
A common way to attack the problem of analysis of and/or
controller design for a large-scale system is to first decom-
pose such a system into smaller subsystems [1]. However,
many typical large-scale systems may have an overlapping
part through which subsystems are interconnected [2]. For
such a system a disjoint decomposition may not be useful.
The overlapping decompositions approach has first been
proposed in [3] and has been shown to be useful for such sys-
tems (e.g., [4]–[11]). Overlapping decompositions approach
is based on the principle of inclusion [12]. A special case
of inclusion, which is especially useful in controller design
is extension, which was first introduced in [13] for finite-
dimensional systems.

Many physical systems, especially large-scale systems,
may involve time-delays [14]. Such systems are usually
named as time-delay systems [15]. These systems are infinite-
dimensional, since their state can not be represented by a
finite number of state variables [16]. The dynamics of many
time-delay systems can be described by delay-differential
equations [17]. In such systems, if the delay-differential
equations do not involve delayed versions of the derivative
of the state vector, then these systems are said to be retarded.
Otherwise, they are said to be neutral [18]. It is more
difficult to control neutral systems, in general, compared
to retarded systems, because neutral systems may contain
chains of infinitely many modes going to infinity along
vertical axes [19]. Retarded systems, however, although also
exhibit infinitely many modes, can have only finitely many
modes in any given right-half conplex-plane [20]. In fact,
neutral time-delay systems is a more general class than
retarded time-delay systems.

Delay-differential equations alone, however, may not suf-
fice to describe the dynamics of some time-delay systems.
In some cases, such delay-differential equations may need
to be coupled with some delay-algebraic equations. Such

systems are usually termed as descriptor-type systems [21].
Descriptor-type time-delay systems are inherently neutral,
whether or not the equations describing their dynamics
involve delayed versions of the derivative of the state vec-
tor. Dealing with descriptor-type time-delay systems is, in
general, more challenging than dealing with retarded or non-
descriptor-type neutral systems, because their response is, in
general, discontinuous and may be impulsive [21].

Time-delays in a time-delay system can be discrete or
distributed [22]. Systems with distributed time-delay can
be named as distributed-time-delay systems. In the present
work, we consider large-scale linear time-invariant (LTI)
descriptor-type distributed-time-delay systems.

Although, as mentioned in the first paragraph above, there
has been many works on the decentralized controller de-
sign using overlapping decompositions for finite-dimensional
systems, such an approach has been considered for time-
delay systems only recently. In particular, the principle of
extension has recently been defined for retarded distributed-
time-delay systems in [23] and for non-descriptor-type neu-
tral distributed-time-delay systems in [24]. This principle has
then been extended to descriptor-type distributed-time-delay
systems in [25]. However, controller design was not con-
sidered in [25]. In the present work, we consider controller
design using extension for descriptor-type distributed-time-
delay systems. First, in Section II, we summarize the results
of [25]. Then, in Section III, we discuss contractibility of
controllers. We also show that if the controller designed for
the expanded system stabilizes the expanded system and sat-
isfies a performance criterion, then the contracted controller
stabilizes the original system and satisfies a corresponding
performance criterion.

Throughout the paper, R and R+ denote the sets of,
respectively, real numbers and non-negative real numbers.
For positive integers k and l, Rk and Rk×l denote the
spaces of, respectively, k-dimensional real vectors and k× l-
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dimensional real matrices. For x ∈ Rk, ‖x‖ is the 2-
norm of x and, for X ∈ Rk×l, ‖X‖ is the induced 2-
norm (i.e., the maximum singular value) of X . Ik denotes
the k × k-dimensional identity matrix and 0 may denote a
zero matrix of appropriate dimensions or a matrix function
which is identically zero. Finally, bdiag(· · ·) denotes a block
diagonal matrix with indicated blocks on the main diagonal
and rank(·) denotes the rank of the indicated matrix.

For M0 ∈ Rn×p and M(·) : [−τ, 0] → Rn×r, we say
that

[
M0 M(·)

]
has full row-rank, if for any ξ ∈ Rn,

there exist u0 ∈ Rp and ϕ : [−τ, 0] → Rr such that ξ =

M0u0 +
∫ 0

−τ M(θ)ϕ(θ)dθ.

In this section, we summarize the results of [25]. Consider
two LTI descriptor-type distributed-time-delay systems, Σ:

E0ẋ(t) = A0x(t) +B0u(t) +

∫ 0

−τ
(A(θ)x(t+ θ)

+B(θ)u(t+ θ)) dθ (1)

y(t) = C0x(t) +

∫ 0

−τ
C(θ)x(t+ θ)dθ (2)

and Σ̂:

Ê0
˙̂x(t) = Â0x̂(t) + B̂0û(t) +

∫ 0

−τ

(
Â(θ)x̂(t+ θ)

+B̂(θ)û(t+ θ)
)
dθ (3)

ŷ(t) = Ĉ0x̂(t) +

∫ 0

−τ
Ĉ(θ)x̂(t+ θ)dθ (4)

where x(t) ∈ Rn and x̂(t) ∈ Rn̂ are the state, u(t) ∈ Rp

and û(t) ∈ Rp̂ are the input, and y(t) ∈ Rq and ŷ(t) ∈ Rq̂

are the output vectors of, respectively, Σ and Σ̂ at time t.
τ > 0 is the maximum time-delay in Σ and Σ̂. It is assumed
that the dimensions of the state, input, and output vectors of
Σ̂ are greater than or equal to those of Σ; i.e., n̂ ≥ n, p̂ ≥ p,
and q̂ ≥ q. It is also assumed that E0 ∈ Rn×n, A0 ∈ Rn×n,
B0 ∈ Rn×p, C0 ∈ Rq×n, Ê0 ∈ Rn̂×n̂, Â0 ∈ Rn̂×n̂, B̂0 ∈
Rn̂×p̂, and Ĉ0 ∈ Rq̂×n̂ are constant matrices and A(·) :
[−τ, 0] → Rn×n, B(·) : [−τ, 0] → Rn×p, C(·) : [−τ, 0] →
Rq×n, Â(·) : [−τ, 0]→ Rn̂×n̂, B̂(·) : [−τ, 0]→ Rn̂×p̂, and
Ĉ(·) : [−τ, 0] → Rq̂×n̂ are bounded matrix functions. It is
further assumed that rank(E0) = ne < n and rank(Ê0) =
n̂e < n̂, which make both systems Σ and Σ̂ descriptor-type
[21]. For the existence and uniqueness of solutions, however,
we assume the following:

Assumption 1: rank(UA0V) = n − ne, where the rows of
U (respectively, columns of V) span the left (respectively,
right) null space of E0.

Assumption 2: rank(ÛÂ0V̂) = n̂ − n̂e, where the rows of
Û (respectively, columns of V̂) span the left (respectively,
right) null space of Ê0.

These two assumptions guarantee the existence and
uniqueness of solutions to (1) and (3), respectively, under

suitable initial conditions [17], which are assumed to be
given as:

x(θ) = φ(θ) and x̂(θ) = φ̂(θ) , θ ∈ [−τ, 0] , (5)

for some well-defined functions φ : [−τ, 0] → Rn and φ̂ :
[−τ, 0]→ Rn̂, respectively.

We note that, under Assumptions 1 and 2, by a suitable
state transformation, the delay-free parts of (1) and (3) can
be decoupled into their differential and algebraic parts [21]
(there will still be coupling through delayed dynamics, in
general, however). That is, by using a state trasformation,
(1)–(4) can be put into a form where

E0 = bdiag(Ine
, 0) and A0 = bdiag(A1

0, In−ne
) (6)

and

Ê0 = bdiag(In̂e , 0) and Â0 = bdiag(Â1
0, In̂−n̂e) (7)

Although, in such a form, the equations may look appealing,
the states may lose their physical meaning. Furthermore,
some matrices/matrix functions may become ill-conditioned.
Therefore, except in the only if part of Theorem 1 below,
we assume that (6) and (7) may not hold in general.

The principle of extension was defined in [25] as follows:

Definition 1: Σ̂ is said to be an extension of Σ if there exist
full-rank matrices

T ∈ Rn̂×n , R ∈ Rp×p̂ , and S ∈ Rq̂×q (8)

such that for all φ(·) and for all û(·), the choice

φ̂(θ) = Tφ(θ) , θ ∈ [−τ, 0] (9)

and
u(t) = Rû(t) , t ≥ −τ (10)

implies
x̂(t) = Tx(t) , t ≥ −τ (11)

and
ŷ(t) = Sy(t) , t ≥ 0 . (12)

Extension defined above is a generalization of extension,
which was first defined for finite-dimensional systems in
[13]. In the case of finite-dimensional systems, the advantage
of using extension rather than the more general principle of
inclusion is that, if extension is used then any controller
designed for the expanded system can be contracted for
implemetation on the original system [26]. We will show
that (see Corollary 2 below) the same is also true in the
present case.

The necessary and sufficient conditions for Σ̂ to be an
extension of Σ are given by the following theorem, which
was first presented in [25].

Theorem 1: Σ̂ is an extension of Σ if there exist full-rank
matrices as in (8) such that

Ê0T = TE0 , (13)

2. Extension Principle 
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Â0T = TA0 and Â(θ)T = TA(θ) , ∀θ ∈ [−τ, 0] , (14)

B̂0 = TB0R and B̂(θ) = TB(θ)R , ∀θ ∈ [−τ, 0] , (15)

and

Ĉ0T = SC0 and Ĉ(θ)T = SC(θ) , ∀θ ∈ [−τ, 0] . (16)

Furthermore, the above conditions are also necessary if (1)–
(4) are written in a form such that (6) and (7) hold and that[
B2

0 A2(·) B2(·)
]

has full row-rank, where B2
0 , A2(·),

and B2(·) denote the last n−ne rows of B0, A(·), and B(·),
respectively.
Proof: See [25]. �

Remark: As it was also remarked in [25], (6) and (7)
are used to prove only the necessity of (13) and the first
conditions in (14) and (16). Given that (13) and the first
condition in (14) hold, (15) and the second conditions in
(14) and (16) are necessary, whether or not (6) and (7) hold.
Furthermore, the assumption that

[
B2

0 A2(·) B2(·)
]

has full row-rank is used only to prove the necessity of the
first condition in (16). Thus, even if this assumption does not
hold, provided that (13) and the first condition in (14) hold,
(13)–(15), as well as the second condition in (16) are still
necessary. Moreover, as mentioned above, (1)–(4) can always
be written in a form such that (6) and (7) hold. In this form,
if
[
B2

0 A2(·) B2(·)
]

does not have full row-rank, it
means that x(t), for t > 0, can take values only in a subspace
of Rn (and if Σ̂ is an extension of Σ, x̂(t), for t > 0,
can take values only in a subspace of Rn̂). More precisely,
x2(t), for t > 0, can take values only in the range space
of
[
B2

0 A2(·) B2(·)
]

and x̂2(t), for t > 0, can take
values only in the range space of

[
B̂2

0 Â2(·) B̂2(·)
]
,

where B̂2
0 , Â2(·), and B̂2(·) denote the last n̂ − n̂e rows

of B̂0, Â(·), and B̂(·), respectively. Thus, in such a case,
by a state transformation, the dimensions of both x(t) and
x̂(t) can be reduced so that for the new state equations the
assumption that

[
B2

0 A2(·) B2(·)
]

has full row-rank is
satisfied.

As it was also indicated in [25], without any loss of
generality, the matrices and the matrix functions of Σ and Σ̂
can be related as follows:

Ê0 = TE0T̃ +M0
E , Â0 = TA0T̃ +M0

A , (17)

B̂0 = TB0R+M0
B , Ĉ0 = SC0T̃ +M0

C (18)

Â(θ) = TA(θ)T̃ +MA(θ) , θ ∈ [−τ, 0] , (19)

B̂(θ) = TB(θ)R+MB(θ) , θ ∈ [−τ, 0] , (20)

and
Ĉ(θ) = SC(θ)T̃ +MC(θ) , θ ∈ [−τ, 0] , (21)

where T , R, and S are the matrices introduced in (8)
and T̃ ∈ Rn×n̂ is a left-inverse of T , satisfying T̃ T =
In (such T̃ exists, since T is of full-rank and n̂ ≥ n).
Furthermore, M0

E ∈ Rn̂×n̂, M0
A ∈ Rn̂×n̂, M0

B ∈ Rn̂×p̂, and
M0
C ∈ Rq̂×n̂ are the so-called complementary matrices and

MA(·) : [−τ, 0] → Rn̂×n̂, MB(·) : [−τ, 0] → Rn̂×p̂, and

MC(·) : [−τ, 0] → Rq̂×n̂ are the so-called complementary
matrix functions, which are bounded matrix functions. As we
will see in Section IV, this representation facilitates defining
an expansion of an overlappingly decomposed system. The
necessary and sufficient conditions for Σ̂ to be an extension
of Σ can equivalently be stated in terms of these comple-
mentary matrices and matrix functions [25]:

Corollary 1: Σ̂ is an extension of Σ if

M0
ET = 0 , (22)

M0
AT = 0 and MA(θ)T = 0 , ∀θ ∈ [−τ, 0] , (23)

M0
B = 0 and MB(θ) = 0 , ∀θ ∈ [−τ, 0] , (24)

and

M0
CT = 0 and MC(θ)T = 0 , ∀θ ∈ [−τ, 0] . (25)

Furthermore, the above conditions are also necessary if (1)–
(4) are written in a form such that (6) and (7) hold and that[
B2

0 A2(·) B2(·)
]

has full row-rank.
Proof: See [25]. �

In the approach of overlapping decompositions, a system
is first overlappingly decomposed and then expanded so
that overlapping parts appear as disjoint. A controller is
then designed for this expanded system and then contracted
for implementation on the original system. In order for the
contracted controller work on the original system, however,
it must be contractible. Therefore, in this section we will
consider contractibility of controllers.

In [27], it was shown that a LTI retarded time-delay system
can be stabilized by a centralized LTI retarded time-delay
controller if and only if it can be stabilized by a LTI finite-
dimensional centralized controller. This result was general-
ized to possibly descriptor-type neutral time-delay systems
under possibly decentralized control in [28]. Specifically, it
was shown in [28] that a possibly descriptor-type LTI neutral
time-delay system can be stabilized by a possibly descriptor-
type LTI (de)centralized neutral time-delay controller if and
only if it can be stabilized by a LTI (de)centralized finite-
dimensional controller. Therefore, in here, we will consider
only finite-dimensional controllers. Thus, for Σ, we consider
a controller, to be denoted by Γ, of the form

ż(t) = Fz(t) +Gw(t) (26)
v(t) = Hz(t) +Kw(t) (27)

and, for Σ̂, we consider a controller, to be denoted by Γ̂, of
the form

˙̂z(t) = F̂ ẑ(t) + Ĝŵ(t) (28)
v̂(t) = Ĥẑ(t) + K̂ŵ(t) (29)

Here, z(t) ∈ Rm and ẑ(t) ∈ Rm̂ are the state, w(t) ∈ Rq

and ŵ(t) ∈ Rq̂ are the input, and v(t) ∈ Rp and v̂(t) ∈
Rp̂ are the output vectors of, respectively, Γ and Γ̂ at time
t. Furthermore, F ∈ Rm×m, G ∈ Rm×q , H ∈ Rp×m,

3. Contractibility of Controllers 
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K ∈ Rp×q , F̂ ∈ Rm̂×m̂, Ĝ ∈ Rm̂×q̂ , Ĥ ∈ Rp̂×m̂, and
K̂ ∈ Rp̂×q̂ are constant matrices. The initial conditions for
Γ and Γ̂ are assumed to be given as:

z(0) = ζ0 and ẑ(0) = ζ̂0 , (30)

for some ζ0 ∈ Rm and ζ̂0 ∈ Rm̂, respectively.

The controllers Γ and Γ̂ are to be applied to Σ and Σ̂,
respectively, by letting

w(t) = y(t)− r(t) and ŵ(t) = ŷ(t)− r̂(t) (31)

and

u(t) = v(t) + d(t) and û(t) = v̂(t) + d̂(t) (32)

for t ≥ 0, where r(t) ∈ Rq and d(t) ∈ Rp are some external
inputs (possibly a reference and a disturbance, respectively)
at time t, for Σc, where Σc denotes the closed-loop system
obtained by applying Γ to Σ, and r̂(t) ∈ Rq̂ and d̂(t) ∈ Rp̂

are some external inputs at time t, for Σ̂c, where Σ̂c denotes
the closed-loop system obtained by applying Γ̂ to Σ̂.

We note that, although the maximum time-delay in the
closed-loop systems will be 2τ , due to the assumption that
the loops are closed at time t = 0, only x(t) for t ≥ −τ
will affect Γ and only z(t) for t ≥ 0 will affect Σ (similarly
for Γ̂ and Σ̂). Thus, (5) and (30) will also define the initial
conditions of the closed-loop systems.

We can now define contractibility:

Definition 2: Suppose that the connection in (31) is made
but the connection in (32) is not made. The controller Γ̂ for
Σ̂ is said to be contractible to the controller Γ for Σ if there
exist full-rank matrices as in (8) and a full row-rank matrix
P ∈ Rm×m̂ such that for all initial conditions φ(·) of Σ, for
all inputs û(·) of Σ̂, for all external inputs r(·) of Σc, and
for all initial conditions ζ̂0 of Γ̂, the choice (9), (10),

ζ0 = P ζ̂0 (33)

and
r̂(t) = Sr(t) , t ≥ 0 (34)

implies
z(t) = P ẑ(t) , t ≥ 0 (35)

and
v(t) = Rv̂(t) , t ≥ 0 . (36)

Note that, the existence of a full row-rank matrix P ∈
Rm×m̂, in particular requires m̂ ≥ m. However, this is
natural, since Σ, in general, forms a part of Σ̂, and hence,
should not require a controller with a larger dimensional state
vector [23]. Contractibility is needed so that the condition
(10) is satisfied after the application of the controllers.
Although, however, (10) is required for t ≥ −τ , (36) is
required only for t ≥ 0, since the controllers are to be applied
starting at time t = 0.

The conditions for Γ̂ to be contractible to Γ are given by
the following theorem:

Theorem 2: Suppose that Σ̂ is an extension of Σ. Then, the
controller Γ̂ for Σ̂ is contractible to the controller Γ for Σ if
there exists a full row-rank matrix P ∈ Rm×m̂ such that

FP = PF̂ , G = PĜS , (37)
HP = RĤ , and K = RK̂S , (38)

where R and S are as in (8).
Proof: Since Σ̂ is an extension of Σ, the choice (9) and (10)
implies (12). Then, (31) and (34) implies

ŵ(t) = Sw(t) , t ≥ 0 . (39)

To establish (35), premultiply both sides of (28) by P and
use (39) to obtain

P ˙̂z(t) = PF̂ ẑ(t) + PĜSw(t) (40)

Next, use (37) in (40) and compare with (26). Together with
(33), by the uniqueness of solutions, this establishes (35).
Next, to establish (36), premultiply both sides of (29) by R
and use (39) and (38) to obtain

Rv̂(t) = HPẑ(t) +Kw(t) (41)

Next, use (35) in the right-hand-side of (41) and compare
with (27). This establishes (36), which concludes the proof.

�

Since a controller Γ̂ is first to be designed for Σ̂ and then
to be contrated for implementation on Σ, it is important that
any controller Γ̂ for Σ̂ to be contractible to a controller Γ
for Σ. This is in fact the case if Σ̂ is an extension of Σ:

Corollary 2: If Σ̂ is an extension of Σ, then any controller
Γ̂ of the form (28)–(29) for Σ̂ is contractible to a controller
Γ of the form (26)–(27) for Σ with

F = F̂ , G = ĜS , (42)
H = RĤ , and K = RK̂S , (43)

where R and S are as in (8).
Proof: With m = m̂ and P = Im, (42)–(43) are equivalent
to (37)–(38). �

Now, suppose that Γ is applied to Σ and Γ̂ is applied
to Σ̂ by making the connections in (31) and (32) starting
at time t = 0. Let us denote the closed-loop system
obtained by applying Γ to Σ by Σc and the closed-loop
system obtained by applying Γ̂ to Σ̂ by Σ̂c. In [23], for
the case of retarded distributed-time-delay systems, it was
proved that when the expanded system is an extension of the
original system and the controller for the expanded system
is contractible to the controller for the original system, then
certain stability and performance relations between the two
closed-loop systems hold. For stability, we can use the usual
definition of asymptotic or exponential stability for time-
delay systems (e.g., see [29]). For performance, a specific
tracking requirement was used in [23], which is defined as
follows:

Definition 3: A closed-loop system, such as Σc, is said to
achieve good tracking for references r(·), with respect to a
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tolerance function g : R+ → R+ and a disturbance bound
f : [−τ,∞)→ R+, if, assuming that the initial state is zero,
the output, y(·), satisfies ‖y(t) − r(t)‖ ≤ g(t), ∀t ≥ 0, for
all disturbances which satisfy ‖d(t)‖ ≤ f(t), ∀t ≥ −τ .

Now, we can state the following results, the proofs of
which follow the same lines as the proofs of the correspond-
ing theorems in [23]:

Theorem 3: Suppose that Σ̂ is an extension of Σ, Γ̂ is
contractible to Γ, and Γ̂ stabilizes Σ̂. Then, Γ stabilizes Σ.

Theorem 4: Suppose that Σ̂ is an extension of Σ and Γ̂ is
contractible to Γ. Let R and S be as in Definition 1 and
R̃ and S̃ be such that RR̃ = Ip and S̃S = Iq .1 Suppose
that Σ̂c achieves good tracking for references r̂(t) = Sr(t),
t ≥ 0, for some r(·), with respect to ĝ : R+ → R+ and
f̂ : [−τ,∞) → R+. Then, Σc achieves good tracking for
references r(·), with respect to g(·) := ‖S̃‖ĝ(·) and f(·) :=
1
‖R̃‖ f̂(·).

Controller design using extension has been considered for
descriptor-type systems with distributed time-delay. First, the
principle of extension has been presented, as it was first
introduced in [25]. Contractibility of controllers has then
been discussed and it has been shown that if the expanded
system is an extension of the original system, then any
controller designed for the expanded system is contractible
for implementation on the original system. Furthermore,
it has also been shown that if the expanded closed-loop
system is stable and achieves desired performance, then
the original closed-loop system is also stable and achieves
desired performance.

Although only descriptor-type distributed-time-delay sys-
tems described by delay-differential-algebraic equations,
where the equations do not involve delayed versions of the
derivative of the state vector has been considered, the results
can be extended to systems, where the equations do involve
delayed versions of the derivative of the state vector.
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