainty of cross-over will ensure that the 
entire system causes significant variations among 
the parents and offspring. Thus the evolution of the 
codes is much faster with the incorporation of 
certainty in the cross-over event. Apart from cross-
over probability, the process of cross-over is also 
influenced by the number of such exchange in the 
body parts and the position(s) along the length of 
chromosome where this incident is going to occur. 
The number of crossover points is chosen in 
accordance with the following formula: 
 

                                     (3) 
The crossover points are mainly found from the 
following iterative method. The first point is taken 
near the center of the chromosome. Specifically, if 
the center point is identified by gene, exact 
position of the crossover point has been chosen 
randomly with indices ranging from  to 

. Crossover points of these two sub-
chromosomes are consequently chosen using the 
same procedure till the length of the chromosome is 
less than 6 genes. Once the crossover points are 
selected, the crossover operation is executed by 
selecting the body parts from each chromosome, 
divided by the crossover points. A new chromosome 
of length  is created by accumulating the 
segments of two parent chromosomes alternatively. 
This process creates two new chromosomes of 
length  which are the inputs to the next step of 
GA.  

Mutation is the next step in genetic evolution 
which brings variance in the chromosomes resulting 
in sharp change in the values of cross-correlation. 

This step, like crossover, is also probabilistic in 
nature with significant dependence on the mutation 
probability . Proposed algorithm uses a value of 

 to be 1 as the higher value of mutation 
probability yields offspring of perceptible variance 
during the process of evolution. The number of 
mutation points and its position are important 
parameters to be selected in this context. For the 
chromosomes of length , the number of mutation 
points  is governed by:  
 

                                          (4) 

Initially, each chromosome is divided into sub-
chromosomes having an equal length of . Each 
such sub-chromosome may then be associated with 
one randomly selected mutation point. 
Corresponding genes (bits) in the sub-chromosome, 
identified by their respective mutation points, get 
inverted through the process of mutation which 
ensures minimum amount of cross-correlation 
among the offspring.  

One single evolution of GA thus results in two 
offspring from two parents. These four codes (2 
parents and 2 offspring) are subsequently kept in a 
separate matrix . Amongst them, best two codes 
are selected to take part in subsequent genetic 
operation. Chromosomes (or codes) corresponding 
to these two numbers are finally returned to the 
main population from the matrix . This may cause 
return of a chromosome which is already present in 
the population . The matrix  is again modified 
during the next iteration.   

Since the generation of unique spreading codes is 
our ultimate objective, distinct code members are 
then extracted from the modified population matrix 
yielding a new matrix . All possible cross-
correlation values for the elements in matrix 

 
are 

calculated at zero-lag and consequently stored in 
matrix .  is constructed in the same way like the 
computation of B as in equation (2); only difference 
is that the matrix  is replaced by .  

Fitness function of the evolution process has 
been chosen as the percentage of zeroes in . If 
this value of the fitness function is greater than a 
pre-specified threshold, algorithm gets terminated. 
Otherwise the process of genetic evolution 
continues iteratively resulting in a modification of 

.  Flow chart in Fig. 2 illustrates this entire process 
in brief.  
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Fig. 2 Flowchart for generation of the proposed code 

 
6 Simulation Result and Analysis 
MATLAB 7.10.0.499 software has been used to 
implement the proposed code generation algorithm 
which is capable of producing any such code 
sequences of length for any positive integer m. 
Characteristic of our proposed code is quite different 
from that of the other conventional spreading codes 
in the sense that it can generate a wide variety of 
code sets containing different number of code 

members with a different orthogonality values even 
when the length of the codes is kept constant. It has 
also been observed that the proposed code set is 
strongly dependent on the selection of initial 
population and allowable maximum number of 
iterations. These variations have been thoroughly 
described in the later part of this section. The length 
of the code has been selected as  i.e. 16 in our 
entire analysis. Since GA is a population-based 
optimization algorithm, selection of basic GA 
parameters has been explicitly described in Table 1 
below. 

Table 1. Selection of GA parameters for the 
proposed design 

Name of the 
parameter Choice of the parameter 

Size of population 32/64/128/256/512 
Crossover rate 1 
Mutation rate 1 

Maximum number of 
iterations 32000 

 
As an initial step to focus on our achievement, we 
have considered a number of well-recognized 
spreading sequences for the purpose of comparison 
with GA-optimized spreading code of length 16. In 
this context, parameters like number of unique 
codes generated, peak cross-correlation value, 
percentage of orthogonal pairs have been taken into 
consideration. Related characteristics of GA-
optimized proposed code have been obtained 
considering three different initial populations of 
search space. Number of iterations performed to 
obtain the given codes by the genetic search 
algorithm has also been listed accordingly.  
 
 

 

Table 2. Comparative analysis among existing & proposed spreading codes 

Name of the code Number of 
unique codes 

Peak cross-
correlation 

value 

Orthogonal 
pairs (%) 

Initial 
population 

Number 
of 

iteration 

Walsh-Hadamard 
code [1] 16 0 100 - - 

Orthogonal Gold 
code [13] 240 8 41.42 - - 

SSOK [2] 60 4 25.34 - - 
SOMLK [3] 95 8 49.36 - - 

Proposed code 242 16 49.55 512 20840 
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14 8 95.6 64 32000 
9 0 100 32 17800 

 
Proposed code of Table 2 has been chosen from 
128000 code sets available to us. Ideally the 
programmer can generate infinite such code sets and 
select the most suitable one for the specific wireless 
CDMA application. In this article, we have 
considered three distinct population sizes to initiate 
the search process. Simulation results show that 
with an increase in the population sizes, total 
number of unique codes generated also gets 
increased with a corresponding decrease in the 
percentage of orthogonal pairs among them and vice 
versa. It has even become possible to touch the 
orthogonality of Walsh code through our genetic 
approach with an initial population set size of 32; in 
which case 9 distinct code members are produced. 
Moreover, starting with a population size of 64, we 
have come up with a set of codes which can exhibit 
an orthogonality of around 97% among them. It is 
noteworthy to mention that except Walsh-Hadamard 
code, no other spreading code set becomes capable 
in achieving such mutually orthogonal pairs till date. 
However, with a population size of 512 due to the 
inclusion of more number of unique codes, number 
of orthogonal pair drops to a value of 49.55% which 
is even higher than what is obtained with 
Orthogonal Gold [13], SSOK [2], SOMLK [3] code. 
The set of code vectors obtained with a population 

size of 512 yields significant advantage in terms of 
the number of distinct codes produced. Specifically, 
it provides 93.39%, 0.83%, 75.21%, 60.74% more 
codes than Walsh [1], Orthogonal Gold [13], SSOK 
[2] and SOMLK [3] respectively.   
Our next two approaches are quite different than the 
previous one. At first, we achieved a specific value 
of orthogonality, keeping the number of codes same 
as Walsh-Hadamard code. Then we have enhanced 
the value of orthogonality as much as possible by 
our algorithm at the cost of number of unique codes 
produced. These two approaches ended with the 
results shown in Table 3. Since the design objective 
is to provide a kind of trade off between number of 
unique codes and the value of orthogonality, the 
same has been illustrated in Table 3 which lists the 
optimized binary valued code sequence in decimal 
form for three different values of orthogonality. 
Each decimal value in the table represents one 16-
bit code. Corresponding decimal values of the 
proposed code are sorted in descending order in 
Table 3 for the sake of convenient representation 
only. Resultant code set can simply be reconstructed 
from any of the given sets by converting the given 
decimal values into 16-bit binary vector and putting 
them row-wise in one matrix.   

 

Table 3. Comparison with Walsh code with typical decimal values 

Index 

Walsh-

Hadamard 

code [1] 

Proposed code 

Orthogonality  

90% 

Orthogonality 

95.6% 

Orthogonality  

100% 

1 65535 63763 63763 64361 

2 43690 62926 62926 49605 

3 52428 61021 61021 46993 

4 39321 54971 54971 40029 

5 61680 52660 52520 26460 

6 42405 52520 49653 21771 

7 50115 49653 45161 14596 

8 38550 45161 40275 4983 

9 65280 40797 38736 4808 

10 43605 38736 32737 - 

11 52275 32115 30576 - 
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12 39270 30576 22744 - 

13 61455 22744 21509 - 

14 42330 21509 17227 - 

15 49980 18331 - - 

16 38505 17227 - - 

 
Interdependence between the size of the optimized 
code set and its orthogonal characteristics has been 
substantiated in Table 3. It has been explicitly 
pointed out that higher the orthogonality; lesser the 
number of distinct codes is and vice versa. 
Moreover, likewise Walsh-Hadamard code, our 
algorithm becomes successful in producing 16 
distinct code members of length 16 with a slight 
compromise in its orthogonal behavior. Impact of 
population size on orthogonality and the number of 
unique codes generated have been reported in Table 
4 and Fig. 3 below.    
 

Table 4. Variation of total number of codes with 
orthogonality 

Initial 
population 

Total 
number 
of codes 

Final 
orthogonality 

(%) 

Iterations 
performed 

32 10 95.56 

32000 
64 14 95.6 

128 25 86.33 
256 91 63.47 
512 184 51.4 

 
 

 

 

 

 

 

 

 

 

 
Fig. 3 Variation of orthogonality (%) and number of 

codes with initial population after the execution of the 
algorithm 

 
As far as the number of unique codes is concerned, 
it shows a linear rise with the initial population with 
a peak value of 184 for a population size of 512. 
Number of orthogonal pairs, on the other hand, 
exhibits some different behavior. More specifically, 
it gets saturated to approximately 50% beyond a 
population of 256. It will therefore be a clever 
option to select a higher population size in order to 
generate more unique codes since orthogonality 
does not deteriorate too much beyond a certain 
level.  

Following section of our analysis highlights how 
the orthogonality and total number of distinct codes 
are modified with the iteration number of the 
optimization process by means of a number of plots 
and bar diagrams. The bar diagrams depict the 
distribution of the cross-correlation values at the end 
of each process. In this connection, we have 
provided all such diagrams starting from an initial 
population of  and ending with an initial 
population of  with an increase in the population 
by a factor of 2. Those diagrams have been 
demonstrated in Figure 4 to Fig. 13. 

There are various methods to predict the highest 
value of iterations in any iterative optimization 
process [7]. In order to encounter all possible 
situations, the number of iterations has been kept in 
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the order of thousands. As mentioned previously, 
the process generates one code set in every iteration 
which is further optimized in the iterations to come. 
As a matter of fact, infinite number of such code 
sets is generated for an infinitely large iteration 
number.  

 
Fig. 4 Variation of number of codes and orthogonality 

(%) with iteration number for an initial population of 32 

 

Fig. 5 Histogram of cross-correlation values for an initial 
population of 32 

 
Looking at Fig. 4 it can be inspected that with an 

increase in the number of iterations, the value of 
orthogonality rises sharply up to 5000 iterations 
beyond which the corresponding rate becomes slow. 
This rate of increase almost saturates at 14000 
iterations. Similar kind of observations may also be 
made for the number of codes where beyond an 
iteration number of 14000, reduction in the number 
of unique codes is almost insignificant. Another 
important feature may also be extracted from the 
plot in the sense that we have encountered situations 

where the value of orthogonality has touched the 
limit of 100% which, except Walsh code, has never 
been possible to achieve by any means.  

Fig. 5 depicts the distribution of cross-
correlations in the entire code set after the 
termination of the entire process at an iteration of 
32000. It can be unambiguously seen that 94.4% of 
the total cross-correlations are assuming a value of 0 
whereas only 1.2% of them are centered on 16. This 
may be regarded as one of the most promising 
features of the designed code. 

 
Fig. 6 Variation of number of codes and orthogonality 

(%) with iteration number for an initial population of 64 

 
Fig. 7 Histogram of cross-correlation values for an initial 

population of 64 
 

Variation of number of distinct code members 
and the orthogonality with the iteration number of 
GA optimization process for an initial population of 
64 shows almost an identical behavior to what is 
obtained with a population size of 32. Beyond an 
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iteration of 17000, rate of increase in the 
orthogonality and decrease in the number of unique 
codes become insignificant. Since we have started 
with a higher size of population as compared to Fig. 
4, it requires more number of iterations to reach at 
the point of saturation. Moreover, the maximum 
possible value of orthogonality can no longer touch 
the ever hunted limit of 100%; rather confined to 
value around 96%.  On the other hand, a slight 
enhancement in total number of code members is 
finally achieved as compared to the design with a 
population size of 32. As far as the distribution of 
cross-correlation values is concerned, it can be 
inferred from Figure 7 that 95.6% of the cross-
correlation values are zeros in the final set; while 
rest are centered at a value of 8. Convergence 
behavior of the GA-optimized proposed code has 
further been studied by considering three larger 
sizes of population set, namely 128, 256 and 512 
and demonstrated in Fig. 8 to 13 respectively.  

 
Fig. 8 Variation of number of codes and orthogonality 

(%) with iteration number for an initial population of 128 
 

 

Fig. 9 Histogram of cross-correlation values for an initial 
population of 128 

 
Characteristic of Fig. 8 is quite different from those 
of previous figures in the sense that the highest 
achievable orthogonality is far behind the limit of 
100%. Reason behind this behavior is nothing but 
the incorporation of higher population size in the 
design process which implicitly is in need for higher 
iteration numbers for convergence. Nevertheless, 
finally it results in a code set exhibiting an 
orthogonality of greater than 80% after the 
execution of 32000 iterations.  

From the bar plot in Fig. 9, it can be clearly seen 
that the majority (specifically 86.33%) of the cross-
correlations are centered on the value of 0 yielding 
large orthogonal code pairs in the code set. Only 
0.7% of them exhibit a value of 16. Therefore the 
code is highly efficient even when the number of 
users have started increasing, thus conforming to 
our statement that the design process retains its 
supremacy even with a higher number of initial 
population.  

  
Figure 10: Variation of number of codes and 

orthogonality (%) with iteration number for an initial 
population of 256 
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Fig. 11 Histogram of cross-correlation values for an 

initial population of 256 
 

Generation of GA-optimized proposed spreading 
code with an initial population of 256 results in a 
justified trade-off between number of unique codes 
and achievable orthogonality at the end of specified 
number of iterations. As can be observed from Fig. 
10, it produces a total number of distinct codes very 
close to 100 with a final orthogonality of greater 
than 50% after the completion of 32000 iterations. 
More specifically, this yields 91 unique codes with 
an associated peak orthogonality of 63.47%. 
Distribution of cross-correlation values in Fig. 11 
suggests that majority of the cross-correlation values 
are less than or equal to half the sequence length. 
However, approximately only 1.6% of the total 
number of cross-correlation pair results in a higher 
cross-correlation as evident from the histogram plot.  

 
Fig. 12 Variation of number of codes and orthogonality 

(%) with iteration number for an initial population of 512 
 

 
Fig. 13 Histogram of cross-correlation values for an 

initial population of 512 
 
Fig. 12 reveals one of the most important attributes 
of our proposed technique. Although the variation of 
total number of code members and orthogonality 
with the number of iteration looks very much 
similar like the one depicted in Fig. 10, initially it 
produces unique elements as high as 500 in the 
entire code set with an orthogonality of 40.56%. At 
an iteration of around 20840, proposed technique 
results in more than 240 spreading codes of length 
16 in the code set with an orthogonality of 
approximately 50%. This outperforms almost all of 
the state-of-the-art spreading codes from various 
perspective of code design. At the end of 32000 
iterations, GA-based proposed approach produces 
184 distinct codes. Calculation of zero-shift cross-
correlation between any two members from this set 
results in 51.4% orthogonal pair. This substantiates 
that the quality of the achievable solution gets 
improved with a corresponding increase in initial set 
of population and the number of iteration as well.   
Frequency of occurrence of the zero-shift cross-
correlation among different pairs within the code set 
reduces with an increase in the magnitude of the 
correlation as vividly outlined in Figure 13. More 
specifically, more than 50% of these code pairs 
produced a cross-correlation value of zero and only 
0.21% of them have a value of 16. Cumulative 
effect of other higher values of cross-correlation like 
8 and 12 is within a limit of around 15% and 
therefore does not affect the overall performance to 
a greater extent. A relative comparison between the 
proposed and existing spreading codes in terms of 
the percentage of occurrence of the magnitude of 
cross-correlation value has been summarized in 
Table 5 below.  
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Table 5. Comparison among various spreading codes in terms of the percentage distribution of cross-correlation 
Name of the 

code 

Modulus of cross-correlation Initial 

population 0 4 8 12 16 

Orthogonal Gold 

code [13] 
41.42 46.86 11.72 0 0 - 

Modified Walsh-

Hadamard code 

[9]  

100 0 0 0 0 - 

SSOK [2] 25.34 74.66 0 0 0 - 

SOMLK [3] 49.362 36.64 13.998 0 0 - 

Proposed code 

94.4 0 4.4 0 1.2 32 

95.6 0 4.4 0 0 64 

86.3 0 13 0 0.7 128 

63.5 19.1 15.8 1.29 0.31 256 

51.4 36.3 9.78 2.31 0.21 512 

 
 
 
Table 5 summarizes our achievement in brief with 
a powerful comparison with other state-of-the-art 
spreading codes. Impact of population size on the 
attainable performance of the generated code has 
also been discussed in this regard. As can be seen, 
except Modified Walsh-Hadamard code [9], our 
proposed code outperforms other in terms of 
producing orthogonal pair in the entire code set. 
Even the minimum orthogonality which has been 
achieved with an initial population of 512 is 
significantly higher than what is obtained with [2], 
[13] and [3].   Moreover, the proposed code with an 
initial population of 16, 32, 64, 128 and 256 
performs better than Orthogonal Gold code [13], 
SSOK [2] and SOMLK [3] in terms of producing a 
cross-correlation value of 4. In this context, the 
performance of our code with a population of 64 is 
better than the codes described in [13] and [2] and 
comparable to that of [3] of same length. 
Comparative analysis of the proposed code with 
[2], [13] and [3] for other values of cross-
correlation can also be substantiated in the same 
manner.    
 
7 Conclusion 
The demand of CDMA communication is on a high 
rise in the modern era. It has found its widespread 
applications from high end military communication 
with very low BER to civilian applications with 

moderate BER. It has therefore become a challenge 
for the code designers to develop a new kind of 
spreading code which may be suitable for a variety 
of wireless applications. In this communication, we 
have proposed one novel approach of spreading 
code design with the aid of GA. It has already been 
substantiated that the number of unique code 
members and amount of cross-correlation can be 
varied in accordance with the proper choice of 
population size and iteration number of genetic 
optimization.  This flexibility in code design is the 
unique feature of our algorithm which has not been 
addressed till date. Simulation results have revealed 
the capability of our proposed code in achieving 
two extreme solutions separately corresponding to 
the highest possible orthogonality among the code 
members and the largest ever code members for a 
particular code length. Future research can be 
progressed by evaluating the performance of the 
proposed code in a standard CDMA system 
corrupted by different types of channel noise. 
Moreover, the overall performance of the generated 
code may further be enhanced by judiciously 
tuning the control parameters of GA or even 
selecting some other optimization techniques.   
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