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Abstract—The seriousness of air pollution appears to be the importance of wind energy as a non-polluting 
energy source. Today, the use of wind power has become a trend for new countries to develop new energy 
sources. Wind turbines are the key equipment for converting wind energy into electrical energy, the quality of the 
state directly affects the efficiency of wind power generation. Therefore, how to effectively diagnose the wind 
turbine drive system is the guarantee of wind power generation. This paper establishes a fault diagnosis method 
for wind turbine drive based on vibration characteristics, by wavelet packet decomposition of vibration signals. 
The feature extraction is carried out and back propagation neural network is used for classification research. 
Finally, the simulation results show that the recognition rate is over 90%, which verify effectiveness of the 
proposed method. 
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1. Introduction 

to stop. According to the fault data of Swedish, Danish 
and German research institutes, the wind turbine faults 
mainly include electrical control system faults, 
mechanical transmission system faults, hydraulic system 
faults, yaw system faults and switch control system faults. 

Due to the complicated structure of the wind turbine 
transmission system and the long-term working under 
severe working conditions, it is easy to cause different 
types of failures of the transmission components such as 
blades, generators, gear boxes and bearings. Only by 
monitoring, it is sometimes difficult to capture the signs 
and signs of the failure of the unit's transmission system, 
causing the maintenance personnel to misjudge the cause 
of the failure, resulting in an over-maintenance of the 
undamaged parts and insufficient maintenance of the 
faulty parts. Group accidents reduce the reliability and 
stability of wind turbines. Therefore, domestic and 
foreign scholars have carried out a large number of 
researches on fault diagnosis methods, and their research 
results have been widely used in wind turbine fault 
diagnosis. These methods are mainly divided into two 
types: signal processing based methods and knowledge 
based methods. 

In the research of fault diagnosis methods for wind 
turbines based on signal processing, Tang B et al. [5] 
proposed a wind turbine fault diagnosis method. The use 
of Continuous Wavelet Transform (CWT) to filter 
unwanted noise in the original vibration signal, and the 
use of Automatic Term Window (ATW) functions to 
suppress cross terms in Wigner-Ville Distribution 
(WVD), which may be due to moisture absorption, 
fatigue, gusts or lightning strikes on the wind turbine. 
Damaged faults are analyzed and diagnosed. Liu et al. [6] 
proposed a new wind turbine fault diagnosis method 
based on Local Mean Decomposition (LMD) technology. 
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As a non-polluting renewable energy source, wind 
energy has become one of the areas in which the world is 

competing for development. With the increasing number 

and capacity of wind turbines, wind power has formed a 

new type of industry. However, wind turbines are prone 

to failure under severe conditions such as variable load, 

large temperature difference, and unstable wind speed. 

Especially the transmission components such as the main 

shaft and gear box are prone to failure under the action 

of alternating load, resulting in long-term shutdown of 

the unit and overhaul. Difficulties and high maintenance 

costs seriously damage the economic benefits of wind 

power generation. Therefore, it is of great significance to 

carry out monitoring and diagnosis research on wind 

turbine drive system and develop networked monitoring 

and diagnosis system for wind turbine drive system to 

prevent and reduce wind turbine faults, ensure normal 

and stable operation of wind turbines, and improve 

economic benefits. 

      With the increasing number and capacity of operating 

wind turbines, the potential problems and faults of wind 

turbines are also increasing. The state monitoring and 

fault diagnosis of wind turbines are gradually receiving 

attention from the industry. Because wind turbines are 

often installed in remote areas such as mountains, 

wilderness, beaches, islands, etc., tens of meters or even 

hundreds of meters from the ground, and long-term work 

in the harsh environment of wind speed instability, 

variable load, large temperature difference, low pressure, 

etc., the service life of the unit is greatly affected. 

Especially, transmission components such as the main 

shaft and gear box of the wind turbine are prone to failure 

under the action of alternating load [1-4], causing the unit 



Vibration analysis is a commonly used and useful 
technique in wind turbine condition monitoring and fault 
diagnosis. However, the relatively slow speed of wind 
turbine components sets limits in early fault diagnosis 
using vibration monitoring methods. Traditional time-
frequency analysis techniques have some drawbacks that 
make them unsuitable for nonlinear, non-Gaussian signal 
analysis. LMD is a new iterative method for 
demodulating amplitude and frequency modulated 
signals, which is suitable for obtaining instantaneous 
frequencies in wind turbine condition monitoring and 
fault diagnosis. The experimental analysis of the 
vibration signal of the wind turbine proves the 
effectiveness and effectiveness of the method. In recent 
years, with the use of wind energy equipment, the 
detection results of wind energy equipment failures are 
also increasing [7-10]. 

Although the above method provides new ideas and 
ways for fault diagnosis of wind turbines, the accuracy 
and completeness of diagnosis affect the application of 
the results. In order to more accurately identify the faults 
of the wind turbine drive system, it is necessary to find a 
new method. Since the occurrence and development of 
any fault will inevitably go through a time process, 
sometimes the seemingly accidental fault must have its 
inherent regularity. Even if it is a sudden fault, there is a 
period of gestation and development, so the vibration 
characteristics are used to mechanical failure. Diagnosis 
is an effective method. At present, there are many 
methods for fault diagnosis of mechanical equipment 
based on vibration detection. The representative 
classification is divided into three categories: 
mathematical model based methods [10-12], data 
analyses based methods [13-15] and knowledge-based 
methods [16]. 

It can be seen from the research experience of 
predecessors that the mechanical fault diagnosis method 
based on vibration detection is widely used in the fault 
diagnosis of rotating equipment or its components, and 
all have received good diagnostic results. Introducing this 
method into the automatic fault diagnosis of the wind 
turbine drive system is a feasible method to improve the 
accuracy of the diagnosis results. In this paper, the 
wavelet packet decomposition of the vibration signal of 
the wind turbine drive system is analyzed, and the 
frequency characteristics are analyzed. It is found that the 
frequency energy distribution is the same for different 
parts, the middle and low frequency energy accounts for 
the majority, and the extracted features are back 
propagation (BP) nerve. The network classification results 
show that the detection accuracy of three fault samples, 
rolling element fault, inner ring fault and outer ring fault, 
is 97%, 92% and 99% respectively. 

 

2. Method 

2.1. System Framework 

Firstly, vibration signals of collected key components 
are preprocessed, and the singular value decomposition 
and noise reduction method are applied to improve the 
signal-to-noise ratio of the vibration signal. Then, time-
frequency analysis of the denoised signal is performed 
based on the wavelet packet energy entropy to extract the 
characteristic parameters and extract the extracted 
parameters. The characteristic parameter is set as the 
input of BP network to realize the automatic diagnosis of 
the failure. The detailed method is shown in the system 
flow diagram of Figure 1: 

 

 
Fig. 1. The framework of analysis process 

 
The vibration signal acquisition system hardware 

includes sensors, data acquisition instruments, notebook 
computers, connecting cables, etc., among which the 
vibration data acquisition instrument adopts BENTLY 8-
channel vibration signal acquisition instrument, vibration 
signal acquisition system. 
 

2.2. Singular Value Decomposition 

Due to the large number of vibration sources and the 
interference of noise, the key information contained in 
the acquired signal is easily masked. Therefore, the 
signal should be denoised before taking the signal 
characteristics. Signal noise reduction is a key step in 
signal processing and troubleshooting. In engineering 
practice, there are many different noise reduction 
techniques that can be applied. Wavelet noise reduction, 
time domain averaging, frequency domain feature 
extraction, and adaptive filtering are commonly used. But 
these methods have their own limitations. When the wind 
turbine drive system fails, shock signals appear in the 
vibration signal. These shock signals are coupled with 
noise and other vibration signals. It is difficult to extract 
the noise by the general noise reduction method. To this 
end, this paper proposes a vibration signal denoising 
method by singular value decomposition to filter the 
collected noisy signals. Assuming the collected noisy 
vibration signal is  X , the phase space reconstruction 
theory is used to embed the elements of X =
[x(1), x(2), … , x(n)] into the m*n dimensional space to 
obtain a Hankel matrix. According to singular value 
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decomposition principle, given any m*n-dimensional 
matrix A, singular value decomposition can be expressed 
as Equation (1): 

A = 𝑈 ∑ 𝑉𝑡 = 𝑈 [
∑ 𝑟 0
0 0

] 𝑉𝑇                                        (1) 

In the Equation (1), U and V are orthogonal matrices 
of m*n and n*m, respectively, ∑ 𝑟 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑟) 
and 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑟 , 𝑟 = rank(A). 

The energy information of the signal, the noise 
intensity information, etc. are all included in singular 
spectrum. Furthermore, separation of the useful signal 
and disturbance can be realized by applying the singular 
spectrum. The set signal X is composed of two parts: no 
noise and noise. The noise-free signal should be smooth, 
and the noise signal is Gaussian. Therefore, the singular 
value of the signal X is also composed of two parts. 
Noise-free singular values and singular values of noise, 
then the singular value of the entire noise will be evenly 
offset from the original size  𝜆𝑖

2 = 𝜆2̅̅̅ + 𝜆𝑛𝑜𝑖𝑠𝑒
2 , 𝑖 =

1,2,3, … , 𝑛𝑚𝑖𝑛. 
At this point, the trajectory matrix of signal X can be 

expressed as Equation (2): 

A = [𝑈1𝑈2] [
1 0
0 ∑ 𝑟

] [
𝑉1

𝑇

𝑉2
𝑇]                                                  (2) 

In the Equation (2), it can be seen that by decomposing 
singular value of trajectory matrix, A can be divided into 
two parts. As long as the noise interference part is 
removed, the part of effective signal can be obtained. 

The basic steps of noise reduction for singular value 
decomposition are as follows: 

Firstly, phase space reconstruction is performed on the 
original signal. The reconstructed matrix line number is 
half or one tenth of the original signal length. Then, the 
obtained Hankel matrix is subjected to singular value 
decomposition, and the singularity corresponding to each 
step of the singular spectrum is obtained. The entropy 
increment determines the order at which the singular 
entropy increment begins to decrease and tends to be 
stationary as the signal denoising order. 

The matrix is reconstructed by using the previously 
obtained noise reduction order as the effective order of 
the singular spectrum. The first row element of the 
reconstructed matrix is the noise reduction signal. 
 

2.3. Wavelet Packet Energy Entropy 

Characteristics 

As a signal processing method, wavelet packet 
analysis is extended from wavelet analysis, which can 
perform more detailed reconstruction and processing 
analysis of signals. The advantage of wavelet packet 
analysis is that it further decomposes and reconstructs the 
approximate signal in the wavelet transform, and then 
analyses high-frequency part of the signal. Because the 
processing of the signal by orthogonal wavelet transform 

will only further analyze the low-frequency part, and 
cannot continue to decompose the high-frequency part, 
the wavelet transform can well represent the low-
frequency information, but it is not very good. Ground 
decomposition and representation of high frequency 
signals containing a large amount of detail information. 

The vibration signal of wind turbine drive system is a 
typical non-stationary signal containing a lot of detailed 
information. It can be processed in a more detailed way 
by using wavelet packet transform, and this 
decomposition does not have redundancy, even no 
omissions, which is a better time-frequency localized 
analysis. To be more specific, by decomposing and 
reconstructing signals at diverse scales, wavelet packet 
analysis not only obtains distribution information of 
original signal in different frequency bands, but also 
captures the time points at which signals are abrupt. 

The wavelet packet decomposition essentially 
performs multi-layer bisection on high frequency and low 
frequency sub-section which are divided by original 
signal. In this paper, noise-reduced signal 𝑆  is 
decomposed by wavelet packet. From the decomposition 
relationship, wavelet packet divides the signal into eight 
frequency bands, and decomposition of high-frequency 
part is more detailed. So the noise-reduced signal can be 
fully utilized. Wavelet packet analysis disintegrates non-
stationary signal into a family of basic functions that are 
stretched by wavelet function. The information is 
complete and is very suitable for the decomposition of 
the vibration signal. 

After 3-layer decomposition of the signal, the wavelet 
energy 𝑆3𝑗  of the 𝐸3𝑗  sub-channel signal can be 
expressed as Equation (3): 

𝐸3𝑗 = ∫|𝑆3𝑗(𝑡)|
2

𝑑𝑡 = ∑ |𝑥𝑗𝑘|
2𝑛

𝑘=1                                     (3) 

In the Equation (3), formula 𝑥𝑗𝑘(𝑗 = 0,1, … ,7; 𝑘 =

1,2, … , 𝑛) represents the discrete point amplitude of the 
reconstructed signal 𝑆3𝑗. 

The magnitude of the energy entropy represents how 
much energy is ordered in the observed signal. When 
defining the number of wavelet packet decomposition 
layers as 𝑖, the energy sum of the signals is 𝐸𝑖 , can be 
expressed as Equation (4): 

𝐸𝑖 = ∑ 𝐸𝑖𝑗
𝑁
𝑗=0                                                                  (4) 

Depending on the law of energy conservation, the total 
energy of signal is equal to the sum of signal energies of 
sub-bands, can be expressed as Equation (5): 

𝐸𝑠 = 𝐸𝑖 = ∑ 𝐸𝑖𝑗
𝑁
𝑗=1                                                         (5) 

The great uncertainty of the variable means high 
entropy, and the greater the amount of information needs 
to make it clear. For spectrum analysis, different 
frequency segments reflect various characteristic 
information. Therefore, specific information entropy 
based on characteristics of frequency distribution is 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2020.19.31 Wei Yang, Yi Chai, Jie Zheng, Jie Liu

E-ISSN: 2224-266X 291 Volume 19, 2020



applied to reflect fault. Entropy is identified as Equation 
(6): 
𝐻(𝑥) = 𝐸 [log2

1

𝑃(𝑥𝑖)
] = − ∑ 𝑃(𝑥𝑖) log2 𝑃(𝑥𝑖)               (6) 

where, 𝑃(𝑥𝑖)  is output probability function and the 𝑥 
represents random variable, defined as a symbol set, 
which is the set of all possible outputs. 

In frequency domain, vibration signals of segments 
present the component of mechanical structure. 
Frequency segments of wind turbine can be divided into 
low-frequency 10-1000Hz, mid-frequency 1000-2000Hz 
and high-frequency 2000-10000. In this paper, frequency 
domain is tessellated up with eight segments. After 
decomposition, the mutation phenomenon is reduced. 

2.4. BP Neural Network 

BP has a simple structure to implement characteristics. 
More importantly, its excellent pattern recognition ability 
has also been widely applied in mechanical diagnosis. 
The learning process of BP neural network consists of 
two parts: the forward propagation of signal and the back 
of error.  

From input layer, the error is generated by the result of 
forward propagation and the expected, which is allocated 
to the nodes of each layer through back propagation for 
weight modification until the error is under an accredited 
level or a predetermined learning time. 

Distinctive faults produce specific vibration signals. 
Fault classification based on neural network trains 
weights to extract features of fault signals. 

3. Data Sources 

3.1. Vibration Signal 

The vibration signal acquisition system hardware 
includes sensors, data acquisition instruments, notebook 
computers, connecting cables, etc. The vibration data 
acquisition instrument adopts NEGO 8-channel vibration 
signal acquisition instrument, and the vibration signal 
acquisition system is shown in Figure 2. 

 

 
Fig. 2. Vibration signal acquisition system structure 

 
The signal is the carrier of the fault information, and 

the measuring point is the window for obtaining the fault 
information. The merits of the measuring point 
arrangement will determine whether the collected signal 
is typical and representative, and the rationality of the 
measuring point selection is the basis of the subsequent 
signal analysis and processing. For the collection of the 
wind turbine signal, the selection of measuring points 
must be in accordance with the international standard 
VDI3834, and the following principles shall be met: 
1) The measuring point should try to select the most 

abundant part of the vibration information; 
2) Pick up as many working conditions as possible with 

as few points as possible and maintain sensitivity to 
the measured parameters; 

3) The position of the measuring point should be close 
to the tested part to prevent attenuation, distortion 
and transmission obstruction; 

4) Selecting the position of the measuring point should 
consider the convenience of sensor assembly and 
disassembly. 

  As the experimental object, Hansen EH80421-BN 
gearbox of 2MW wind turbine, primary structure 
includes main shaft, planetary-stage gear and two parallel 
gears. The geometrics of the planet gear system and 
parallel gears used in gearbox are showed in Table 1.  

 

Tab. 1. Geometrics of the planet gears (High Shaft Speed is 26.67Hz) 
Parameter Sun 

gear 
Planet 
gear 

Ring 
gear 

Carrier Low-speed 
big gear 

Mid-speed 
small gear 

Mid-speed 
big gear 

High-speed 
small gear 

Number of teeth 18 34 87 - 70 16 84 19 

RPM 82.72 50.47 - 14.18 82.72 361.91 361.91 1600 

Hz 1.38 0.84 - 0.24 1.38 6.03 6.03 26.67 

Meshing frequency 20.562 20.562 20.562 20.562 96.508 96.508 506.668 506.668 
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Fig. 3. Diagram of gearbox 

 
Vibration sensor is 8071LF-01-010 MEAS, whose 

parameter description is introduced in Table 2. The data 
acquisition process is as follows: acceleration of 
vibration signal collected by sensors is converted into 
electrical signal. Then the data are transmitted to server 
by digital signals. Figure 3 shows the positions of nine 
vibration sensors and diagram of gearbox structure. 
Actual field installation is displayed in Figure 4.  

Finally, a small amount of vibration data shown as 
Table 3, which are collected from horizontal direction of 
high-speed shaft of the Hansen. 

 
Fig. 4. Sensor installation 

Tab. 3. Vibration data 

  
3.2. Noise Reduction 

To improve signal-to-noise ratio, denoising is 
necessary processing. In this paper, signal is decomposed 
into effective signal corresponding with larger singular 
value and noise corresponding with the smaller by SVD. 
The noise is eliminated by setting zero to the latter. When 
noise is tiny, the singular value displays obvious step 
distribution. Singular value decomposition order and the 
separation order are significant to the denoising results. 

Figure 5 shows gearbox vibration signals which are raw 
state and denoising effect. 

NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 

0.0957 -0.006 -1.7048 -1.2262 4.4563 -1.0468 70.972 -14.326 -11.395 

0.0239 0.0179 1.1066 -0.2094 -0.5683 1.3459 -49.8569 -10.3781 -5.2937 

-0.1316 0.0179 3.4993 0.2094 -0.8075 2.3029 77.1929 -11.2156 -18.8122 

-0.0718 0.0179 5.3536 0.6281 -0.9272 5.1741 -80.0043 13.4288 28.2034 

-0.1794 0.0419 6.9686 -0.2094 -2.1235 6.7891 43.5762 -10.6772 -5.6526 

-0.0957 0.1137 6.5499 -0.2094 -2.4226 -1.8842 -46.9259 -2.3029 33.5868 

-0.1316 0.1974 3.7983 -1.3459 -0.6281 4.3965 36.8169 -14.326 40.047 

-0.1196 0.2811 0.8075 -2.5422 -3.0207 -0.6281 -55.6591 -16.3598 10.7968 

-0.1555 0.317 -1.1066 -2.9011 0.7477 -3.0805 -23.2386 -0.4486 24.1359 

-0.1436 0.3051 -2.4226 -2.602 1.2262 -6.3106 -39.0899 7.3873 -3.4394 
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Fig. 5. Noise Reduction 

3.3. BP Neural Network Layers of Neurons 

Regardless of the rotor or bearing fault identification, 
the selected feature indicators are 8 Shannon entropy and 
6 time domain indicators as input vectors, so the input 
node of BP neural network should be 14. For the output 
layer, this paper will identify the three working 
conditions of the rotor and the four working conditions of 
the bearing respectively. Therefore, output nodes of the 
network are set to 3 and 4 respectively. The 
determination of hidden layer neurons is determined 
according to the following three Equation (7), Equation 
(8) and Equation (9): 

m < √𝑛 + 𝑙 + 𝛼                                                            (7) 

m = 𝑙𝑜𝑔2𝑛                                                                              (8) 

m < 𝑛 − 1                                                                              (9) 

In the Equation (7), Equation (8) and Equation (9), m 
and n represent the node number of hidden layer and 
input layer, and l is used to represent the number of 
output layer nodes. Normally, α is a constant between 1 
and 10. The eigenvector training samples are input into 
BP neural network for training. Furthermore, global error 
is 0.01 and the maximum number of training set is 1000. 

Shannon entropy represents the information of eight 
frequency segments. That is to say, the entropy of low 
frequency domain expresses conditions of main shaft and 
planetary-stage gear. Likewise, the feature of parallel 
gears reflects in mid segment. 

There are six indicators in time domain. First, effective 
value represents whole vibration energy. Further, the 
margin indicator increases obviously with vibration 
augment. For description of impact, kurtosis and pulse 
index are calculated. On the other hand, peak value 
indicates surface roughness of bearing. In particular, the 
waveform indicator is the root mean square value divided 
by the absolute average. 

 
 

4. Results 

4.1. Gearbox Bearing Vibration Signal 

The gearbox bearing data set contains various aspects 
of bearing mechanical status information, including 
different bearing fault locations, fault levels, fault bearing 
positions and different workloads. Therefore, the data set 
can be used at multiple angles and different 
classifications. Experiments are tested to verify 
effectiveness of the proposed method. 
 

 
Fig. 6. Energy distribution of components obtained by 

decomposition of different bearing signals 
 

The three-layer decomposition of the wavelet divides 
the frequency of the signal into 8 parts according to the 
low to high average. Figure 6 shows the energy 
distribution of the 8 types of signals after different 
wavelet decomposition. After the wavelet packet 
decomposition, the normal non-fault is presented in the 
figure. If the fault occurs, the frequency distribution is 
not uniform. There are three types of faults, rolling 
element, inner and outer ring fault, which are frequently 
occurring in the three wind turbine drive systems. The 
fault energy distribution has great similarity, and it is 
basically concentrated in the low frequency range. The 
low frequency 2, 3 and 4 frequency segments have the 
highest distribution evaluation rate, and the lowest rolling 
fault is compared with the other two faults. The 
frequency segment energy distribution is lower than the 
other two faults.  

Under healthy conditions, vibration frequency domain 
of bearing indicates mechanical structure in wind turbine 
gearbox. The information in each segments, for smooth 
running turbine, is homogeneous. Otherwise, entropy of 
high frequency comes from higher harmonic of vibration. 

Bearing failure accompanied by 1X or other bearing 
failure frequency sideband. The failure of inner and outer 
ring precedes rolling body and cage. The retainer fracture 
results in appearance of Rolling Element Defect 
Frequency (BSF) and Cage Defect Frequency (FTF) of 
retainer fault frequency. When rolling body fails, several 
times of BSF will be generated. Furthermore, inner and 
outer ring faults produce their fault characteristic 
frequency. 
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In normal condition, expectation is 4.514 and variance 
is 0.0002705. Obviously, Shannon entropy distribution of 
bearing vibration signal is relatively uniform. Table 4 
illustrates variances and expectations of four entropy 
distributions. 

 
Tab. 4. Vibration signal entropy analysis 

Case Expectation Variance 
Normal 4.514 0.0002705 

Outer ring fault 2.819 0.0138 
Inner ring fault 3.192 0.0069 

Rolling element failure 3.510 0.0088 
While fault occurs, a lot of fault characteristic 

information appear in low frequency band, which results 
in the decrease of higher-frequency proportion. It can be 
noticed that the variance of outer ring reaches 0.0138, 
and the proportion is highly attenuated in region 6. 
Correspondingly, the Shannon entropy of inner ring fault 
is dominant in band 2 and 3. However, the expectation 
caused by rolling body fault is 3.510.  

4.2. Fault Identification Results 

In order to verify the proposed method, fifty Hanse 
gearboxes of wind turbines with different degree of 
bearing wear were tested. The tests were operated with 
MATLAB code on a PC with fourth-generation i7 CPU 
and 16GB of RAM.  

The generators driven by wind turbines run at about 
1600 rpm with 2 MW. To obtain detailed condition of 
bearing wear, signals were sampled constantly. Stuck on 
bearing bracket, accelerometer collected vibration signals 
with 16384 Hz sampling frequency. The collected 
gearbox vibration signals were stored on server by the 
on-line condition monitoring systems. Particularly, 
output shaft frequency was 26.67 Hz.  

 
Fig. 7. The accuracies of fault detection for three parts 

 
Figure 7 shows the accuracies of fault detection for 

three parts, which are 97%, 92% and 99% respectively. 
To verify the correctness of fault detection, bearings of 
gearbox are disassembled as shown in figure 8. The 
results prove that the method can well identify the 
bearing fault of wind turbine. 

 
Fig. 8. Bearing fault verification 

 

5. Conclusions 

The vibration signal generated by the wind turbine 
drive system during operation contains important 
equipment status information. This paper selects 
vibration signal of wind turbine drive system as the 
research object, and extracts the fault characteristics to 
realize fault diagnosis of wind turbine drive system. In 
this paper, combined with characteristics of vibration 
signal, frequency distribution of different faults is solved 
by wavelet packet decomposition method, and then the 
feature extraction is carried out. Then fault types are 
realized by BP neural network. The experimental results 
prove the method is more accurate than single-variable 
diagnosis. The fault diagnosis of the unit drive system 
provides new ideas and ways. 

References 

[1] J. H. Kang and H. W. Lee, “Study on The 
Design Parameters of A Low Speed Coupling of 
A Wind Turbine”, International Journal of 

Precision Engineering and Manufacturing, vol. 
18, no. 5, pp. 721-727, 2017. 

[2] J. Cheng, C. F. He, Y. Lyu, Y. Zheng, and L. Y. 
Xie, “Method for evaluation of surface crack 
size of wind turbine main shaft by using 
ultrasonic diffracted waves”, Smart Materials 

and Structures, vol. 29, no. 7, pp. 075009, 2020. 
[3] X. O. Ding, H. Z. Wang, Y. T. Gao, J. Z. Li, 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2020.19.31 Wei Yang, Yi Chai, Jie Zheng, Jie Liu

E-ISSN: 2224-266X 295 Volume 19, 2020



and H. Gao, “Efficient Currency Determination 
Algorithms for Dynamic Data”, Tsinghua 

Science and Technology, vol. 22, no. 3, pp. 227-
242, 2017. 

[4] J. T. Cheng, Y. Xiong, and Li Ai, “Fault 
Diagnosis of Wind Turbine Gearbox Based on 
Neighborhood QPSO and Improved D-S 
Evidence Theory”, Recent Advances in 

Computer Science and Communications, vol. 13, 
no. 2, pp. 248-255, 2020. 

[5] B. P. Tang, W. Y. Liu, and T. Song, “Wind 
Turbine Fault Diagnosis based on Morlet 
Wavelet Transformation and Wigner-Ville 
Distribution”, Renewable Energy, vol. 35, no. 
12, pp. 2862-2866, 2010. 

[6] W. Y. Liu, W. H. Zhang, and J. G. Han, and G. 
F. Wang, “A New Wind Turbine Fault 
Diagnosis Method based on The Local Mean 
Decomposition”, Renewable Energy, vol. 48, no. 
6, pp. 411-415, 2012. 

[7] B. Chen, S. H. Yu, Y. Yu, and Y. L. Zhou, 
“Acoustical Damage Detection of Wind Turbine 
Blade Using the Improved Incremental Support 
Vector Data Description”, Renewable Energy, 
vol. 156, pp. 548-557, 2020. 

[8] Q. F. Xu, S. X. Lu, Z. P. Zhai, and C. X. Jiang, 
“Adaptive Fault Detection in Wind Turbine via 
RF and CUSUM”, IET Renewable Power 

Generation, vol. 14, no. 10, pp. 1789-1796, 
2020. 

[9] S. Shoja, V. Berbyuk, and A. Boström, “Guided 
Wave–based Approach for Ice Detection on 
Wind Turbine Blades”, Wind Engineering, vol. 
42, no. 5, pp. 483-495, 2018. 

[10] M. Ruiz, L. E. Mujica, S. Alférez, L. Acho, 
C. Tutivén, Y. Vidal, J. Rodellar, and F. Pozo, 
“Wind Turbine Fault Detection and 
Classification by Means of Image Texture 
Analysis”, Mechanical Systems and Signal 

Processing, vol. 107, pp. 149-167, 2018. 
[11] Q. Jiang, Q. Sui, and J. Wang, 

“Experimental and Technical Study of Fiber 
Bragg Grating Vibration Detection based on 
Linear Tilt Filter Method”, IEEE International 

Conference on Automation & Logistics, Jian, 
2007, pp. 1295-1298,  

[12] C. F. Liu, X. L. Meng, and H. C. Zhang, 
“Research of Binocular Positioning 
Mathematical Model based on The Least Square 
Method”, Applied Mechanics and Materials, vol. 
2, no. 3, pp. 473-477, 2011. 

[13] D. Garcia, I. Trendafilova, “A Multivariate 
Data Analysis Approach Towards Vibration 
Analysis and Vibration-based Damage 
Assessment: Application for Delamination 

Detection in A Composite Beam”, Journal of 

Sound & Vibration, vol. 333, no. 25, pp. 7036-
7050, 2014. 

[14] M. Frizzarin, M. Q. Feng, P. Franchetti, S. 
Soyoz, and C. Modena, “Damage Detection 
based on Damping Analysis of Ambient 
Vibration Data”, Structural Control & Health 

Monitoring, vol. 17, no. 4, pp. 368-385, 2010. 
[15] K. P. Kumar, K. V. N. S. Rao, K. R. 

Krishna, and B. Theja, “Neural Network Based 
Vibration Analysis with Novelty in Data 
Detection for A Large Steam Turbine”, Shock 

and Vibration, vol. 19, no. 1, pp. 25-35, 2009. 
[16] K. Z. Tang, K. K. Tan, C. W. de Silva, T. H. 

Lee, K. C. Tan, and S. Y. Soh, “Application of 
Vibration Sensing in Monitoring and Control of 
Machine Health”, International Conference on 

Advanced Intelligent Mechatronics, Como, 
2001, pp. 8-20. 
 

 
 
 
Wei Yang was born in 1983. He studies in the School of Automation of 
Chongqing University, and works in China Shipbuilding Industry 
Group Haizhuang Wind Power Co., Ltd. His research interest includes 
wind turbine control technology, intelligent control theory, wind turbine 
fault diagnosis, machine learning, and so on. 
 

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2020.19.31 Wei Yang, Yi Chai, Jie Zheng, Jie Liu

E-ISSN: 2224-266X 296 Volume 19, 2020

https://schlr.cnki.net/home/search?ad=1&sw-input-ath=Christian%20Tutiv%C3%A9n
https://schlr.cnki.net/home/search?ad=1&sw-input-ath=Yolanda%20Vidal
https://schlr.cnki.net/home/search?ad=1&sw-input-ath=Jos%C3%A9%20Rodellar
https://schlr.cnki.net/home/search?ad=1&sw-input-ath=Francesc%20Pozo



