
  

Over the last three decades, some classical methods for 
solving various optimization problems have been 
successfully established. As the number of optimization 
problem parameters increases, the complexity of these 
problems increases. Therefore, when dealing with high-
dimensional problems, classical methods cannot obtain 
accurate global minima or maxima, and so they fall into local 
minima. Thus, finding the exact solutions of such problems 
becomes a challenge for classical methods [1]. To solve this 
problem of classical optimization algorithms, a natural 
heuristic algorithm is defined under the same background. In 
fact, for millions of years, nature has been a great source of 
inspiration for the solving of real-world problems by human 
beings. There are many real-world processes that describe 
nature-inspired computations, such as those related to 
decision-making, immune systems, collective behaviors, and 
learning. Based on these phenomena, various natural 
heuristic optimization algorithms have been designed and are 
now widely applied in most research fields. 

According to the inspiration sources of these algorithms, 
natural heuristic algorithms can be divided into four 
categories: evolution-based, group-based, physics-based and 
human-based approaches [2][3]. The evolutionary methods 
were developed based on the law of natural evolution. 
Among these methods, the most the genetic algorithm which 
simulates Darwin's evolutionary process, is undoubtedly the 
most popular [4]. In this category, other popular methods 
include evolutionary strategies [5] and genetic programming 
[6]. On the other hand, group-based approaches are designed 
to simulate the social and collective behaviors of animal 
groups (birds, insects, fish, etc.). The particle swarm 
optimization [7][8] algorithm, which was inspired by the 
social behaviors of flocking birds, is the most representative 
and successful example in this field. Other related methods 
include the ant colony optimization [9][10], artificial bee 
colony [11][12][46], and whale optimization algorithms 
[13][14], etc. In addition, there are some physics-based 
algorithms that have been developed on the basis of 
simulating the laws of physics observed in our universe. The 
most popular methods in this category are simulated 

An Energy-segmented Moth-flame Optimization 

Algorithm for Function Optimization and 

Performance Measures Analysis 

 
YUANFEI WEI1, PENGCHUAN WANG2,3, QIFANG LUO2,3*, YONGQUAN ZHOU2,3 

1Xiangsihu College of Gunagxi University for Nationalities, Nanning, Guangxi 532100, CHINA  
2College of Information Science and Engineering, Guangxi University for Nationalities, Nanning,  

Guangxi 530006, CHINA  
3Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, CHINA 

 
 

Abstract: The moth-flame optimization algorithm (MFO) is a novel metaheuristic algorithm for simulating the 
lateral positioning and navigation mechanism of moths in nature, and it has been successfully applied to various 
optimization problems. This paper segments the flame energy of MFO by introducing the energy factor from the 
Harris hawks optimization algorithm, and different updating methods are adopted for moths with different 
flame-detection abilities to enhance the exploration ability of MFO. A new energy-segmented moth-flame 
optimization algorithm (ESMFO) is proposed and is applied on 21 benchmark functions and an engineering 
design problem. The experimental results show that the ESMFO yields very promising results due to its 
enhanced exploration, exploitation, and convergence capabilities, as well as its effective avoidance of local 
optima, and achieves better performance than other the state-of-the-art metaheuristic algorithms in terms of the 
performance measures.  
 
KeyWords: moth-flame optimization algorithm, energy-segmented moth-flame optimization, benchmark 
function, metaheuristic optimization
Received: April 01, 2020. Revised: November 17, 2020. Accepted: November 30, 2020. Published: December 31, 2020

 
 

1. Introduction  

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2020.19.35

Yuanfei Wei, Pengchuan Wang, 
Qifang Luo, Yongquan Zhou

E-ISSN: 2224-266X 320 Volume 19, 2020



  

annealing [15], the gravity search algorithm [16][17], and the 
material search state [18]. Finally, we describe human-based 
algorithms. These methods, inspired by nature, are unique 
because they derive inspiration from phenomena that are 
usually associated with human behaviors, lifestyles or 
perception. The most famous methods in the literature 
include harmony search [19][20], the pyrotechnics algorithm 
[21], the heap-based optimizer [47], the slime mold 
algorithm[48], the gradient-based optimizer [49], and so on.  

The moth-flame optimization (MFO) algorithm [22-24] is 
an evolutionary algorithm that was recently proposed. The 
algorithm is inspired by the navigation behavior or lateral 
orientation of moths found in nature. According to their 
lateral orientation, moths fly straight toward the moon by 
forming a fixed angle with the moon. This phenomenon only 
applies to light sources far away from moths. Therefore, any 
artificial light in their path causes them to follow the light, 
and they persist around it as they continue to move in a 
deadly spiral path. This phenomenon was used to develop the 
MFO algorithm, and since its inception, it has been applied to 
solve various real-world tasks. 

For any generalized algorithm, exploration and 
development are its most important features. Here, 
exploration refers to exploring the search space or the use of 
global search, while development refers to local search. 
Although MFO is a good algorithm, because there is no 
perfect theorem [25], no algorithm is the most suitable one 
for all optimization problems. Therefore, in order to improve 
the performance of MFO, some improvement schemes are 
proposed to improve the development and exploration 
capabilities of the MFO algorithm and maintain a proper 
balance between the two. Here, the energy classification 
system of the Harris hawks optimization (HHO) algorithm 
[26] is introduced to segment the flame energy in the basic 
MFO algorithm and balance the exploration and exploitation 
abilities of the algorithm. The new algorithm is called 
energy-segmented moth-flame optimization (ESMFO), 
which focuses on improving the search ability and 
convergence speed of the MFO algorithm. In this paper, we 
apply the ESMFO algorithm to the tasks of function 
optimization and performance measures analysis. 

In this paper, by introducing the energy factor from the 
Harris hawks optimization algorithm, the flame energy in 
MFO is segmented, and different updating methods are 
adopted for moths of different flame-detection abilities to 
enhance the exploration ability of MFO. The ESMFO is 
applied to test 21 benchmark functions. The experimental 
results show that among the compared algorithms, the 
ESMFO algorithm has the best comprehensive performance 
and achieves better performance than other the state-of-the-
art metaheuristic algorithms in terms of the chosen 
performance measures. 

 The rest of the paper is organized as follows. Section II 
provides a description of related works. Section III describes 
the proposed energy-segmented moth-flame optimization 

(ESMFO) algorithm. The results are discussed in Section IV. 
Section V introduces the conclusions and future work ideas. 

Moths are winged insects belonging to the butterfly family. 
At night, moths fly by moonlight. For the purpose of flying, 
they use a special navigation mechanism known as lateral 
positioning. According to this method, moths maintain a 
fixed angle with the moon when flying. However, moths 
have been observed to fly around light in a spiral manner 
rather than horizontally. This is because lateral positioning is 
effective only when the light source is far away from the 
moth. Because the alternate light source is far from the moon, 
the straight path becomes a spiral path. 

In the basic moth optimization algorithm, the position of a 
moth in space is the variable of the problem (assuming that 
the moth is the candidate solution). By changing the moth's 
position vector, the algorithm can solve problems in low-
dimensional and multidimensional space. In addition, it is 
worth noting that the moth and flame are both candidates in 
the moth optimization algorithm. The moth is the main 
moving body in the solution space, and the flame is the 
optimal value obtained by the moth during the current 
iteration of the algorithm. The flame can be understood as the 
location marker at the end of the moth's final search path. 
When the algorithm is locally exploited, moths search for the 
optimal position in the field of flame. Under this mechanism, 
the optimization accuracies of moths are improved. 

The framework of the moth optimization algorithm is 

as follows: 

),,( TPIMFO                              (1) 

The function I  generates a moth population M  randomly 
and generates the corresponding fitness matrix OM . 

 OMMI ,:                             (2) 

The function P  is the principal function of the moth search 
process in the solution space. After updating, the matrix 
M  is returned: 

MMP :                               (3) 
The function T  belongs to the judgment statement. If it 
satisfies the termination condition, “true” is returned; if not, 
“false” is returned: 

  falsetrueMT ,:                          (4) 

As mentioned above, the algorithm is inspired by lateral 
positioning. We use the following equation to update the 
moth's position: 

 jii FMSM ,                             (5) 

Here, iM  denotes moth i , jF
 
denotes flame j , and S is 

a spiral function. 
In the moth optimization algorithm, the main updating 

mechanism for a moth is simulated by a logarithmic helix 

2. Related Work 

2.1. Original Moth-flame 
Optimization Algorithm (MFO)  
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function, and the following conditions must be satisfied: 
● The starting point of the helix is at the position of the 
moth. 
● The end of the helix is at the position of the flame. 
● The floating range of the helix does not exceed the 

search space. 
Based on the above conditions, the logarithmic helix 

function of the moth optimization algorithm is defined as 
follows: 

    j
bt

iji FteDFMS  2cos,          (6)             

Here, the distance between the ith moth and the jth flame is 
denoted by iD . b  is a constant that defines the logarithmic 
helix and t  is a random number between  1,1- . iD  is 
calculated by the following formula: 

iji MFD                                               (7) 

In the whole search space, the position of a moth is updated 
relative to n different positions, resulting in a decrease in 
the search accuracy and an increased likelihood of falling 
into a local optimum. Therefore, an adaptive mechanism 
based on the number of flames is proposed. The formula is 
as follows: 

flame - 





 


T

N
lNroundno

1
              (8) 

Here, l  is the current iteration number, N  is the maximum 
number of flames and T  is the maximum number of 
iterations. 

The main inspiration for HHO comes from the 
cooperative behavior and pursuit strategy of the Harris 
eagle, and this strategy is called a "raid" in nature [27-30]. 
This desert predator demonstrates the innovative 
evolutionary ability of teaming to track, surround, rush at 
and eventually attack potential prey. Harris hawks' main 
strategy for catching prey is called assault, also known as 
the “seven killing strategy.” In this clever strategy, several 
eagles converge on their prey from different directions in an 
attempt to perform a surprise attack. Harris hawks can 
reveal many kinds of chase patterns according to the 
dynamic characteristics of the scene and the chosen escape 
mode of their prey. In this section, inspired by exploring the 
different attacking and raiding strategies of Harris hawks, 
we simulate the exploration and exploitation stages of the 
proposed HHO. HHO is a population-based, gradient-free 
optimization technique; therefore, it can be applied to any 
optimization problem as long as there is an appropriate 
formula. HHO algorithms are mainly divided into three 
stages: the exploratory stage, the transitional stage between 
the exploratory mining and exploitation stages, and the 
exploitation stage. Since the energy factor of our improved 
algorithm comes from the latter two stages of the Harris 
hawks optimization algorithm, we briefly introduce the 
latter two stages of the Harris hawks optimization algorithm. 

(1) Transition from exploration to exploitation  
The HHO algorithm can transfer from the exploration 

phase to the exploitation phase and then change between 
different exploitative behaviors based on the escaping 
energy of the prey. The energy of a prey decreases 
considerably during the escaping behavior. To model this 
fact, the energy of a prey is modeled as:  







 

T

t
EE 12 0                             (9) 

where E indicates the escaping energy of the prey, T is the 
maximum number of iterations, and E0 is the initial state of 
the energy of the prey. In HHO, E0 randomly changes 
within the interval (-1,1) during each iteration. When the 
value of E0 decreases from 0 to -1, the prey is physically 
flagging, but when the value of E0 increases from 0 to 1, the 
prey is strengthening. This dynamic escaping energy 
exhibits a decreasing trend as the number of iterations 
increases. In short, exploration occurs when |E| ≥1, while 
exploitation occurs in later steps when |E| <1. For defining 
the threshold of E0, we can refer to the original paper [26] 
for a more detailed introduction than the one given here. 
 
（2）Exploitation phase 

In this phase, the Harris hawks perform a surprise 
attack by attacking the prey detected in the previous phase. 
However, prey often attempt to escape from dangerous 
situations. According to the escape behaviors of the prey 
and the chasing strategies of the Harris hawks, four possible 
strategies were proposed in the HHO. 

The authors proposed a probability parameter r for the 
successful escape of prey from pursuit. When r<0.5, the 
escape is successful, and when r≥0.5, the prey does not 
successfully escape. To model this strategy and enable the 
HHO algorithm to switch between the soft and hard sieging 
processes, the parameter E is utilized. In this regard, when 
|E| ≥0.5, the soft attack occurs, and when |E| <0.5, the hard 
attack occurs. Since this article quotes the third form of 
sieging described by the original author at this stage (hard 
sieging with progressive, rapid dives), we only introduce 
this kind of sieging strategy. For more detailed information, 
please read the source article about HHO. 

When |E| <0.5 and r < 0.5, the prey does not have 
enough energy to escape and a hard siege is conducted 
before the surprise pounce to catch and kill the prey. 
Therefore, the following rule is obeyed by a hard siege: 

      
    





tXFZFifZ

tXFYFifY
tX




1                   (10) 

where Y and Z are obtained using the new rules in Eqs. (12) 
and (13). 

     tXtJXEtXY mrabbitrabbit                    (11) 

where Xm(t) is the average position of the hawks. Then, the 
possible result of such a movement is compared to that of 

2.2. Harris Hawks Optimization (HHO)  
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the previous dive to detect whether it be a good dive. If the 
result is not reasonable, they also start to perform irregular, 
abrupt, and rapid dives when approaching the prey. We 
suppose that they dive according to LF-based patterns using 
the following rule: 

 DLFSYZ                           (12) 

where D is the dimension of the problem, S is a random 
vector of size 1 × D and LF is the Levy flight function, 
which is calculated using Eq. (13) [48]: 

 
 
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
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
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





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




 




















 

u
xLF          (13)  

             
where u and v are random values bounded by (0,1) and β is 
a constant set to 1.5 by default. 

 

As we all know, the authors who developed the MFO 
algorithm only considered the update process for a moth in 
the ideal state and did not consider the influence of the 
distance between the moth and the light source on the moth 
when the it circles the artificial light source. Therefore, in 
order to better conform to the biological characteristics of 
nature, the algorithm proposed in this paper accounts for 
the influence of the brightness of the light source on moth 
flight. According to the previous section, we compare 
moths to Harris hawks, and then we compare flames to prey. 
Considering the moth's irregular flight and the effect of 
light intensity on the moth, we borrow the adaptive 
parameter for the energy factor from the HHO algorithm. 
This parameter is called the light source intensity E. 

The light source intensity E is used to distinguish 
between the two stages (i.e., exploration and exploitation) 
of the MFO algorithm; when the moth is far away from 
the flame, the moth feels a low amount of flame energy, 
and the ESMFO algorithm performs the exploration 
phase; otherwise, the moth and flame are close, the 
flame energy felt by the moth is high, and the algorithm 
performs the exploitation phase. E exhibits a rising trend 
as the number of iterations increases. When the flame 
energy |E|<0.5, the moth searches different regions to 
detect the position of the flame, so the ESMFO 
algorithm performs the exploration phase. When |E|≥0.5, 
the algorithm attempts to exploit the neighborhood of the 
solutions during the exploitation phase. In short, 
exploration occurs when |E|<0.5, while exploitation 
occurs in later steps when |E|≥ 0.5. The two phases of 
the ESMFO algorithm are described in the next 
subsections. 
 

In this subsection, the exploration mechanism of 
ESMFO is proposed. The main inspiration of the MFO 
algorithm is the navigation mechanism of moths in nature 
called transverse orientation. When the moth is far away 
from the light source, the energy value E felt by the moth is 
less than 0.5, and the proposed algorithm still uses the 
spiral update formula from the MFO algorithm. This 
behavior is modeled by the following rule: 

 

    j
bt

iii FteDFMS  2cos,                   (14) 

In this phase, the moth feels increasingly intense energy 
as the distance between the moth and the flame is reduced; 
when the energy value is greater than 0.5, the influence of 
the flame on the moth is intensified. The moth cannot 
continue to maintain the navigation mechanism (lateral 
positioning), so it instead performs a useless and fatal 
irregular flight strategy. The method proposed in this paper 
uses a new update formula instead of the update formula 
contained in the MFO algorithm. The current positions are 
updated using Eq. (15): 

      
    





tSFZFifZ

tSFYFifY
tM




1                     (15) 

where Y and Z  are obtained using Eqs. (16)-(17). 

     tMtjFEtMY                         (16) 

       LevytMtjFEtMZ                    (17) 

where Levy is the Levy flight function, which is calculated 
using Eq. (13). 
 

The pseudocode of the proposed ESMFO algorithm is 
given in Algorithm 1. 

Algorithm 1 The pseudo code of the ESMFO algorithm 
Update flame_ no using Eq. (8) 
OM = FitnessFunction(M); 
If iteration ==1 
    F=sort(M); 

OF=sort(OM); 
else 

    F  sort( tt MM ,1 ); 

OF  sort( tt MM ,1 ); 

end 
for ni :1  

for dj :1  

Update initial energy 0E  

Update r and t  

If    then 

3. Energy-segmented Moth-flame
 Optimization Algorithm 

3.1. Exploration Phase 

3.2. Exploitation Phase  

3.3. Pseudocode of the ESMFO Algorithm 
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Calculate D using Eq. (7) with respect to the 
corresponding moth；  

else     then 
Update M (i, j) using Eqs. (16) and (17) with 

respect to the corresponding moth；  
end 

end 
end 

The computational complexity of an algorithm is a key 
metric for evaluating its run time, and this metric can be 
defined based on the structure and implementation of the 
algorithm. The computational complexity of the ESMFO 
algorithm depends on the number of moths, number of 
variables, maximum number of iterations, and sorting 
mechanism for the flames in each iteration. Since the 
Quicksort algorithm is utilized, the computational 
complexity of the sorting process is of O(nlogn) and O(n2) 
for the best and worst cases, respectively. Therefore, the 
overall computational complexity is defined as follows: 

 
 O(ESMFO) = O (t (O (Quicksort)+O (position update)))  

 (18)         

 O(ESMFO) = O (t (O (n2 + n×d))) = O (tn2 + tnd) 

(19)        
where n  is the number of moths, t  is the maximum 
number of iterations, and d  is the number of variables. 
 

In this section, we analyze the effectiveness of the 
proposed algorithm using benchmark functions. 
Additionally, the results of ESMFO are compared with 
those of the basic MFO algorithm as well as with the results 
of other metaheuristic algorithms. The results are obtained 
for different dimension sizes to evaluate the effect of the 
algorithm. 

 

For performance evaluation purposes, the results are 
obtained using a computer with a 64-bit Windows 10 

operating system, an Intel Core i5-7200U, CPU@ 2.50 GHZ, 
8 GB RAM, and MATLAB version R2017a. All the 
simulation experiments are performed on MATLAB. All the 
algorithms are run 30 times, each with 1000 iterations. The 
results of ESMFO are compared with those of the moth-
flame optimization algorithm (MFO) [22-24], Levy flight 
moth-flame optimization algorithm (LMFO) [32], Harris 
hawks optimization algorithm (HHO) [26], whale 
optimization algorithm (WOA) [10][31][33], bat algorithm 
(BA) [34-37], and cuckoo search (CS) algorithm [38-41]. 
The various parameters of these algorithms are given in 
Table 1. 

 
 

TABLE 1  
 PARAMETER SETTINGS  

Algorithm Parameter Value 
BA A Loudness; r Pulse rate 0.5; 0.5 
CS Discovery rate of 

unknown solutions pa 
0.25 

WOA   
Linearly 
decreased from 2 
to 0 

MFO Spiral factor b 1 
LMFO Spiral factor b 1 
ESMFO Spiral factor b 1 

 

To check its performance, the algorithm proposed in 
this paper is been verified on twenty one benchmark 
functions [42-44]. These benchmark functions include 
unimodal functions, multimodal functions and multimodal 
functions with fixed dimensions. Unimodal functions have 
only one global mining operation. On the other hand, 
multimodal functions have a large number of local mining 
operations. Here, it should be noted that unimodal functions 
help to check the exploitative ability of an algorithm, 
whereas multimodal functions help keep a check on the 
explorative capabilities of any algorithm. The benchmark 
functions are discussed in detail in Tables 2, 3 and 4. 
 

 
TABLE 2 

UNIMODAL, HIGH-DIMENSIONAL BENCHMARK TEST FUNCTION 

Benchmark function Dim Range minf  


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3.4. Computational Complexity of the 

ESMFO Algorithm 

4.  Results and Discussion 

4.1. Parameter Settings  

4.2. Test Functions 
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TABLE 3 

MULTIMODAL, HIGH-DIMENSIONAL BENCHMARK TEST FUNCTION 

Benchmark function Dim Range minf  
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TABLE 4 

MULTIMODAL, FIXED-DIMENSIONAL BENCHMARK TEST FUNCTION 

Benchmark function Dim Range minf
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In this section, we perform simulation experiments on the 
algorithm, analyze the effectiveness of its HHO-based 
modification, and verify its optimization performance. Tables 
5 and 6 show the comparison of the ESMFO algorithms with 
other algorithms based on fixed-dimensional and high-
dimensional functions. Table 5 shows that the ESMFO 
algorithm performs better than other algorithms on nine 
benchmark functions for fixed-dimensional functions, 
ranking first in the optimization rankings of all seven 
algorithms. This demonstrates the efficiency of the 
optimization performance achieved by the ESMFO algorithm.  

 

 
 

Fig. 1 to Fig. 9 show the best fitness curves for each function, 
and Fig. 10 to Fig. 18 show the variance diagrams for each 
function. From the curves and variance diagrams, we can see 
that the ESMFO algorithm presented in this paper has the 
highest optimization accuracy and fastest convergence speed 
on the fixed-dimensional test function. At the same time, we 
can see that the algorithm shows strong stability. Therefore, 
the ESMFO algorithm achieves excellent performance on 
fixed-dimensional benchmark functions. 

 

 

TABLE 5 
COMPARISON OF THE MULTIPEAK FIXED-DIMENSIONAL TEST FUNCTION RESULTS 

 Algorithm MFO LMFO HHMFO HHO WOA BA CS RANK 

Best 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 1.99E+00 9.98E-01 

Worst 4.95E+00 1.26E+01 1.26E+01 5.93E+00 1.08E+01 1.27E+01 9.98E-01 

Mean 1.69E+00 4.98E+00 5.42E+00 1.20E+00 1.82E+00 1.16E+01 9.98E-01 
f13-2dim 

Std 9.78E-01 4.06E+00 4.75E+00 9.12E-01 1.87E+00 2.90E+00 0.00E+00 

1 

Best 6.27E-04 3.10E-04 3.08E-04 3.08E-04 3.16E-04 3.08E-04 3.07E-04 

Worst 2.04E-02 1.24E-03 1.22E-03 1.49E-03 2.24E-03 5.69E-03 3.08E-04 

Mean 0.001556 3.85E-04 3.95E-04 3.68E-04 8.29E-04 1.20E-03 3.08E-04 
f14-4dim 

Std 0.0035656 1.69E-04 2.32E-04 2.13E-04 4.59E-04 1.53E-03 4.84E-08 

1 

Best -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 

Worst -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 

Mean -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 
f15-2dim 

Std 6.78E-16 1.14E-05 3.69E-06 1.61E-11 3.21E-11 6.54E-08 6.78E-16 

1 
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Best 3.98E-01 0.39791 3.98E-01 3.98E-01 -1.00E+00 0.39789 0.39789 

Worst 3.98E-01 3.99E-01 3.98E-01 3.98E-01 -9.36E-01 0.39789 0.39789 

Mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 -9.85E-01 0.39789 0.39789 
f16-2dim 

Std 0.00E+00 3.48E-04 7.68E-05 6.04E-07 2.74E-02 3.96E-08 0.00E+00 

2 

Best 3 3 3 3 3 3 3 

Worst 3 3.0003 3 3 3.0001 84 3 

Mean 3 3.0001 3 3 3 7.5 3 
f17-2dim 

Std 1.29E-15 7.50E-05 1.28E-04 1.38E-07 2.54E-05 1.60E+01 1.87E-15 

1 

Best -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.00E-01 

Worst -3.86E+00 -3.85E+00 -3.85E+00 -3.86E+00 -3.85E+00 -1.00E+00 -3.00E-01 

Mean -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.62E+00 -3.00E-01 
f18-3dim 

Std 2.71E-15 2.50E-03 2.31E-03 1.53E-03 2.47E-03 7.38E-01 2.26E-16 

1 

Best -1 -1 -1 -1 -1 -1 -1 

Worst -9.36E-01 -1 -1 -1 -0.93625 -0.78575 -1 

Mean -9.76E-01 -1 -1 -1 -0.98937 -0.9376 -1 
f19-2dim 

Std -3.12E-02 0 0 0 0.024166 0.034634 3.75E-12 

1 

Best -1 -1 -1 -1 -1 -1 -1 

Worst -9.62E-01 -1 -1 -1 -0.99028 -0.99028 -0.9993 

Mean -9.89E-01 -1 -1 -1 -0.99611 -0.99741 -0.99997 
f20-2dim 

Std 7.28E-03 0 0 0 0.0048412 0.00437 0.00012846 

1 

Best -1 -0.9999 -1 -1 -1 -1 -1 

Worst -1 -0.9988 -1 -1 -1 -8.11E-05 -1 

Mean -1 -0.9997 -1 -1 -1 -0.53337 -1 
f21-2dim 

Std 0 2.91E-04 7.07E-05 9.94E-07 2.17E-07 5.07E-01 0 

1 

 

 

            
FIGURE 1 Evolution curves of the fitness values for f13    

 
 
 
 
 
 

 

 
FIGURE 2 Evolution curves of the fitness values for f14 
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FIGURE 3 Evolution curves of the fitness values for f15 

 

 
 FIGURE 4 Evolution curves of the fitness values for f16 
 

            
 
FIGURE 5 Evolution curves of the fitness values for f17   
 

 
 FIGURE 6 Evolution curves of the fitness values for f18 

 

          
 
FIGURE 7 Evolution curves of the fitness values for f19   
  

  
FIGURE 8 Evolution curves of the fitness values for f20 

            
 
Figure 9 Evolution curves of the fitness values for f21 

 
 Figure 10 Variance diagrams for f13 
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FIGURE 11 Variance diagrams for f14 

 
 FIGURE 12 Variance diagrams for f15 
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FIGURE 13 Variance diagrams for f16 
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 FIGURE 14 Variance diagrams for f17      
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FIGURE 15 Variance diagrams for f18      
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 FIGURE 16 Variance diagrams for f19 

          
FIGURE 17 Variance diagrams for f20   
 

 
 FIGURE 18 Variance diagrams for f21 
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From Table 6, we can see that the ESMFO algorithm 
has strong competitiveness in the remaining 11 high-
dimensional standard test functions (except for the 
midstream of the best fitness values obtained on the f10 
function), and its optimization accuracy ranks first. Fig. 19 
to Fig. 42 represent the curves and variance graphs for 12 
high-dimensional functions. Similarly, we can see that 
except for the instability of ESMFO for individual 
functions and the fact that it occasionally falls into local 
optima, the functions have strong stability in search 
accuracy and convergence speed. 

         
FIGURE 19 Evolution curves of the fitness values for f1 
 

 
 FIGURE 20 Evolution curves of the fitness values for f2 

 

         
FIGURE 21 Evolution curves of the fitness values for f3   
 

TABLE 6 
 RESULTS OF ESMFO COMPARED WITH THOSE OF THE OTHER ALGORITHMS FOR THE CASE WITH DIMENSION SIZE=50 

 Algorithm MFO LMFO ESMFO HHO WOA BA CS RANK 

Best 1.42E+00 4.17E-275 0 2.58E-216 1.23E-177 3.93E-03 6.82E-01 

Worst 2.00E+04 2.69E-201 4.72E-285 6.65E-181 2.08E-143 5.94E-03 2.74E+00 

Mean 5.37E+03 8.95E-203 1.66E-286 2.22E-182 6.95E-145 4.82E-03 1.71E+00 
f1-50dim 

Std 5.69E+03 0 0 0 3.80E-144 4.88E-04 6.27E-01 

1 

Best 3.01E+01 2.01E-127 1.73E-174 2.67E-106 3.01E-112 4.22E-01 2.78E+01 

Worst 1.30E+02 5.89E-108 1.11E-144 1.75E-94 1.78E-103 2.83E+00 1.00E+10 

Mean 7.32E+01 4.36E-109 4.19E-146 1.23E-95 9.72E-105 1.34E+00 6.67E+09 
f2-50dim 

Std 3.26E+01 1.37E-108 2.03E-145 3.90E-95 3.34E-104 6.25E-01 4.79E+09 

1 

Best 1.99E+04 8.63E-222 0 1.34E-186 7.20E+04 7.16E-02 2.33E+03 

Worst 7.38E+04 5.82E-167 4.21E-274 3.00E-136 1.81E+05 1.71E-01 4.92E+03 

Mean 4.31E+04 1.94E-168 1.40E-275 1.00E-137 1.25E+05 1.20E-01 3.56E+03 
f3-50dim 

Std 1.52E+04 0 0 5.47E-137 2.70E+04 2.62E-02 7.95E+02 

1 

Best 7.37E+01 4.10E-118 2.25E-165 1.17E-105 1.68E+01 2.05E-01 1.02E+01 

Worst 9.19E+01 4.41E-93 2.84E-138 1.57E-91 9.28E+01 6.56E-01 1.69E+01 

Mean 8.40E+01 1.48E-94 9.74E-140 5.98E-93 6.54E+01 4.76E-01 1.39E+01 
f4-50dim 

Std 4.71E+00 8.05E-94 5.19E-139 2.86E-92 2.48E+01 1.08E-01 2.18E+00 

1 

Best 7.59E+02 4.66E+01 4.66E+01 2.99E-05 4.68E+01 4.54E+01 1.42E+02 

Worst 8.00E+07 4.87E+01 4.87E+01 3.86E-02 4.85E+01 1.10E+02 1.25E+03 

f5-50dim 

Mean 7.88E+06 4.75E+01 4.77E+01 6.07E-03 4.76E+01 5.21E+01 5.39E+02 

2 
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Std 2.40E+07 5.23E-01 6.71E-01 7.91E-03 4.77E-01 1.50E+01 2.52E+02 

Best 3.05E-01 2.28E-06 2.03E-06 7.96E-06 5.04E-05 8.79E-02 8.99E-02 

Worst 7.57E+01 1.55E-04 1.69E-04 5.29E-04 8.05E-03 2.23E-01 3.31E-01 

Mean 1.71E+01 6.15E-05 6.52E-05 8.22E-05 1.86E-03 1.40E-01 1.86E-01 
f6-50dim 

Std 1.84E+01 5.02E-05 4.94E-05 1.05E-04 2.10E-03 3.78E-02 5.98E-02 

1 

Best 2.13E+02 0 0 0 0 2.98E+01 1.20E+02 

Worst 4.08E+02 0 0 0 0 7.15E+01 2.28E+02 

Mean 3.08E+02 0 0 0 0 4.91E+01 1.68E+02 
F7-50dim 

Std 4.56E+01 0 0 0 0 9.47E+00 2.16E+01 

1 

Best 1.74E+01 8.88E-16 8.88E-16 8.88E-16 8.88E-16 2.48E+00 3.79E+00 

Worst 2.00E+01 8.88E-16 8.88E-16 8.88E-16 7.99E-15 3.19E+00 1.14E+01 

Mean 1.93E+01 8.88E-16 8.88E-16 8.88E-16 3.61E-15 2.91E+00 6.24E+00 
f8-50dim 

Std 8.14E-01 0 0 0 2.41E-15 2.11E-01 2.15E+00 

1 

Best 9.89E-01 0 0 0 0 1.42E-04 5.74E-01 

Worst 2.71E+02 0 0 0 0 2.53E-04 1.04E+00 

Mean 5.91E+01 0 0 0 0 1.89E-04 8.52E-01 
f9-50dim 

Std 7.23E+01 0 0 0 0 2.89E-05 1.24E-01 

1 

Best 3.92E+00 4.60E+00 4.05E-08 1.19E-01 2.28E-02 1.36E+01 1.74E+01 

Worst 4.71E+00 4.96E+00 2.72E-04 1.07E+00 7.01E+00 4.76E+01 4.10E+08 

Mean 4.37E+00 4.80E+00 3.67E-05 4.74E-01 4.33E+00 2.89E+01 2.79E+07 
f11-50dim 

Std 2.03E-01 1.00E-01 6.06E-05 2.68E-01 1.79E+00 1.11E+01 1.04E+08 

1 

Best 2.06E-02 4.62E-132 2.04E-181 7.08E-106 2.79E-116 3.44E-02 1.13E+01 

Worst 3.27E+01 2.83E-108 4.51E-142 3.92E-05 2.14E-101 1.57E-01 2.20E+01 

Mean 10.3078 1.37E-109 1.50E-143 1.31E-06 9.25E-103 5.55E-02 1.69E+01 
f12-50dim 

Std 8.6941 5.41E-109 8.23E-143 7.16E-06 3.97E-102 2.56E-02 2.91E+00 

1 

Best 5.22E+02 3.73E-191 1.15E-304 1.11E-137 1.36E+03 2.48E-02 2.39E+02 

Worst 1.77E+03 1.36E-154 1.22E-253 6.99E-47 2.00E+03 5.28E-02 7.03E+02 

Mean 1.08E+03 4.61E-156 4.08E-255 2.33E-48 1.66E+03 3.80E-02 4.54E+02 
f13-50dim 

Std 3.50E+02 2.48E-155 0.00E+00 1.28E-47 1.93E+02 7.90E-03 1.09E+02 

1 

 

 
  
FIGURE 22 Evolution curves of the fitness values for f4 
 

 

         
FIGURE 23 Evolution curves of the fitness values for f5   
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 FIGURE 24 Evolution curves of the fitness values for f6 

         
FIGURE 25 Evolution curves of the fitness values for f7   
 

 
 FIGURE 26 Evolution curves of the fitness values for f8      
 

          
FIGURE 27 Evolution curves of the fitness values for f9 
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   FIGURE 28 Evolution curves of the fitness values for f10 

 

          
FIGURE 29 Evolution curves of the fitness values for f11   
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 FIGURE 30 Evolution curves of the fitness values for f12 
 

     
 FIGURE 31 Variance diagrams for f1   
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 FIGURE 32 Variance diagrams for f2 

 

          
FIGURE 33 Variance diagrams for f3   
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 FIGURE 34 Variance diagrams for f4 

 

        
 FIGURE 35 Variance diagrams for f5     

 

 
 FIGURE 36 Variance diagrams for f6 

           
FIGURE 37 Variance diagrams for f7    
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 FIGURE 38 Variance diagrams for f8 

 

    
FIGURE 39 Variance diagrams for f9   
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 FIGURE 40 Variance diagrams for f10 

 

           
FIGURE 41 Variance diagrams for f11  

 
    
FIGURE 42 Variance diagrams for f12 

It can be seen from the above figures that the energy 
factor in the HHO algorithm provides MFO with a variety 
of optimization solutions, which improve the exploration 
task and enable the algorithm to achieve the global minima 
of more functions than those of the HHO algorithm. The 
results show that almost all the functions can provide good 
optimal values and standard deviation values for fixed-
dimensional and high-dimensional benchmark functions. 
The next section details the impact of the number of 
dimensions on ESMFO performance. 

The performance of the method is evaluated with 
different numbers of dimensions. Four different dimensions 
(50, 100, 200, and 500) are considered to investigate their 
effects on MFO and ESMFO. They are compared with 
meta-heuristic algorithms such as the BA, HHO, WOA, and 
CS algorithms. The results of MFO and ESMFO for 
different dimension sizes are evaluated only on unimodal 
and multimodal, functions which are given in Tables 2 and 
3. The performances of the 12 functions are evaluated; 
however, the dimensions of the fixed-dimensional function 
cannot be changed. In this experiment, the population size 
is taken as 30. 

The results obtained with 50 dimensions are discussed 
in the previous section. It is apparent from Table 6 that 
ESMFO performs best in 12 functions, and with 50 
dimensions, HHO performs well on function f10. In the 
case where dimension=100, ESMFO reaches a global 
minimum for each functions except f5 and f10, as shown in 
Table 7. For functions f5 and f10, HHO provides the best 
results. Table 8 shows the simulation results when the 
number of dimensions is 500, and the results show that 
ESMFO performs well on all functions. The simulation 
results with dimension=1000 are shown in Table 9. The 
results show that HHO achieves good results on f5, and 
ESMFO has excellent performance for all other functions. 
For the f5 and f10 functions, all algorithms provide 
competitive results in terms of the best results, worst results, 
average results and standard deviations. However, HHO is 
considered to be the best due to the fact that it obtains the 
best optimal values. 

 

TABLE 7 
RESULTS OF ESMFO COMPARED THOSE OF THE OTHER ALGORITHMS FOR THE CASE WITH DIMENSION SIZE=100 

Function Algorithm MFO LMFO ESMFO HHO WOA BA CS RANK 

Best 8.35E+03 1.75E-240 0 6.86E-205 2.62E-165 2.12E-02 1.37E+02 

Worst 5.45E+04 5.66E-203 2.87E-274 3.61E-178 6.94E-146 2.60E-02 3.86E+02 

Mean 3.19E+06 1.89E-204 9.56E-276 1.20E-179 2.34E-147 2.36E-02 2.69E+02 
F1-100dim 

Std 1.31E+04 0 0 0 1.27E-146 1.19E-03 7.30E+01 

1 

Best 9.05E+01 8.42E-127 2.63E-173 7.93E-110 4.19E-112 2.66E+00 1.00E+10 F2-100dim 

Worst 2.65E+02 1.13E-104 4.34E-143 5.07E-95 3.10E-99 7.03E+00 1.00E+10 

1 

MFO LMFO ESMFO HHO WOA BA CS 
Algorithm 
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Mean 1.77E+02 3.90E-106 1.49E-144 2.62E-96 1.04E-100 4.25E+00 1.00E+10 

Std 4.45E+01 2.05E-105 7.92E-144 1.03E-95 5.66E-100 1.20E+00 0.00E+00 

Best 1.00E+05 9.36E-224 6.36E-320 6.60E-168 5.47E+05 3.02E+00 2.38E+04 

Worst 3.37E+05 1.26E-177 1.65E-272 6.07E-108 1.23E+06 5.35E+00 4.81E+04 

Mean 2.04E+05 4.21E-179 5.60E-274 2.02E-109 8.66E+05 4.43E+00 3.18E+04 
F3-100dim 

Std 6.02E+04 0 0 1.11E-108 1.63E+05 6.59E-01 6.09E+03 

1 

Best 8.80E+01 6.83E-112 1.08E-163 2.72E-101 2.75E-01 7.14E-01 1.65E+01 

Worst 9.68E+01 8.26E-93 2.21E-136 1.93E-90 9.68E+01 1.08E+00 3.08E+01 

Mean 9.30E+01 3.93E-94 8.42E-138 6.67E-92 6.22E+01 9.00E-01 2.31E+01 
F4-100dim 

Std 2.08E+00 1.62E-93 4.04E-137 3.53E-91 3.46E+01 9.20E-02 3.24E+00 

1 

Best 9.54E+06 9.71E+01 9.71E+01 1.78E-06 9.72E+01 9.53E+01 2.60E+04 

Worst 1.85E+08 9.87E+01 9.86E+01 3.58E-02 9.84E+01 2.03E+02 1.19E+05 

Mean 7.36E+07 9.80E+01 9.81E+01 8.62E-03 9.79E+01 1.06E+02 4.72E+04 
F5-100dim 

Std 4.70E+07 5.00E-01 5.04E-01 1.06E-02 3.92E-01 2.30E+01 2.14E+04 

2 

Best 1.66E+01 1.61E-05 1.29E-06 2.05E-06 1.28E-05 2.28E-01 7.59E-01 

Worst 5.20E+02 2.66E-04 1.95E_04 4.47E-04 1.93E-02 5.94E-01 1.92E+00 

Mean 1.45E+02 9.34E-05 5.75E-05 8.27E-05 2.33E-03 3.54E-01 1.28E+00 
F6-100dim 

Std 1.13E+02 6.02E-05 4.64E-05 9.86E-05 4.01E-03 7.84E-02 2.90E-01 

1 

Best 5.86E+02 0 0 0 0 7.42E+01 3.62E+02 

Worst 8.87E+02 0 0 0 0 1.55E+02 5.08E+02 

Mean 7.47E+02 0 0 0 0 1.03E+02 4.35E+02 
F7-100dim 

Std 7.03E+01 0 0 0 0 1.64E+01 3.99E+01 

1 

Best 1.92E+01 8.88E-16 8.88E-16 8.88E-16 8.88E-16 2.62E+00 6.98E+00 

Worst 2.00E+01 8.88E-16 8.88E-16 8.88E-16 7.99E-15 3.42E+00 1.95E+01 

Mean 1.98E+01 8.88E-16 8.88E-16 8.88E-16 3.49E-15 3.03E+00 9.87E+00 
F8-100dim 

Std 2.32E-01 0 0 0 2.46E-15 2.11E-01 2.18E+00 

1 

Best 1.21E+02 0 0 0 0 4.89E-04 2.45E+00 

Worst 5.76E+02 0 0 0 1.32E-01 8.07E-04 5.13E+00 

Mean 3.20E+02 0 0 0 4.39E-03 6.07E-04 3.45E+00 
F9-100dim 

Std 1.20E+02 0 0 0 2.40E-02 6.81E-05 6.65E-01 

1 

Best 2.56E+07 9.25E+00 9.61E+00 5.97E-08 5.94E-01 1.04E+01 1.72E+02 

Worst 8.18E+08 9.73E+00 9.95E+00 5.24E-04 3.65E+00 1.59E+01 2.79E+04 

Mean 2.71E+08 9.55E+00 9.85E+00 4.35E-05 1.61E+00 1.32E+01 3.58E+03 
F10-100dim 

Std 2.36E+08 1.29E-01 8.95E-02 9.79E-05 6.54E-01 1.36E+00 5.50E+03 

4 

Best 1.78E+01 2.14E-132 1.76E-172 4.20E-113 1.92E-112 1.04E-01 3.43E+01 

Worst 6.88E+01 8.51E-106 2.68E-147 6.76E-94 3.34E-103 1.82E+00 5.74E+01 

Mean 3.92E+01 2.88E-107 8.93E-149 2.29E-95 2.43E-104 3.44E-01 4.56E+01 
F11-100dim 

Std 1.13E+01 1.55E-106 4.89E-148 1.23E-94 7.37E-104 3.57E-01 5.73E+00 

1 

Best 2.26E+03 1.11E-174 1.72e-315 2.39E-88 2.73E+03 1.15E+01 1.31E+03 

Worst 5.28E+03 5.51E-135 3.02E-248 1.73E-17 3.93E+03 2.69E+01 2.32E+03 

F12-100dim 

Mean 3.53E+03 1.84E-136 1.01E-249 5.77E-19 3.35E+03 1.74E+01 1.75E+03 

1 
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Std 8.41E+02 1.01E-135 0 3.16E-18 2.67E+02 3.57E+00 2.78E+02 

TABLE 8 
RESULTS OF ESMFO COMPARED THOSE OF THE OTHER ALGORITHMS FOR THE CASE WITH DIMENSION SIZE=500 

Function Algorithm MFO LMFO ESMFO HHO WOA BA CS RANK 

Best 8.74E+05 5.57E-247 0 3.54E-209 2.07E-164 1.03E+00 3.24E+04 

Worst 1.01E+06 1.94E-191 3.20E-280 4.50E-183 1.08E-146 1.22E+00 5.01E+04 

Mean 9.52E+05 7.16E-193 1.22E-281 1.99E-184 5.31E-148 1.13E+00 3.91E+04 
F1-500dim 

Std 3.32E+04 0 0 0 2.05E-147 5.72E-02 3.94E+03 

1 

Best 2.00E+03 1.31E-123 2.16E-177 4.80E-108 5.62E-109 5.18E+01 1.00E+10 

Worst 2.54E+03 1.50E-96 2.95E-139 1.06E-94 6.36E-99 7.12E+01 1.00E+10 

Mean 2.24E+03 5.02E-98 9.96E-141 5.29E-96 2.26E-100 6.30E+01 1.00E+10 
F2-500dim 

Std 9.92E+01 2.74E-97 5.38E-140 1.98E-95 1.16E-99 4.36E+00 0.00E+00 

1 

Best 2.67E+06 4.83E-206 0 2.93E-146 1.43E+07 3.03E+02 9.11E+05 

Worst 5.33E+06 1.79E-167 3.34E-251 4.62E-81 7.09E+07 3.92E+02 1.47E+06 

Mean 3.81E+06 7.61E-169 1.11E-252 1.57E-82 3.05E+07 3.40E+02 1.20E+06 
F3-500dim 

Std 7.02E+05 0 0 8.44E-82 1.17E+07 2.18E+01 1.60E+05 

1 

Best 9.83E+01 6.25E-112 4.74E-167 1.99E-103 4.08E+00 1.61E+00 3.30E+01 

Worst 9.95E+01 9.53E-85 2.36E-138 1.95E-90 9.91E+01 1.99E+00 4.11E+01 

Mean 9.90E+01 3.18E-86 9.89E-140 6.64E-92 7.52E+01 1.79E+00 3.67E+01 
F4-500dim 

Std 3.23E-01 1.74E-85 4.32E-139 3.55E-91 2.65E+01 8.21E-02 2.07E+00 

1 

Best 3.65E+09 4.98E+02 4.98E+02 2.31E-04 4.95E+02 6.38E+02 7.57E+06 

Worst 4.57E+09 4.99E+02 4.98E+02 5.76E-01 4.97E+02 1.02E+03 1.73E+07 

Mean 4.08E+09 4.99E+02 4.98E+02 8.75E-02 4.96E+02 8.05E+02 1.16E+07 
F5-500dim 

Std 2.41E+08 1.21E-01 1.23E-01 1.25E-01 4.71E-01 8.53E+01 2.27E+06 

3 

Best 2.59E+04 1.68E-06 8.74E-07 2.34E-06 7.89E-05 1.11E+01 6.75E+01 

Worst 3.33E+04 2.51E-04 2.26E-04 6.26E-04 1.06E-02 1.94E+01 1.56E+02 

Mean 3.03E+04 7.39E-05 6.18E-05 1.03E-04 2.02E-03 1.40E+01 1.01E+02 
F6-500dim 

Std 2.08E+03 6.35E-05 6.01E-05 1.45E-04 2.23E-03 1.60E+00 2.11E+01 

1 

Best 6.08E+03 0 0 0 0 6.52E+02 3.37E+03 

Worst 6.64E+03 0 0 0 0 7.77E+02 3.87E+03 

Mean 6.45E+03 0 0 0 0 7.16E+02 3.67E+03 
F7-500dim 

Std 1.39E+02 0 0 0 0 3.49E+01 1.08E+02 

1 

Best 2.00E+01 8.88E-16 8.88E-16 8.88E-16 8.88E-16 3.25E+00 1.13E+01 

Worst 2.03E+01 8.88E-16 8.88E-16 8.88E-16 7.99E-15 3.56E+00 1.48E+01 

Mean 2.01E+01 8.88E-16 8.88E-16 8.88E-16 3.49E-15 3.39E+00 1.23E+01 
F8-500dim 

Std 1.32E-01 0 0 0 2.46E-15 7.91E-02 1.07E+00 

1 

Best 8.00E+03 0 0 0 0 1.34E-02 2.99E+02 

Worst 9.46E+03 0 0 0 0 1.76E-02 4.13E+02 

Mean 8.62E+03 0 0 0 0 1.58E-02 3.65E+02 
F9-500dim 

Std 3.37E+02 0 0 0 0 1.17E-03 3.04E+01 

1 

Best 1.56E+10 4.95E+01 4.97E+01 4.28E-06 5.25E+00 8.40E+01 1.00E+10 F10-500dim 

Worst 2.06E+10 4.98E+01 4.99E+01 4.08E-04 1.99E+01 1.00E+02 1.00E+10 

4 
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Mean 1.77E+10 4.97E+01 4.99E+01 1.21E-04 1.11E+01 9.41E+01 1.00E+10 

Std 1.07E+09 6.62E-02 4.99E-02 1.06E-04 3.61E+00 3.50E+00 0.00E+00 

Best 7.43E+02 1.07E-124 1.13E-183 2.91E-108 2.44E-112 9.02E+00 2.64E+02 

Worst 8.80E+02 3.68E-104 9.23E-143 5.51E-05 1.80E-99 1.85E+01 3.18E+02 

Mean 795.3246 1.64E-105 4.38E-144 1.84E-06 6.04E-101 1.33E+01 2.90E+02 
F11-500dim 

Std 30.1765 6.85E-105 1.73E-143 1.01E-05 3.29E-100 2.93E+00 1.41E+01 

1 

Best 1.50E+04 8.99E-138 4.62E-261 2.90E-23 1.53E+04 4.28E+02 9.32E+03 

Worst 2.91E+04 5.53E-95 1.54E-205 1.80E+04 1.82E+04 5.67E+02 1.64E+04 

Mean 2.26E+04 1.89E-96 5.13E-207 5.62E+03 1.65E+04 4.76E+02 1.21E+04 
F12-500dim 

Std 4.09E+03 1.01E-95 0.00E+00 7.16E+03 6.84E+02 3.51E+01 2.23E+03 

1 

 
 

TABLE 9 
RESULTS OF ESMFO COMPARED THOSE OF THE OTHER ALGORITHMS FOR THE CASE WITH DIMENSION SIZE=1000 

Function Algorithm MFO LMFO ESMFO HHO WOA BA CS RANK 

Best 2.35E+06 1.72E-229 0 3.34E-206 3.88E-158 8.48E+00 1.12E+05 

Worst 2.56E+06 5.94E-184 2.56E-270 1.44E-179 9.93E-145 1.12E+01 1.39E+05 

Mean 2.47E+06 2.28E-185 8.53E-272 6.64E-181 7.06E-146 9.90E+00 1.26E+05 
F1-1000dim 

Std 5.14E+04 0.00E+00 0.00E+00 0.00E+00 2.21E-145 6.65E-01 6.88E+03 

1 

Best Inf 4.69E-122 1.39E-163 2.08E-103 3.77E-115 1.86E+02 1.00E+10 

Worst Inf 2.10E-99 3.23E-138 1.73E-91 1.17E-98 2.27E+02 1.00E+10 

Mean Inf 7.02E-101 1.08E-139 6.16E-93 5.72E-100 2.04E+02 1.00E+10 
F2-1000dim 

Std NaN 3.84E-100 5.90E-139 3.16E-92 2.31E-99 9.77E+00 0.00E+00 

1 

Best 9.56E+06 1.51E-201 0 2.89E-164 5.92E+07 1.25E+03 3.11E+06 

Worst 1.98E+07 2.93E-160 5.76E-254 2.31E-62 2.08E+08 1.74E+03 6.73E+06 

Mean 1.38E+07 9.77E-162 1.92E-255 7.71E-64 1.18E+08 1.44E+03 5.26E+06 
F3-1000dim 

Std 2.57E+06 5.34E-161 0 4.22E-63 4.26E+07 1.08E+02 8.43E+05 

1 

Best 9.92E+01 9.03E-109 2.04E-165 2.71E-108 3.54E+01 1.96E+00 3.53E+01 

Worst 9.97E+01 2.27E-80 6.32E-137 1.15E-89 9.95E+01 2.23E+00 4.60E+01 

Mean 9.95E+01 7.57E-82 3.83E-138 3.96E-91 7.92E+01 2.09E+00 4.00E+01 
F4-1000dim 

Std 1.49E-01 4.15E-81 1.39E-137 2.09E-90 1.82E+01 6.61E-02 2.68E+00 

1 

Best 1.03E+10 9.98E+02 9.98E+02 1.33E-04 9.91E+02 3.81E+03 2.83E+07 

Worst 1.16E+10 9.99E+02 9.98E+02 6.08E-01 9.95E+02 4.79E+03 5.74E+07 

Mean 1.11E+10 9.98E+02 9.98E+02 1.20E-01 9.93E+02 4.25E+03 4.10E+07 
F5-1000dim 

Std 3.78E+08 7.42E-02 1.31E-01 1.57E-01 9.57E-01 2.90E+02 6.41E+06 

3 

Best 1.59E+05 1.31E-06 2.10E-06 3.11E-06 9.85E-05 3.35E+02 5.00E+02 

Worst 1.87E+05 3.07E-04 2.39E-04 3.11E-04 1.10E-02 6.27E+02 8.97E+02 

Mean 1.73E+05 6.83E-05 5.36E-05 6.67E-05 2.45E-03 4.90E+02 6.51E+02 
F6-1000dim 

Std 7.03E+03 7.45E-05 4.95E-05 7.04E-05 2.54E-03 6.35E+01 9.13E+01 

1 

Best 1.43E+04 0 0 0 0 1.93E+03 8.08E+03 

Worst 1.52E+04 0 0 0 0 2.18E+03 8.70E+03 

F7-1000dim 

Mean 1.48E+04 0 0 0 0 2.10E+03 8.31E+03 

1 
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Std 246.3925 0 0 0 0 6.37E+01 1.33E+02 

Best 2.00E+01 8.88E-16 8.88E-16 8.88E-16 8.88E-16 3.44E+00 1.11E+01 

Worst 2.05E+01 8.88E-16 8.88E-16 8.88E-16 7.99E-15 3.73E+00 1.57E+01 

Mean 2.02E+01 8.88E-16 8.88E-16 8.88E-16 4.09E-15 3.59E+00 1.28E+01 
F8-1000dim 

Std 2.27E-01 0 0 0 2.85E-15 7.05E-02 1.04E+00 

1 

Best 2.15E+04 0 0 0 0 7.29E-02 9.36E+02 

Worst 2.34E+04 0 0 0 1.11E-16 9.97E-02 1.38E+03 

Mean 2.23E+04 0 0 0 3.70E-18 8.08E-02 1.10E+03 
F9-1000dim 

Std 4.72E+02 0 0 0 2.03E-17 5.27E-03 1.10E+02 

1 

Best 4.63E+10 9.95E+01 9.97E+01 1.54E-08 1.14E+01 1.97E+02 1.00E+10 

Worst 5.23E+10 9.98E+01 9.99E+01 5.21E-04 4.40E+01 2.16E+02 1.00E+10 

Mean 4.99E+10 9.97E+01 9.98E+01 9.18E-05 2.31E+01 2.08E+02 1.00E+10 
F10-1000dim 

Std 1.43E+09 7.54E-02 5.67E-02 1.13E-04 6.98E+00 5.00E+00 0.00E+00 

3 

Best 1.97E+03 5.96E-126 4.34E-171 2.15E-109 4.21E-114 4.62E+01 5.85E+02 

Worst 2.21E+03 3.01E-100 1.18E-141 4.69E-04 1.05E-97 7.18E+01 6.97E+02 

Mean 2.07E+03 1.60E-101 5.10E-143 1.56E-05 3.53E-99 6.08E+01 6.52E+02 
F11-1000dim 

Std 5.09E+01 6.30E-101 2.23E-142 8.57E-05 1.92E-98 6.57E+00 2.74E+01 

1 

Best 3.42E+04 2.45E-126 4.94E-258 6.58E-04 3.13E+04 8.86E+02 1.98E+04 

Worst 6.07E+04 2.05E-89 1.58E-193 3.54E+04 3.46E+04 1.07E+03 3.37E+04 

Mean 4.75E+04 9.58E-91 5.79E-195 2.11E+04 3.32E+04 9.87E+02 2.77E+04 
F12-1000dim 

Std 7.74E+03 3.91E-90 0 1.39E+04 9.94E+02 4.93E+01 4.72E+03 

1 

The effects of using 50, 100, 200, and 500 dimensions 
are evaluated. We randomly select several functions from 
the 12 total test functions to compare the optimal values 
obtained by the algorithms in three-dimensional stereo 
histograms and record the optimal fitness values of each 
algorithm in different dimensions, as shown in Figs. 43-48. 
From the graph, we can see that ESMFO has obvious 
advantages over the MFO, WOA, BA and CS algorithms in 
several test functions. As the number of dimensions 
increases, the convergence accuracy of each of the four 
algorithms decreases successively. Compared with the 
accuracy of the LMFO and HHO algorithms, this difference 
is not  

obvious, but we can see from the local comparison graphs 
for the f2 function (Figs. 45- 46), the performance of 
ESMFO is better than those of the LMFO and HHO 
algorithms. The results show that ESMFO is superior to the 
other algorithms in all dimensions. ESMFO provides good 
results for all functions except f5 and f10. The results show 
that the performance of the ESMFO algorithm decreases as 
the number of dimensions increases, but it is better than 
those of the other algorithms. 

 

 
FIGURE 43 Comparison of the optimal fitness values obtained by the algorithms based on the number of dimensions of f1   
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FIGURE 44 Comparison of the optimal fitness values obtained by the algorithms based on the number of dimensions of f2  

FIGURE 45 Local comparison of the optimal fitness values obtained by the algorithms based on the number of dimensions of f2 

 
                                                 

 FIGURE 46 Local comparison of the optimal fitness values obtained by the algorithms based on the number of dimensions of f2 

                                                    
 FIGURE 47 Comparison of the optimal fitness values obtained by the algorithms based on the number of dimensions of f2 
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            FIGURE 48 Comparison of the optimal fitness values obtained by the algorithms based on the number of dimensions of f4  

FIGURE 49 Comparison of the optimal fitness values obtained by the algorithms based on the number of dimensions of f11 

 
FIGURE 50 Comparison of the optimal fitness values obtained by the algorithms based on the number of dimensions of f12 

 

 

In the basic MFO algorithm, the parameter b defines 
the shape of the spiral. The spiral chosen for this paper is a 
logarithmic spiral whose equation is as follows: 

ber                                   (18)                             
where r and θ are the polar coordinates of the curve that 
define the distance from the origin and the angle from the x-
axis, respectively, and b is any real positive constant. The 
rate of change of the radius with respect to θ is given as: 

rbeb
d

dr b  


                           (19)            

From these equations, it is observed that b is the parameter 
that defines how tightly and in which direction a spiral is 

spun. There are two extreme cases for the values of b: for b 
= 0, the spiral is converted into a circle, and for b = ∞, the 
spiral becomes a straight line. The value chosen in the 
original article about the MFO algorithm for this parameter 
is 1, and no parametric study for its use has been given. 
Therefore, in order to evaluate the effect of b on the 
performance of the algorithm, four different values of this 
parameter are compared. 

Experimental analysis: The results are obtained for 
different values of b, such as 0.5, 1 and 2. The population 
size and number of iterations are set as 30 and 1000, 
respectively, during the experimental analysis. This analysis 
is conducted on both the MFO and ESMFO algorithms. 
First, for MFO with b = 0:5, the algorithm achieves the best 
results for six functions in terms of the best results, worst 
results, average results and standard deviations. When the 

4.5. Effect of the Parameter B on 
the Performances of Mfo and Esmfo  
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experiment is performed with b = 1, five functions yield 
good results, whereas at b = 2 only one functions yields 
good results. Eight functions yield highly competitive 
results for all values of b. Furthermore, for the ESMFO 
algorithm, it is concluded from Table 10 that twelve 
functions offer highly competitive results for all values of b. 
The five functions f2, f4, f5, f10 and f12 are successful in 
obtaining global optima for b = 1; on the other hand, for b = 
0:5, only 3 out of 21 functions, i.e., f6, f11 and f14, yield 
good results. For b = 2, only one function is successful in 
obtaining optimal results (Table 10). 

Inference: In the basic MFO algorithm, the parameter 
b basically defines the shape of the spiral, and its value is 
set to 1. The author does not provide any explanation for 

the chosen value. Therefore, an experimental analysis is 
conducted to analyze the effect of b on the algorithm. 
Different values of b are chosen: 0.5, 1 and 2. It is clear 
from the above analysis that b = 1 is the ideal value for 
ESMFO. 

 

 

 

 
                

TABLE 10 
EXPERIMENTAL ANALYSIS WITH DIFFERENT VALUES OF b 

b=0.5 b=1 b=2 
Function Performance 

MFO ESMFO MFO ESMFO MFO ESMFO 

Best 2.65E-06 0 2.76E-06 0 1.12E-03 0 

Worst 2.00E+04 8.50E-281 1.33E-02 1.49E-289 1.00E+04 5.14E-289 

Average 1.00 E+03 2.87E-282 7.49 E-04 4.98E-291 2.00 E+03 1.89E-290 
f1 

SD 4.26E+03 0 2.41E-03 0 4.07E+03 0 

Best 3.26 E-05 5.40E-178 9.67 E-04 7.59E-179 1.00E+01 6.89E-175 

Worst 5.00E+01 1.71E-143 6.00E+01 4.67E-146 1.00E+02 4.44E-145 

Average 2.37E+01 5.71E-145 3.10E+01 1.56E-147 4.87E+01 1.48E-145 
f2 

SD 1.43E+01 3.13E-144 1.71E+01 8.52E-147 2.61E+01 8.11E-145 

Best 4.82E+02 0 8.48E+02 3.93E-178 8.93E+02 0 

Worst 3.35E+04 2.99E-288 5.80E+04 1.89E-148 5.83E+04 1.26E-269 

Average 1.48E+04 9.97E-290 2.04E+04 7.26E-150 2.65E+04 4.22E-271 
f3 

SD 107E+04 0 1.46E+04 3.49E-149 1.51E+04 0 

Best 5.83E+01 1.93E-175 4.26E+01 3.34E-176 2.01E+01 6.53E-165 

Worst 8.62E+01 7.63E-142 8.17E+01 4.45E-175 5.88E+01 3.58E-135 

Average 7.19E+01 2.54E-143 6.66E+01 1.48E-131 4.08E+01 1.94E-136 
f4 

SD 8.01E+00 1.39E-142 1.08E+01 8.12E-131 9.28E+00 6.53E-136 

Best 1.62E+01 2.65E+01 1.36E+01 2.64E+01 7.09E+01 2.66E+01 

Worst 9.01E+04 2.88E+01 9.00E+04 2.80E+01 8.00E+07 2.87E+01 

Average 6.35E+04 2.75E+01 6.45E+04 2.72E+01 8.02E+06 2.73E+01 
f5 

SD 2.28E+04 6.81E-01 2.27E+04 4.40E-01 2.24E+07 5.12E-01 

Best 2.88E-02 2.06E-07 3.17E-02 2.01E-06 5.91E-02 1.73E-06 

Worst 5.11E+01 2.83E-04 1.08E+01 1.44E-04 4.84E+01 2.03E-04 

Average 4.42E+00 5.88E-05 1.49E+00 5.32E-05 6.31E+00 4.79E-05 
f6 

SD 1.09E+00 6.62E-05 2.99E+00 3.81E-05 1.02E+01 5.23E-05 

Best 1.12E+02 0 8.46E+01 0 2.98E+01 0 f7 

Worst 2.77E+02 0 2.24E+02 0 2.18E+02 0 
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Average 1.69E+02 0 1.65E+02 0 9.34E+01 0 

SD 3.86E+01 0 3.75E+01 0 4.21E+01 0 

Best 1.65E+00 8.88E-16 0.81E-02 8.88E-16 3.29E-02 8.88E-16 

Worst 1.99E+01 8.88E-16 1.99E+01 8.88E-16 1.99E+01 8.88E-16 

Average 1.24E+01 8.88E-16 1.43E+01 8.88E-16 1.86E+01 8.88E-16 
f8 

SD 7.63E+00 0 7.98E+00 0 5.04E+00 0 

Best 7.91E-06 0 2.55E-05 0 2.98E-03 0 

Worst 1.80E+02 0 1.81E+02 0 1.81E+02 0 

Average 2.41E+01 0 3.32E+01 0 2.11E+01 0 
f9 

SD 1.69E+01 0 6.05E+01 0 5.83E+01 0 

Best 1.00E-04 1.43E+00 9.42E-04 9.80E-01 2.28E-04 1.08E-00 

Worst 8.65E+00 2.97 E+00 8.97E-01 2.97E+00 1.68E+00 2.80E+00 

Average 8.52E-01 2.65 E+00 1.04E-01 2.48E+00 1.07E-01 2.44E+00 
f10 

SD 1.73E+00 3.49 E-01 2.01E-01 5.45E-01 3.01E-01 4.03E-01 

Best 4.71E-06 1.07E-180 4.19E-05 2.11E-179 3.11E-04 3.66E-176 

Worst 2.42E+01 5.28E-147 1.93E+01 4.02E-140 1.98E+01 1.69E-140 

Average 3.97E+00 1.76E-148 4.83E+00 1.34E-141 8.51E+00 5.66E-142 
f11 

SD 5.14E+00 9.63E-148 5.26E+00 7.33E-141 6.58E+00 3.09E-141 

Best 1.86E+01 7.02E-322 1.14E+01 0 2.17E+01 8.65E_319 

Worst 6.21E+02 1.36E-245 8.16E+02 2.35E-264 9.12E+02 4.81E-259 

Average 2.40E+02 8.37E-247 2.81E+02 7.83E-266 3.35E+02 1.60E-260 
f12 

SD 1.79E+02 0 2.67E+02 0 3.15E+02 0 

Best 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 

Worst 1.08E+01 1.27E+01 1.17E+01 1.27E+01 5.93E+00 1.27E+01 

Average 2.87E+00 3.22E+00 2.48E+00 4.98E+00 1.66E+00 4.59E+00 
f13 

SD 2.49E+00  3.34E+00  2.37E+00  4.53E+00 1.33E+00 4.02E+00 

Best 3.56E-04 3.08E-04 6.18E-04 3.09E-04 6.56E-04 3.07E-04 

Worst 2.03E-02 6.79E-04 2.04E-02 5.83E-04 2.04E-02 1.23E-03 

Average 1.81E-03 3.44E-04 2.03E-03 3.48E-04 2.37E-03 4.06E-04 
f14 

SD 3.77E-03 8.00E-05 3.73E-03 7.61E-05 4.91E-03 2.39E-04 

Best -1.306 -1.306 -1.306 -1.306 -1.306 -1.306 

Worst -1.306 -1.306 -1.306 -1.306 -1.306 -1.306 

Average -1.306 -1.306 -1.306 -1.306 -1.306 -1.306 
f15 

SD 6.78E-16 2.53E-06 6.78E-16 1.90E-06 6.78E-16 2.25E-06 

Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.3979 

Worst 0.39789 0.39823 0.39789 0.39813 0.39789 0.39862 

Average 0.39789 0.39797 0.39789 0.39795 0.39789 0.39798 
f16 

SD 0 1.07E-04 0 6.68E-05 0 1.40E-04 

f17 Best 3 3 3 3 3 3 
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Worst 3 3.0005 3 3.0004 3 3.0002 

Average 3 3.0001 3 3.0001 3 3.0001 

SD 1.86E-15 1.58E-04 1.59E-15 8.62E-05 2.24E-15 7.41E-05 

Best -0.30048 -0.30048 -0.30048 -0.30048 -0.30048 -0.30048 

Worst -0.30048 -0.30048 -0.30048 -0.30048 -0.30048 -0.30048 

Average -0.30048 -0.30048 -0.30048 -0.30048 -0.30048 -0.30048 
f18 

SD 2.26E-16 2.26E-16 2.26E-16 2.26E-16 2.26E-16 2.26E-16 

Best -1 -1 -1 -1 -1 -1 

Worst -9.36E-01 -1 -9.36E-01 -1 -9.36E-01 -1 

Average -9.72E-01 -1 -9.62E-01 -1 -9.72E-01 -1 
f19 

SD 3.21E-02 0 3.18E-02 0 3.21E-02 0 

Best -1 -1 -1 -1 -1 -1 

Worst -9.90E-01 -1 -9.90E-01 -1 -9.90E-01 -1 

Average -9.91E-01 -1 -9.92E-01 -1 -9.91E-01 -1 
f20 

SD 2.47E-03 0 3.95E-03 0 2.47E-03 0 

Best  -1 -1 -1 -1 -1 -1 

Worst -1 -0.99974 -1 -1 -1 -0.99957 

Average -1 -0.99994 -1 -1 -1 -0.99993 
f21 

SD 0 5.72E-05 0 8.98E-05 0 8.62E-05 

 

The statistical testing used includes the Wilcoxon 
rank-sum test [38][39], which tests the performances of two 
different algorithms. Here, the performance of ESMFO is 
checked with respect to those of the BA, CS, WOA, HHO, 
MFO and LMFO algorithms. Basically, this test is used to 
find the difference in performance between two algorithms, 
and at the end of this test we obtain a p-value as the output. 
This p-value signifies the significance of the algorithm 
being tested. If the p-value is lower than 0.05, then the 
corresponding algorithm is said to be statically significant. 
The data shown by the red horizontal line represent a large 
similarity between ESMFO and another algorithm. It can be 
seen from the table that ESMFO has similarity with two or 

more algorithms for functions f5, f6, and f18. The data 
obtained from Table 5 and Table 6 can be seen in these 
three functions. The algorithm reaches the convergence 
state and the optimization obtains the optimal value. It is 
proven that the comparison of the data is statistically 
significant. The results shown in Table 10 demonstrate that 
ESMFO performs better than the competing algorithms on 
twenty functions. An NA value for any algorithm shows the 
algorithm’s superiority over other algorithms, and the p-
values of these algorithms are given with respect to the 
superior algorithm. The statistical results prove that 
ESMFO is a better algorithm than the others (Table 11). 

 
TABLE 11 

P-VALUES OF THE WILCOXON RANK-SUM TEST OVER ALL RUNS (P≥0.05 ARE UNDERLINED) 

Function          MFO LMFO HHO WOA BA CS 

 1         2.92E-11 2.92E-11 2.92E-11 2.92E-11 2.92E-11 2.92E-11 

2          3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.27E-11 

3          3.00E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 

4          3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

5          3.02E-11 0.8883 3.02E-11 0.7506 0.0042 3.02E-11 

6          3.02E-11 0.8534 0.9117 1.69E-09 3.02E-11 3.02E-11 

7          1.21E-12 NA NA NA 1.21E-12 1.21E-12 

4.6. Statistical Testing  
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8          1.21E-12 NA NA 2.51E-07 1.21E-12 1.21E-12 

9          1.21E-12 NA NA NA 1.21E-12 1.21E-12 

10          3.02E-11 8.99E-11 3.02E-11 3.02E-11 0.9823 3.02E-11 

11          3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

12          3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

13          5.39E-07 0.836 9.76E-10 1.61E-06 5.09E-06 1.21E-12 

14          3.50E-09 0.0012 0.0933 2.60E-08 1 3.02E-11 

15          1.21E-12 1.11E-04 2.98E-11 3.02E-11 1.33E-10 1.21E-12 

16          1.21E-12 2.57E-07 4.50E-11 7.77E-12 3.02E-11 1.21E-12 

17          2.00E-11 0.2519 3.02E-11 9.51E-06 0.0012 1.57E-11 

18          1.21E-12 0.2009 0.0824 0.3953 8.48E-09 1.21E-12 

19          3.06E-04 NA NA 0.0216 1.21E-12 5.37E-06 

20          2.57E-13 NA NA 1.44E-04 1.21E-12 1.21E-12 

21          1.21E-12 5.86E-06 1.46E-10 4.08E-11 0.379 1.21E-12 

This problem was first proposed by Kannan and 
Kramer (1994) to minimize the total cost of the materials 
and the processes of forming and welding cylindrical 
containers. The schematic view of the pressure vessel 
design problem is shown in Fig. 51. There are four design 
variables: 

 

 

 

 

 

Fig. 51 Pressure vessel design problem 

sT ( 1x , thickness of the shell); hT ( 2x , thickness of the 
head); R ( 3x , inner radius); and L ( 4x , length of the 
cylindrical section without considering the head). R  and L  
are continuous variables, whereas sT  and hT  are integer 
values that are multiples of 0.0625 in. The mathematical 
formulation of this problem is described below: 
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where  

10625.01 x , 0625.0992 x , 30.10 x , and 

0.2004 x . 

The structure of the pressure vessel is optimized with 
IMFO and the results are compared to those of the MFO, 
GSA, PSO, GA, ES, DE, IMFO and ACO algorithms. The 
results in Table 12 show the superiority of ESMFO with 
respect to the other algorithms. 

TABLE 12 
COMPARISON RESULTS FOR THE PRESSURE VESSEL DESIGN PROBLEM 

Optimal values for the variables Algorithm 

Ts Th    R   L 

Optimum 

cost 

ESMFO 0.78246 0.37243 40.21238 177.897865 5867.4375 

IMFO[50] 0.77455 0.38320 40.31962 200.00000 5870.12398 

MFO [22] 0.8125 0.4375 42.098445 176.636596 6059.7143 

GSA [16] 1.1250 0.6250 55.988659 84.4542025 8538.8359 

PSO [7] 0.8125 0.4375 42.091266 176.746500 6061.0777 

DE [6] 0.8125 0.4375 42.098411 176.637690 6059.7340 

ACO [9] 0.8125 0.4375 42.103624 176.572656 6059.0888 

ES [51] 0.8125 0.4375 42.098087 176.640518 6059.7456 

GA [52] 0.8125 0.4375 42.097398 176.654050 6059.9463 

 
The proposed approach is verified on 21 benchmark 

functions and compared with the LMFO, HHO, MFO, BA, 
WOA and CS algorithms. It is clear from the results 
(comparison between the improved ESMFO algorithm and 
the other algorithms based on solution quality) that this 
approach is successful in obtaining optimal results and 
avoiding local minima. Additionally, there is wide 
discussion about parameter b, whose explanation is not 
given in the original paper; this paper clearly describes the 
importance of b. In this paper, the effect of problems with 
different numbers of dimensions (i.e., 50, 100, 500 and 
1000 dimensions) on MFO, ESMFO and other algorithms is 
also analyzed. In addition, the pressure vessel design 

4.7. Pressure Vessel Design Problem  
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problem is examined. It is found that the proposed ESMFO 
algorithm yields highly competitive results for most of the 

test functions considered. 
 

 
In this paper, by introducing the energy factor from the 

Harris hawks algorithm, the flame energy of the MFO 
algorithm is segmented, and the energy-segmented moth-
flame optimization algorithm (ESMFO) is proposed. The 
algorithm is applied to 21 benchmark functions, along with 
several mainstream heuristic algorithms. The simulation 
experiment is carried out and the influence of changes in the 
number of dimensions on the algorithm is considered. The 
results are statistically tested (Wilkerson value test), and the 
statistical conclusions that the ESMFO algorithm exhibits 
high convergence speed and high convergence accuracy are 
obtained. For future work, there are many ways by which 
ESMFO can be efficiently improved. These include applying 
ESMFO in different applications, such as PV parameter 
estimation, neural network applications, image processing 
applications, text and data mining applications, big data 
applications, signal denoising, recourse management 
applications, network applications, industry and engineering 
applications, other benchmark test functions, smart home 
applications, feature selection, image segmentation, task 
scheduling, and more. The algorithm can also be extended to 
real-world applications that depend on binary, discrete, and 
multiobjective optimization. Moreover, the performance of 
ESMFO can be improved by combining it with Levy fight, 
disruption, mutation, other stochastic components, local 
search methods, global search methods, and other 
evolutionary operators. Additionally, binary and 
multiobjective versions can be developed to solve practical 
optimization problems. 
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