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Abstract: - We consider the problem of waveform design for multiple-input multiple-output (MIMO) radar sys-

tems employing the generalized detector that is constructed based on the generalized approach to signal proce-

ssing in noise. We investigate the case of an extended target and without limiting ourselves to orthogonal wave-

forms. Instead, we develop a procedure to design the optimal waveform that maximizes the signal-to-interferen-

ce plus-noise ratio (SINR) at the generalized detector output. The optimal waveform requires a knowledge of 

both target and clutter statistics. We also develop several suboptimal waveforms requiring knowledge of target 

statistics only, clutter statistics only, or both. Thus, the transmit waveforms are adjusted based on target and 

clutter statistics. A model for the radar returns that incorporates the transmit waveforms is developed. The tar-

get detection problem is formulated for that model. Optimal and suboptimal algorithms are derived for design-

ing the transmit waveforms under different assumptions regarding the statistical information available to the ge-

neralized detector. The performance of these algorithms is illustrated by computer simulation. 
 

 

Key-Words: - Generalized detector, additive white Gaussian noise, detection performance, multiple-input multi-

ple-output, signal-to-interference plus-noise ratio (SINR). 

 

1 Introduction 
Recent advances in linear amplifier and arbitrary 

waveform generation technology, and the ever-incre-

asing processing power, have spawned interest in the 

development of radar systems that attempt to make 

full use of the spatial and temporal degrees of freed-

om available to the radar transmitter. These technol-

ogical advances make it possible to consider the des-

ign of radar systems that allow the transmitter full 

flexibility in selecting the transmitted waveform wi-

thin the given bandwidth and power constraints on a 

pulse-by-pulse and antenna-by-antenna basis. The 

flexibility to use a multiplicity of transmitted wave-

forms and of adaptively adjusting these waveforms 

offers significant performance advantages. For exa-

mple, the technique based on employment of prob-

ing signal transmission in multiple-input multiple-

output (MIMO) radar system is discussed in [1] 

Fundamentally, the additional degrees of 

freedom afforded by the ability to vary the transmit 

wave-form can be used to optimize a desired 

performance criterion. For example, the waveform 

can be adapted to the target signature to enhance 

detectability, to in-crease clutter or interference 

rejection, or to improve robustness to multipath. To 

put these works into per-spective we note that the 

radar design is driven by the assumed models of the 

target and the interferen-ce-plus-noise environment. 

Targets are often model-led, as a rule, as point 

scatterers. However, since the resolution of radar 

systems increases, the better mo-del is that of an 

extended target that is spread in ran-ge, azimuth, 

and Doppler. The target model can be deterministic 

or statistical: the former assumes that the target 

characteristics are fixed and known, pos-sibly up to 

some unknown parameters, which can be estimated, 

while the latter treats the target as a rand-om 

variable and attempts to characterize its statistics 

Similarly, different models can be used for the inte-

rference environment, for example, clutter, 

jamming, nearby targets, etc. 

The work on optimum transmit-receive design in 

[2]–[4], for example, assumes a deterministic target 

model with a range spread, using a single transmit 

antenna, or an antenna with multiple polarization 

modes [5]. Optimal waveform design for single an-

tenna radar is studied in [6]. A signal subspace fra-

mework that allowed the derivation of the optimal 
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radar waveform for a given scenario and to evaluate 

the corresponding radar performance is discussed in 

[6]. Recently there has been considerable interest in 

radar systems employing multiple antennas at both 

the transmitter and receiver and performing space-ti-

me processing on both, commonly referred to as 

MIMO radar. The concept of MIMO radar allows 

each transmitting antenna element to transmit an ar-

bitrary waveform. This provides extra degrees of 

freedom compared to the traditional transmit beam-

forming approach. Joint optimization of waveforms 

and receiving filters in the MIMO radar systems for 

the case of extended target in clutter is discussed in 

[7]. The case of the signal dependent noise (clutter) 

for two scenarios, namely, the first is based on assu-

mption that different antennas see uncorrelated asp-

ects of the target and the second is based on the cor-

related target with dependence between the clutter 

and signal is considered in [8] 

This work has focused almost entirely on the po-

int target model, and assumes transmission of ortho-

gonal signals on the different antennas. This make it 

possible to separate the signals arriving from the dif-

ferent transmit antenna at the receiver, and to perf-

orm any transmit array processing functions on the 

receive side “after the fact.” For example, one can 

scan the transmit beam across the illuminated area 

within a single dwell time, or perform adaptive bea-

mforming to reduce interference and improve resol-

ution [9]–[15]. Note however that the coherent tran-

smitter array gain is lost when doing the transmit 

beamforming after, rather than during, transmission. 

Employing adaptive processing it is possible to imp-

rove clutter rejection in ways that are not possible in 

conventional radar [16], [17]. MIMO radar can also 

provide angular diversity, which is useful in some 

scenarios [18]–[20]. MIMO radar systems with wi-

dely separated antennas provide spatial diversity by 

viewing the targets from different angles. A novel 

approach to accurately estimate properties, for inst-

ance, the position and velocity of multiple targets 

using such systems by employing sparse modelling 

is discussed in [21]. New metric to analyze the per-

formance of the radar system and an adaptive mech-

anism for optimal energy allocation at the different 

transmit antennas are proposed in [21], also. In this 

case, the adaptive energy allocation mechanism sig-

nificantly improves in performance over MIMO ra-

dar systems that transmit fixed equal energy across 

all the antennas. 

In this paper, we investigate the waveform desig-

ning problem for MIMO radar systems employing 

the generalized detector (GD), which is constructed 

based on the generalized approach to signal process-

ing in noise [22]–[27]. We study the case of an exte-

nded target, and without limiting ourselves to ortho-

gonal waveforms. Instead, we use a procedure dis-

cussed in [28] to design the optimal waveform, 

which maximizes the signal-to-interference plus-no-

ise ratio (SINR) at the GD output. The optimal wa-

veform requires knowledge of both the target and 

clutter statistics. We also study a development of se-

veral suboptimal waveforms for radar systems emp-

loying the GD. This development requires a know-

ledge of target statistics only, clutter statistics only, 

or both. 

In this paper, we present in some detail a model 

for the radar signal, which incorporates the wave-

forms transmitted by the antenna array elements. 

We derive the optimal GD for the received signals 

assuming, that statistics of the radar return are com-

pletely known. We study how to maximize the 

SINR at the GD output and derive iterative algor-

ithms for computing the SINR maximizing the tran-

smit waveform. We also investigate several subopti-

mal waveform design algorithms. Theoretical study 

is strengthened by simulation results illustrating the 

performance gains achievable by adaptive wave-

form design compared with conventional radar wa-

veforms and compare obtained results with radar sy-

stems employing the well-known generalized mini-

mum variance distortionless response detector [28]. 

 

 

2 Problem Formulation 
We consider MIMO radar employing M antennas at 

the transmitter and N antennas at the receiver. Assu-

me that the radar operates at a bandwidth B, and all 

the baseband signals of interest are sampled at a ra-

te sf greater than the Nyquist rate, i.e., Bf s 2> . If 

the radar operates using a pulse repetition rate prff , 

we need
prf

s
s f

f
N = samples to fully represent the sig-

nal over a one pulse-to-pulse interval. Thus, all of 

the signals of interest will be represented by vectors 

of length fN . 

It is more convenient to use a frequency domain 

representation. All the signals discussed below are 

the Fourier transforms of the collected samples. Let 

ks be the 1×fN vector representing the signal trans-

mitted at the k-th antenna, where Mk ,,1…= . These 

vectors can be stacked into a single transmit vector s 

of size 1×MN , i.e., 

                      TT
M

T
n ][ ,,1 sss …= ,                            (1) 

The radar illuminates a set of l scatterers located at 

coordinates ),,( iii zyx  where li ,,1…= which have 
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complex amplitudes ih . These amplitudes can be as-

sembled into 1×l vector h. The radar illumination at 

the location of the ith scatterer is denoted by ig . 

Thus, the radar signal reflected from this scatterer 

towards the receiver takes the form ii gh . In the vec-

or form we can write that the vector g is the 1×l illu-

mination vector and the reflected signal is gh ⊗ , 

where ⊗  denotes the element-by-element vector or 

matrix multiplication. 

Assume each target can be considered of so ma-

ny points. A point target is assumed between each 

pair of transmitter-receiver antennas so that the re-

ceived signal component at the ith receiver due to 

the kth transmitter can be considered at the instant n 

as 

                      )()( nhgny kikik ×=   ,                      (2) 

where kg is the path gain from the kth transmitter to 

the ith receiver. For narrow bandwidth waveforms, 

the point target model is often valid; see, for instan-

ce [29] and [30]. 

The received signal at the ith receiver is the su-

perposition of all the signals originating from vario-

us transmitters plus the additive noise. Denote by 

)(nyi the received signal and by )(nw the additive 

Gaussian noise at the ith receiver and then )(nyi by 

the following form 

                  ∑
=

+=
M

k

kiki wnny
1

)()( hg   ,                  (3) 

where 

                     ],,,[ 21 lMll
T
l ggg …=g   .                   (4) 

      Denote by 

                    )](,),([ 1 nyny ln …=y                       (5) 

The collection of the received signals at the 

various receiving elements at the instant n, the 

received sig-nal vector can be described by the 

following model: 

                         nnn whgy +=    ,                          (6) 

where NM × matrix 

                           H
N ],,,[ 21 gggg …=                    (7) 

is the target scattering matrix similar to the channel 

matrix in [31] and [32]. Since entries of g are the 

path gains related to different aspects of the target, 

this matrix can be seen as the extended model of the 

target. It has been shown that g matrix entries obey 

to the Gaussian distribution law. 

In order to estimate g, let the finite length signal 

)(nsk by the length Nl ≥  be transmitted from each 

element. Due to the lN ×  transmitted matrix 

                           ],,,[ 21 lsssS …=   ,                     (8) 

the lN × received matrix y can be expanded as 

                                wgSy +=   ,                         (9) 

where w is the noise matrix defined by 

                        ],,,[ 21 lwwww …=   .                 (10) 

The ith row of y indicates the received signal throu-

ghout N samples by the lth element. 

Alternatively, the reflected signal vector can be 

written in the form of diagonal matrix gh}{diag  or 

hg}{diag , }{xdiag denotes a diagonal matrix whose 

diagonal elements are the elements of the vector x. 

The illumination vector is a linear function of the 

transmit signal and can be written as sAg M= , whe-

re MA is a fMNl × matrix whose elements are the 

gains from a particular transmit antenna to a scatter-

er location, at a specific frequency. Similarly, we 

define nA as the lNN f × matrix whose elements are 

the gains from a given scatterer location to a receive 

antenna, at a specific frequency. 

The received signal is the reflected signal multi-

plied by this gain. Thus, the 1×fNN vector y of re-

ceived signals can be written in the following form: 

     sAsAhAghAy

A

sMNN

s

diagdiag ===
�� ��� ��
}{}{     (11) 

or equivalently as 

       sAhgAhgAy

A

hNN

h

diagdiag ===
�����

}{}{        (12)                                                            

These equations simply state that the received 

radar signal is a bilinear function of the transmitted 

signal and of the scatterer reflectivity. The gain 

matrices MA and NA can be written explicitly for a 

given ra-dar-scatterer geometry, i.e., given the 

coordinates of all the transmitted and received 

antenna phase cent-ers and the scatterer coordinates. 

If the antenna ele-ments are not omnidirectional, 

their radiation patt-erns are also required. The 

detailed structure of MA  and NA is discussed in [28] 
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for the case where the transmitted and received 

arrays are collocated. The scatterer amplitudes are 

usually represented as a ra-ndom process. In the 

following, we assume that h is a multivariate 

complex Gaussian vector with zero mean and 

covariance hR , i.e., ),0( hRh CN≈ . 

The covariance matrix hR  is assumed to have a 

low rank decomposition 

                              H
hhh VVR =  ,                         (13) 

where hV is a Nl ×  matrix, N  being the rank of hR . 

The covariance of the received signal is then given 

by                                                                                     

                           H
hhhx ARAR =   .                       (14) 

The reflection from a target is almost always ac-

companied by reflections from the surrounding en-

vironment, e.g. ground, ocean, etc., referred to as 

the clutter. In the following discussion, we need to 

distinguish between the radar signal returned from 

the target and from clutter. We denote the target-re-

lated quantities by the superscript t, namely, ,, tt hx  

., xtxt VR  The clutter-related quantities are denoted 

by the subscript c, namely, .,,, xcxccc VRhx The co-

mplete signal model for the received radar signal y 

is then given by the following form 

             wxxwSgSgy ++=++= ctct   ,         (15) 

where tx  is the target signal, cx is the clutter signal; 

w is a noise vector where ),0( 2Iw nσCN≈ , and I is 

the identity matrix; tg  and cg  are assumed to be the 

Gaussian distributed matrices with zero mean and 

covariance xtR and xcR , respectively. These covari-

ance matrices are defined by 

                        






=

=

, }{ 

, }{ 

c
H
cct

t
H
txt

E

E

ggR

ggR
                       (16) 

where }{⋅E denotes the mean. 

 

 

3 Detection by GD 
Given the signal model above we formulate the tar-

get detection problem as the following Gauss-Gauss 

binary hypothesis-testing problem: 

            
, ),0(  

; ),0(  

2
1

2
0







++≈⇒

+≈⇒

IRRy

IRy

nxcxt

nxc

σ

σ

CNH

CNH
      (17)  

whereCN denotes the multivariate complex Gauss-

ian distribution. The GD for the case where the stati-

stics ),,( 2
nxcxt σRR are known has the following de-

cision statistic: 

            AFxcn
H
AF

HH
tZ ξRξQyyQyx +−= 2   ,        (18) 

where the 1×fNN  vector AFξ  represents the refer-

ence noise forming by the linear system at the GD 

front end. 

For better understanding of (18), there is a need 

to recall the main GD functioning principles discus-

sed in [22], [24]. There are two linear systems at the 

GD front end that can be presented as low-pass fil-

ters, namely, the preliminary filter (PF) with the im-

pulse response )(τhPF and the additional filter (AF) 

with the impulse response )(τhAF . For simplicity of 

analysis, we consider that these filters have the same 

amplitude-frequency responses or transfer functions 

and bandwidths by value. Moreover, a resonant fre-

quency of the AF is detuned relative to a resonant 

frequency of PF on such a value that the incoming 

signal cannot pass through the AF. Thus, the recei-

ved signal and noise can be appeared at the PF out-

put and the only noise is appeared at the AF output.  

It is well known fact that if a value of detuning 

between the AF and PF resonant frequencies is more 

than af∆÷ 54 , where af∆ is the signal bandwidth, the 

processes forming at the AF and PF outputs can be 

considered as independent and uncorrelated process-

ses [22]–[24]. In practice, the coefficient of correla-

tion is not more than 0.05. In the case of signal ab-

sence in the input process, the statistical parameters 

at the AF and PF outputs will be the same, because 

the same noise )(tn comes in at the AF and PF inp-

uts. We may think that the AF and PF do not change 

the statistical parameters of input process, since they 

are the linear GD front-end systems. By this reason, 

the AF can be considered as a generator of reference 

sample with a priori information a “no” signal is 

obtained in the additional reference noise forming at 

the AF output. 

There is a need to make some comments regard-

ing the noise forming at the PF and AF outputs. If 

the mentioned above Gaussian noise comes in at the 

AF and PF inputs, the GD linear system front end, 

the noise forming at the AF and PF outputs is Gaus-

sian, too, because AF and PF are the linear systems 
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and, in a general case, the noise takes the following 

form: 

             













−=

−=

∫

∫
∞

∞−

∞

∞−

. )()()( 

;  )()()( 

dττtwτhtξ

dττtwτhtξ

AFAF

PFPF

             (19) 

If, for example, the additive white Gaussian noi-

se (AWGN) with zero mean and two-sided power 

spectral density 05.0 N is coming in at the AF and PF 

inputs (the GD linear system front end), then the no-

ise forming at the AF and PF outputs is Gaussian 

with zero mean and variance given by [24] 

                            
F

n

ωN
σ ∆=

8

2
002 ,                             (20) 

where, in the case if the AF (or PF) is the RLC osci-

llatory circuit, then the AF (or PF) bandwidth F∆  

and resonance frequency 0ω are defined in the follo-

wing manner 

)2/(      where,/1 , 0 LRβLCωπβF ===∆ . 

(21) 

 

     Now, return to (18), where 

                11 ][ −− +−= xcn
T
xtxtxcn RVVRQ  .             (22) 

                                              

Fig.1 Block diagram of general technical interpretation of the GD. 

Here 

                          IRR 2
nxcxcn σ+=                        (23) 

is the clutter-plus-noise covariance matrix. This can 

be equivalently written in the following form: 

 
H

xcn
H
xtxtxcn

H
xtxtxcn WWRVIVRVVRQ =+= −−−− 1111 ][  ,   

                                                                             (24) 

where 

            
���� ����� ��

xt

xtzcn
H
xtxtxcn

V

IVRVVRW
~

5.011 ][ −−− +=   .        (25) 

Then the detection statistic of GD given by (14) 

can be rewritten in the following form 

        
.  ||||2    

2

12

1

AFxcn
H
AF

HHH
t

AFxcn
H
AF

HHHH
tZ

ξRξyWyWWx

ξRξyWWyyWWx

−

−

+−=

+−=
 

 (26) 

In the case of a unit rank target covariance mat-

rix xtV is a vector. We denote it by the lower case 

symbol xtv  to emphasize this fact. In this case, 

                            xtxcnvRW 1−=   ,                        (27) 

where we discarded a scalar multiplier term that can 

be absorbed into the detection threshold. We may 

say that in this case the GD is constructed using the 

principles of the well-known minimum variance di-

stortionless response (MVDR) detector [33]. 
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The more general case where the rank is greater 

than unity is the generalized MVDR (GMVDR) de-

tector discussed in [34]. The case of the unit rank 

xtR corresponds to a rigid target with fixed orienta-

tion relative to the radar. Motion relative to the radar 

will introduce the same random phase fluctuations 

to the target return signals from all of the scatterers 

comprising the target, so that the target scatters can 

be represented by )exp( jφth , where th is a determi-

nistic vector andφ is a random phase. In this case, 

                                 H
ttht vvR = ,                        (28) 

where tv equals to th up to an arbitrary unit magnitu-

de complex scalar. A target that is not a rigid collec-

tion of point scatterers, or is one that is rotating rela-

tive to the radar will induce different random varia-

tions along the vector th and the corresponding cov-

ariance matrix htR defined above will have an effec-

tive rank 1>n . 

 

 

4 SINR Analysis 
Because both the target and clutter statistics ,( xtR  

)xcR depend on the transmit signal s, the matrix W 

defining the GD structure is a function of the trans-

mit waveform s. We want to select this waveform 

so, as to maximize the performance of the GD dete-

ctor. This can be achieved by maximizing the signal 

-to-interference-plus-noise ratio (SINR) at the GD 

output. It follows from (14) that the SINR is given 

by 

          
}{

}{
11tr

tr

PFxcn
H
PFAFxcn

H
AF

xt
H

SINR
ξRξξRξ

WRW
−− −

=      (29) 

or equivalently 

                                                                     

        
}{

}{
11

11

tr

~~
tr

PFxcn
H
PFAFxcn

H
AF

xtxcnxtxcn
H
xtSINR

ξRξξRξ

VRRRV
−−

−−

−
=   ,    (30) 

where }{tr ⋅ denotes the trace operation of matrix. 

This SINR is a nonlinear function of the elements of 

s and, in general, we must resort to numerical opti-

mization techniques to solve for the optimal trans-

mit waveform s. 

To gain some insight into this problem we consi-

der next the case of a unit rank target covariance 

matrix. In the unit rank case, the matrix W given by 

(27) is a vector and the trace operation in (29) is not 

needed. We can then rewrite (29) in the following 

form 

            
PFxcn

H
PFAFxcn

H
AF

xtxcn
H
xtxtxcn

H
xtSINR

ξRξξRξ

vRvvRv
11

11 )(
−−

−−

−
=   .      (31) 

Because the numerator is the squared value of 

the xtxcn
H
xt vRv 1− we can write (18) in the following 

form: 

           
PFxcn

H
PFAFxcn

H
AF

xtn
H
xcxc

H
xt σ

SINR
ξRξξRξ

vIVVv
11

212 }{ ][
−−

−

−

+
=   .       (32) 

This can also be written as 

SINR  

)(2

2

1

22

2 )(
11

)(

PF
H
PFAF

H
AFn

xt
H
xcxc

H
xc

n

xc

n

H
xt

σ

σσ

ξξξξ

vVIVVVIv

−





















+−

=

−

  .  

(33) 

     If the clutter is much stronger than the noise, we 

can write this as 

                    
4

22

4

)()(

n

xtV
H
xt

σ
SINR xc

vPv ⊥

=   ,              (34) 

where 

                 
H
xcxc

H
xcxcVxc

VVVVIP
1)( −⊥ −=               (35) 

is the orthogonal projection operator onto the col-

umn space of xcV . 

The SINR expression above has the intuitive inte-

rpretation of being the energy of the target compon-

ent, which is orthogonal to the clutter, i.e., what is 

left after completely removing the clutter compon-

ent from the target, divided by the noise energy. In 

the following discussion, we consider only the unit-

rank target covariance. We note, however, that all of 

our results can be extended to the general low rank 

case. An optimal transmit waveform s can be deriv-

ed by maximizing the SINR over all possible choices 

of s. This optimization can be carried out using, for 

example, the numerical gradient descent algorithm. 

Consider the main statements of the numerical gra-

dient descent algorithm. 
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5 Gradient Descent Algorithm 
To solve the SINR maximization problem we need a 

more explicit expression of the SINR in terms of s. 

Recall that sAx stst = , where 

                    MtNst diag AhAA }{=   .                  (36) 

In the unit-rank case th is deterministic up to a rand-

om scalar phase term, so th can be replaced by tv , 

where 

                             H
ttht vvR = .                            (37) 

     In other words, for a unit-rank target covariance 

we have 

                     MtNst diag AvAA }{= .                   (38) 

Recall that 

                    ∑
=

=
r

i

H
sc

H
xcxc ii

1

][][ AssAR   .             (39) 

Inserting (39) into the SINR expression we obtain 

PF
H
PFAF

H
AF

stxcn
H
st

H

PF
H
PFAF

H
AF

xtxcn
H
xtSINR

ξξξξ

sARAs

ξξξξ

vRv

−
=

−
=

−− 11

 ; 

(40) 

             ∑
=

+=
r

i

n
H
sc

H
scxcn σii

1

44][][ IAssAR  .        (41) 

Various numerical optimization techniques can 

be used to solve for the transmit waveform s, which 

maximizes the SINR. Here we consider the gradient 

descent method [35] that requires knowledge of the 

derivatives of SINR with respect to the elements of 

s. The update equation of the gradient descent meth-

od is given by 

                      

H
SINR

µ 





∂

∂
+←

s
ss    ,                  (42) 

where µ is a constant controlling the convergence ra-

te of the algorithm. Taking the derivative of the 

SINR with respect to is we obtain 

PF
H
PFAF

H
AFis

SINR

ξξξξ −
=

∂
∂ 1










∂

∂
−× −−− sAR

R
RAseARAs stxcn

i

xcn
xcn

H
st

H
istxcn

H
st

H

s

111 22 ,                        

(43) 

where is is the i-th entry of s and ie is a vector of ze-

ros with a 1 at the i-th position. Examples of calcu-

lation of this type of derivatives are presented in 

[36] and [37]. 

     Define xcR in the following form: 

                   ∑
=

=
r

i

H
h

H
cchxc ii

1

][][ AvvAR   .            (44) 

Note that 

                            
i

xc

i

xcn

ss ∂

∂
=

∂

∂ RR
 .                       (45) 

In this case, we obtain 

                 ∑
=

=
∂

∂ r

n

H
sc

H
isc

i

xcn nn
s 1

][][ AseA
R

  .         (46) 

Then (43) can be represented in the following form 

                 
PF

H
PFAF

H
AF

ii

i

qp

s

SINR

ξξξξ −

−
=

∂
∂ 22

   ,            (47) 

where ip are the elements of the row vector 

                         stxcn
H
st

H ARAsp 1−=                       (48) 

and 

sARAseARAsq stxcn

r

n

H
sc

H
iscxcn

H
st

H
i nn

1

1

1
][][

−

=

−








= ∑   .                                                 

(49) 

Finally, collecting the derivatives into a row 

vector we obtain 

                    
PF

H
PFAF

H
AF

SINR

ξξξξ

qp

s −

−
=

∂
∂ )(2

  .          (50) 

Equations (42), (48)–(50) define the gradient 

desc-ent algorithm for computing the SINR-

maximizing waveform s. To initialize the algorithm 

we let s be one of the suboptimal waveforms 

described in Secti-on 6. 

 

 

5.1 Iterative Optimization 
A second optimization technique involves iterating 

between updating SINR in (36) assuming s and, con-

sequently xcnR , are fixed, and then updating xcnR . 
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More specifically, this algorithm proceeds as foll-

ows: 

• Maximize 

   
�� ��� ��

1

11

Q

sARAs
ξξξξ

stxcn
H
st

H

PF
H
PFAF

H
AF

SINR −×
−

= ,        

      (51) 

       assuming xcnR is fixed. This is accomplish-

ed by letting s be the eigenvector correspo-

nding to the largest eigenvalue of 1Q ; 

• Use the resulting s to update xcnR via (33). 

• Repeat until convergence. To initialize the 

algorithm we let s be one of the suboptimal 

waveforms described in Section 6. 

 

 

6 Suboptimal Waveforms 
The optimal waveform requires knowledge of the 

target and clutter statistics, namely, htR  and hcR . 

The waveforms considered here provide suboptimal 

performance, but, with one exception, require less 

information about the target and clutter than the op-

timal waveform. The transmit signal will be norma-

lized to unit energy in all the different waveforms 

we consider to allow for a fair comparison of the re-

sults. In other words, the transmitted signal vector s 

must obey the constraint 1|||| 2=s . 

 

 

6.1 Standard Waveforms 
As a reference waveform against which to compare 

the performance achieved using optimal and subop-

timal waveforms, we selected a linear frequency-

modulated (FM) waveform (chirp), which is comm-

only used in radar systems, fed to a single transmit 

antenna. Without loss of a generality, we can assu-

me that the first antenna is active while the other an-

tennas has zero input. Thus, we can write the stan-

dard transmit waveform s in the following form: 

       [ ]T

f

f

Nff
N

 
0,,0),(,0,,0),1(

1
……=s   ,    (52) 

where )(⋯f are the values of the discrete Fourier 

transform of the signal. It is possible, of course, to 

select other reference waveforms. 

For example, we can use a linear FM waveform 

fed to all antennas with an appropriate set of comp-

lex weights so, as to form a transmit beam in a desi-

red direction. However, the resulting beam will illu-

minate only a portion of an extended target and the 

results will be highly dependent on the orientation 

of the beam relative to the target scatterers. We pre-

fer instead to use for reference a system employing 

a single transmit antenna, so that the entire area of 

interest is uniformly illuminated. 

 

 

6.2 Target-Based Waveforms 
Consider the case, where we know the target statis-

tics but not the clutter statistics. This case corres-

ponds, for instance, to the situation where the radar 

is searching for specific targets with known signatu-

res. The target signature tv represents the azimuth-

frequency target scattering function. By designing s, 

we can control the azimuth-frequency radar illumi-

nation of the target. 

In the following, we consider two ways to design 

the illuminating function. In the first, we focus all of 

the radar energy to illuminate the azimuth-frequency 

element of the target, i.e., the component of tv , 

which has the largest magnitude. The second appro-

ach is to match the illuminating function to the tar-

get scattering function. In other words, put more of 

the radar energy, where the scattering is strong, and 

less, where it is weak. The second approach will 

produce less target energy at the receiver than the 

first approach. In the case, where the clutter energy 

is uniformly distributed in azimuth-frequency, the 

first approach is expected to provide the better per-

formance. However, given a non-uniform clutter di-

stribution the second approach might be preferred.  

Consider, for example, the case, where the azim-

uth frequency cell, where the target scattering has its 

largest magnitude, happens to also have a strong 

clutter component. In this case, the better performa-

nce will be obtained by illuminating a part of the ta-

rget scattering function, where the clutter is weak. 

Since we assume here that the clutter distribution is 

unknown, the second approach will be more robust 

than the first. Both of these approaches are made 

more precise next. 

 

 

6.2.1 Maximizing Target Energy  
Consider designing of the transmitted waveform s 

so that the received target energy is maximized. In 

other words, we want to maximize WRW xt
H . In 

the case, where 

                               H
ttht vvR =                            (53) 

is the unit rank, we have 
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2|||| )( th
HH

h
H
tth

H
xt

H vAWWAvvAWWRW ==  

(54) 

or 

2|||| )( sAWWAssAWWRW st
HH

st
H

st
H

xt
H ==   , 

(55) 

where 

                       MtNst diag AvAA }{= .                 (56) 

Clearly WRW xt
H will be maximized if W and s 

are chosen to be left and right eigenvectors of stA  

corresponding to its largest eigenvalue. Without loss 

of generality, we assume that W is normalized to 

have unit norm, so as to keep the noise variance at 

the GD output constant. We can interpret this result 

as follows. The vector tv represents the azimuth-fre-

quency distribution of the target scattering function. 

The maximizing solution focuses the transmit ener-

gy on the azimuth-frequency portion of the target, 

which provides the strongest radar return. 

 

 

6.2.2 Matching the Target Distribution  

Consider the illumination vector sAg M= , which 

was introduced earlier. We now design s, so as to 

have the illumination function match the target scat-

tering function, that is to have tvg = .In other words, 

let tM vsA = .The target matching transmit wave-

form s is the least-squares solution of this equation, 

                       t
H
MM

H
M vAAAs 1)( −=   .                 (57) 

 

 

6.3  Minimizing Clutter Energy 
Now, consider the case where we know the clutter 

statistics but not the target statistics. This will be the 

situation if we estimate the clutter covariance from 

measurement assumed to be target free, but do not 

have a priori knowledge about the target characteris-

tics. Consider designing s so that the received clutter 

energy is minimized, i.e., we want to minimize 

WRW xc
H . Recall that 

                           H
hhchxc ARAR =    ,                  (58) 

where 

                               H
cchc VVR = .                        (59) 

Let 

                       }{ ][,],1[ rccc vvV …= ,                 (60) 

where r is the rank of the clutter covariance matrix, 

and ][ncv is the column of cV . Note that 

                          sAvA  ][][ ii scch = ,                     (61) 

where 

                   McNsc idiagi AvAA ]}[{][ = .             (62) 

     Referring to (44) we obtain 

                  ∑
=

=
r

i

H
sc

H
scxc ii

1

][][ AssAR   .               (63) 

We can write 

     WAssAWWRW

Q

)(
1

][][

��� ���� ��

sc

r

i

H
sc

H
sc

H
xc

H ii∑
=

=      (64) 

or 

    sAWWAsWRW

Q

)(
1

][][

��� ���� ��

wc

r

i

H
sc

H
sc

H
xc

H ii∑
=

=   .   (65) 

We want to minimize WRW xc
H jointly over s 

and W subject to the norm constraints 

                   1|||| 2=s    and    1|||| 2=W .              (66) 

Note that if W is known then s, which minimizes 

the received clutter power, is the eigenvector of wcQ  

corresponding to its smallest eigenvalue. If s is 

known then W, which minimizes the received clutt-

er power, is the eigenvector of scQ corresponding to 

its smallest eigenvalue. This suggests an iterative 

solution procedure where we solve successively for 

W and s. More specifically, the following procedure 

is used: 

• Use an initial waveform s, for example, the 

linear FM signal. 

• Compute scQ  corresponding to s. 

• Compute scQ  corresponding to W. 

• Let W be eigenvector of scQ  corresponding 

to its smallest eigenvalue. 

• Let s be eigenvector of wcQ corresponding to 

its smallest eigenvalue. 
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• Repeat previous steps until convergence. 

 

 

6.3.1 Maximize Signal-to-Interference Ratio  
Finally, we consider an approach where the target-to 

-clutter ratio or signal-to-interference ratio (SIR) at 

the GD output is maximized rather than the SINR. 

As in the case of the optimal waveform design, both 

the clutter and the target statistics are known. The 

SIR is defined as 

                        
WRW

WRW

xc
H

xt
H

SIR =   .                     (67) 

Recall that the clutter energy can be alternatively 

written as WQW xc
H or sQs xc

H . Similarly, the target 

energy can be written as WQW st
H or sQs wt

H ,where 

                            H
st

H
stst AssAQ =                      (68) 

and 

                         H
st

H
stwt AWWAQ = .                 (69) 

Thus, the SIR can be written as 

                           
WQW

WQW

sc
H

st
H

SIR =                      (70) 

or 

                             
sQs

sQs

wc
H

wt
H

SIR =   .                     (71) 

We want to maximize SIR jointly over all norm-

constrained choices of W and s. Note that if s is as-

sumed known the value of W, which maximizes the 

SIR, is generalized eigenvector of },{ scst QQ corres-

ponding to the largest generalized eigenvalue. Simi-

larly, if W is known, the value of s, which maximi-

zes SIR, is the generalized eigenvector of ,{ wtQ  

}wcQ corresponding to the largest generalized eigen-

value. This suggests the following iterative solution 

procedure: 

• Use an initial waveform s, for example, the 

linear FM signal. 

• Compute stQ and scQ corresponding to s. 

• Let W be the generalized eigenvector of 

},{ scst QQ corresponding to its smallest ei-

genvalue. 

• Compute wtQ  and wcQ corresponding to W. 

• Let s be the generalized eigenvector of 

},{ wcwt QQ corresponding to its smallest ei-

genvalue. 

• Repeat previous steps until convergence. 

 

Note that the only difference between the SIR 

and the SINR is that the denominator of the SINR 

expression has an additional noise term WWH
nσ 44 . 

As the clutter-to-noise ratio increases, the SIR appr-

oaches the SINR. Therefore, we expect that the perf-

ormance of the SIR maximizing the waveform will 

be close to that of the optimal waveform for large 

values of the clutter-to-noise ratio. 

 

 

7 Simulation 
In this section, we present some numerical examples 

illustrating the performance of the radar, when using 

the waveforms described earlier. It should be emph-

asized that these examples are presented only to un-

derstand the problem. To evaluate the actual perfor-

mance tradeoffs of different waveform design meth-

ods requires studying them in the context of a speci-

fic radar system and a well-defined surveillance sce-

nario, and requires addressing other issues, which 

are beyond the scope of the present paper. 

 

 

7.1 Simulation Conditions 

The clutter and target are modeled by a collection of 

scatterers placed on a grid in the azimuth/range pla-

ne. The grid consists of ra NN × points, where aN is 

the number of azimuth sample points and rN is the 

number of range sample points. Different clutter and 

target models correspond to different distributions 

of the complex scatterer amplitudes over this grid. 

For the examples presented here both target and clu-

tter were represented by independent random scatte-

rers whose amplitudes are complex Gaussian with 

zero mean and variance equal to the signal-to-noise 

ratio (SNR) and the clutter-to-noise ratio (CNR), res-

pectively. 
In other words, we did not assume any particular 

structure for the target and clutter. We note however 

that it is straightforward to incorporate any desired 

clutter and target distribution into this type of simu-

lation. The clutter scatterers were placed at all ×aN  

rN grid points, while the target scatters were placed 

on a rectangular portion of the grid. The surveillan-

ce scenario is assumed stationary, i.e., the target and 

clutter scatters are not moving and neither is the ra-
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dar. Therefore, both the target and clutter covariance 

matrices are assumed to have unit rank so that 

                             H
ttht vvR =                              (72) 

and 

                             H
cchc vvR = .                           (73) 

Given the clutter and target statistics we can now 

proceed to compute the optimal and suboptimal wa-

veforms s as described earlier. The optimal wave-

form was computed using the gradient descent algo-

rithm discussed in [35]. For each waveform s, we 

then compute the SINR at the GD output. The proce-

dure above provides the GD SINR for a single rand-

omly chosen scenario with a particular clutter and 

target. To get a more representative assessment of 

performance we repeat this procedure for many ran-

domly selected scenarios and collect the probability 

density function (pdf) and cumulative density func-

tion (cdf) of the SINR at the GD output. Comparison 

of cdfs corresponding to the different waveform de-

sign methods provides valuable insight into their re-

lative performance. A performance comparison of 

the GD and GMVDR detector [34] employed by ra-

dar system is presented.  

 

Fig.2 CDF of SINR at the GD output for different transmit waveforms. Comparison with GMVDR detector. 

Case 1. 
 

7.2 Discussion of Results 
Next, we present results for three cases differing by 

the size of the target relative to footprint of the ra-

dar. We present the cdf of the SINR at the outputs of 

GD and GMVDR detector discussed in [34] for the 

following transmit waveforms: standard, target ma-

ximizing, matched to target, clutter minimizing, SIR 

maximizing, and the optimum computed using the 

gradient descent method [35]. The radar is assumed 

to employ a 10 element uniformly spaced linear ar-

ray. 

 

 

7.2.1 Target is Small Compared with Radar  

           Footprint 
The results for this case are shown in Fig. 2. Investi-

gation of Fig.2 leads us to the following observati-

ons. The optimum waveform offers the best perfor-

mance and provides a 10 dB advantage over the sta-

ndard waveform. We carry out a comparison at the 

level of 0.9 for SINR cdf. This gain may be interp-

reted as a combination of an 8 dB transmit array ga-

in, and a 2 dB temporal gain. The first is the gain of 

the transmit array due to the fact, that the transmit 

power is concentrated almost entirely on the part of 

the azimuth-frequency plane occupied by the target, 

whereas in the standard case the same power is spre-

ad evenly over the entire plane. The second is the 

gain due to the fact, that the transmit energy is con-

centrated at those frequencies where the target has 

the strongest scattering. In other words, we have ga-

in due to both spatial and temporal effects. Note, ho-

wever, that conventional beamforming would captu-

re the 8 dB array gain. The cdfs of the SINR for the 

matched-to-target and maximum SIR waveform are 

almost identical, and are approximately 2 dB for the 

matched-to-target and 1 dB for the maximum SIR 

from the optimum. Both of these capture most of the 

performance gain of the optimal waveform in this 

case. The target maximizing waveform is next in or-

der of performance. Note that its SINR has a larger 

variance than the SINRs of the previously mentioned 
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waveforms. This is due to the variability for clutter 

at the azimuth-frequency cells where the target ener-

gy is largest. The clutter minimizing waveform per-

forms poorly because it often focuses the energy 

where the target energy is low or nonexistent. In 

other words, illuminating area of low clutter may 

cause us to miss the target. Superiority of the GD 

SINR cdf over GMVDR one in the case of optimum 

waveform is for about 12 dB. 

 

 

 

 

Fig.3 CDF of SINR at the GD output for different transmit waveforms. Comparison with GMVDR detector. 

Case 2. 
 

7.2.2 Target and Radar Footprint Have the  

           Same Size 

The results for this case are depicted in Fig.3. Exa-

mination of Fig. 3 shows that the optimum wave-

form offers a 7 dB advantage over the standard wa-

veform. Note that the target-matched waveform of-

fers 1 dB improvement only. These waveforms spre-

ad the transmit power over the entire azimuth-frequ-

ency plane so they do not benefit from the transmit 

array gain. The target-to-clutter maximizing wave-

form gives close to optimal performance. As before, 

the clutter-based waveforms perform poorly. Superi-

ority of the GD SINR cdf over GMVDR one in the 

case of optimum waveform is for about 14 dB. 
 
 

7.2.3 Target Size is Half of the Radar Footprint  
The results for this case are depicted in Fig.4. As ex-

pected the results fall in between those of the two 

cases discussed above. Superiority of the GD SINR 

cdf over GMVDR one in the case of optimum wa-

veform is for about 13 dB. 

 

 

 

 

 

8  Conclusions 

Techniques for designing transmit waveforms for 

MIMO radar systems employing the GD were pre-

sented. We have shown that by controlling the spa-

ce-time (or azimuth-frequency) distribution of the 

transmitted signal it is possible to get significant im-

provements in detection performance employing the 

GD. To achieve this advantage it is necessary to ha-

ve knowledge of the clutter and/or target statistics. 

In this paper, we assumed that this statistical in-

formation is available. Statistics of specific targets 

of interest may be assumed known through measu-

rements of their radar signatures. By tuning the tra-

nsmit waveform to a given target type, using, for 

example, the matched target waveform described 

earlier, it is possible to enhance significantly the de-

tectability of targets of that type. Knowledge of clut-

ter statistics can be obtained by collecting data over 

multiple pulse periods. The use of GD by radar sys-

tems allows us to get a great advantage in detection 

performance. A more complete discussion of issues 

related to estimating target and clutter statistics   and  

the impact of estimation accuracy on detection   per- 

formance are beyond the scope of this paper and are 

the subject of ongoing research. 
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Fig.4 CDF of SINR at the GD output for different transmit waveforms. Comparison with GMVDR detector. 

Case 3. 
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