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Abstract. In this paper, a simple jerk circuit that allows studying the dynamical behavior of a three-dimensional 
autonomous chaotic system with only one nonlinear term is further investigated by numerical simulations and 
experimental validation. Depending on a single tuning parameter, the chaotic system is theoretically studied using 
standard techniques such as equilibrium analysis, bifurcation diagram, and Lyapunov exponents. Subsequently, 
the circuit that models the chaotic system is implemented to validate theoretical prediction experimentally. 
Despite the simple structure of the jerk circuit, experimental study of Fourier spectra has shown that the jerk 
circuit displays complex dynamics characterized by periodic limit cycles and aperiodic strange attractors. In 
addition, the jerk circuit has exhibited a wide tuning range and experimental results have shown good agreement 
with theoretical prediction except for few cases where numerical simulation has failed to accurately match 
experimental results due to sensitivity to initial conditions which is a signature of chaotic nonlinear systems.
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1 Introduction 

Since Lorenz proposed the first chaotic system in 1963 
[1], there has been a considerable interest in 
developing and analyzing various mathematical 
systems that exhibit chaos [2]. In 1976, the work 
conducted by Rossler renewed the interest in three-
dimensional dissipative dynamical systems. These 
Rossler systems have a simpler algebraic structure 
compared with Lorenz system [3]. Later, many 
Lorenz-based or Lorenz-like chaotic systems have 
been found, such as Chen system, Lü system, Liu 
system, Cai system, Tigan system, and Sprott systems. 
[3, 4].  In addition, there has been an increasing interest 
in designing experiments that will verify the predicted 
mathematical results [2]. The development of Chua’s 
circuit in 1983 and its many variants, launched a quest 
for other circuits that chaotically oscillate [5] and there 
has been a debate over which one is the simplest 
example of chaos [6]. The simplest and most common 
examples of chaos in continuous-time systems come 
from three first-order (3D) ordinary differential 
equations with no explicit time dependence. Such 
equations are said to be autonomous [7]. Chaotic flows 
in autonomous 3D systems can be characterized as 
either dissipative or conservative, according to whether 
the trajectory is attracted to a region of space with 
fractal dimension less than 3, a so-called strange 
attractor [8]. Dissipative systems usually produce 
strange attractors independent of the initial conditions 
provided they lie in the basin of attraction [7, 8]. Two 

categories of autonomous 3D chaotic circuits include: 
(i) chaotic oscillators described by three first-order 
ordinary differential equations (ODEs), e.g. the well-
known Chua’s circuit, and (ii) chaotic jerk oscillators 
described by a single third-order ODE called a jerk 
equation [9]. Chaotic systems written as jerk equations 
offer an exceptionally simple notation for higher order 
systems [6] as in Sprott systems [5,7,10]. The third-
order ordinary differential equations of the jerk 
systems are written in the form �⃛ = �(�̈, �̇, �) whose 
solutions are chaotic [5]. The nonlinear function J is 
called a “jerk,” because it describes the third-time 
derivative of x, which would correspond to the time 
derivative of acceleration in a mechanical system [5,8]. 
A generalization of the simplest autonomous chaotic 
system is given by [10] as 

�⃛ + �̈ + � + �(�̇) = 0 (1) 
Where �(�̇) is the nonlinear function required for 
chaos. 
 

2 Jerk Circuit Under Consideration 
Figure 1 shows the electric circuit under consideration 
which was proposed by Sprott [5]. The circuit consists 
of three successive active integrators in a feedback 
loop plus a second nonlinear feedback loop involving 
only two of the integrators and an inverter with a diode. 
To obtain the state equations of the jerk circuit, we use 
passive sign convention of RC circuit and kirchhoff's 
current law (KCL) as follows: After letting �̇ = � and 
�̈ = �, we get 
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Figure 1. Chaotic Jerk Circuit under Consideration 
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The current �� is the junction scale or saturation 
current, its value is assumed to be 10��� A. The 
thermal voltage is typically assumed to have a value of  
�� = 26 mV. The circuit was constructed in 
breadboard using standard components as indicated in 
schematic diagram of the circuit under investigation. 
The value of �� is variable since it used here as tuning 
parameter. The selection of  �� = 2 kΩ will produce 
maximum chaos when all other resistors in the circuit 
have a value of 1 kΩ as indicated by [5]. In this work, 
the tuning parameter is selected to be � = 1/��(kΩ) 
and R3 is kept at 2 kΩ. To further simplify the notation 
of the state equations, the measuring time is made in 
units of millisecond by selecting the value of all 
capacitors as 1µF and the value of all resistors in kΩ. 
In this case, it is necessary to multiply the nonlinear 
function �(�)  by a factor R/R. The state equation of 
the jerk circuit after this modification will become as 

 
�̇ = �
�̇ = �

�̇ = −a� − 10�� �exp �
�

0.026
� − 1� − 0.5�

� (3) 

The existence of attractors in this model could be 
examined by estimating the volume contraction rate 
[11], which is described by the Lie derivative [12]. 

∇� =
��̇

��
+

��̇

��
+

��̇

��
= −0.5 (4) 

This negative value signifies that the system (3) is 
dissipative and there will be a fast exponential shrink 
of the volume in state space. Thus, the volume will 
infinitely converge to zero and the asymptotic motion 
through the flow will settle onto an attractor. 

The equilibrium points of the system (3) can be 
obtained by finding its roots by setting (�̇ = 0, �̇ =
0, �̇ = 0 ). Obviously, it has only one equilibrium point 
at the origin ��(0,0,0). The dynamical behavior of the 
equilibrium point can be studied by computing the 
eigenvalues of the Jacobian matrix J [11, 13] of the 
system (3). The Jacobian matrix at the equilibrium 
point �� is expressed as: 

 

�(0,0,0) = �

0 1 0
0 0 1

−� −
10��

0.026
−0.5

� (5) 

 

The eigenvalues are determined by solving the 
characteristic equation, det[� − ��] = 0, which is 

�� + 0.5�� −
10��

0.026
� + � = 0 (6) 

 

Based on the Routh-Hurwitz stability criterion [3], 
which is not fulfilled in this case because eigenvalues 
have positive real roots, the equilibrium point �� is 
unstable and thus the system generates self-excited 
oscillations [11]. For example, when � = 1 where the 
system displays maximum chaos according to [5], the 
eigenvalues evaluated at �� are −1.197 and 0.3487 ±
�0.8447. Positive real roots of the eigenvalues 
guarantee instability. The dominant frequency of 
oscillation is expected to be at � = 844.7/2� =
67.22 Hz. This frequency is lower than the 75 Hz 
experimentally observed and almost the same value 
obtained using matlab simulation as shown in Figure 
2. One main reason for the discrepancy between 
measured and simulated output is from tolerance 
values of the components used in the circuit. All 
measurements were captured and analyzed in the 
laboratory using Cassy Lab 2 data acquisition 
software. Notice that due to intense chaos, the 
frequency spectrum has broadband with significant 
power in harmonics. It was observed that the one-sided 
fast Fourier transform (FFT) obtained using Cassy Lab 
2 has amplitude spectra higher than the simulated one 
by approximately 45% when the time step size is 
chosen to be 5 µsec. 
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Figure 2(a). Experimental Frequency Spectrum of 
System (3) for  = 1. 

 

Figure 2(b). Simulation of Frequency Spectrum of 
System (3) for  = 1. 
 
To investigate the influence of the tuning parameter  
on the peak frequency produced, it is plotted against 
the peak frequency in Figure 3. The results indicate that 
as  increases (R6 decreases), the peak oscillation 
frequency increases but still in the very low frequency 
range. Of course, we can increase this frequency range 
by tuning the values of the capacitors. 
 

Simulation of systems described by coupled first order 
differential equations, is usually carried out by the 
well-known fourth-order Runge-Kutta integrator 
implemented by ode45 function in matlab. The 
simulation was performed using absolute and relative 
error tolerances of 10��. The simulation needs to be 
run for sufficiently long time (e.g., 100,000 points) and 
it is common practice to discard the transients related 
to initial conditions. The initial conditions are not 
critical just avoid the zero ones or you may select 
values close to the attractor once you have 
experimental output. It is not an easy task to match 
experimental and theoretical results because chaotic 
systems are extremely sensitive to initial conditions 
and during the experiment, we are not certain about the 
initial conditions since the starting voltage is provided 
by noise. For example, the time variation of the voltage 
x and its derivative y of the system (3) and the 

corresponding phase space plot of y versus x for  = 
0.05 are shown in Figure 4 and Figure 5, respectively. 
The simulation was run for 500 msec with step size of 
5 µsec, and initial conditions were set close to zero (0, 
0.0001, 0). 

 

Figure 3. Peak Frequency against Tuning Parameter  

 

 

Figure 4(a). Experimental Time Variation of the 
Voltage x and its Derivative y of the System (3) for  
= 0.05. 

 

Figure 4(b). Simulation of Time Variation of the 
Voltage x and its Derivative y of the System (3) for  
= 0.05. 
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Figure 5(a). Experimental Phase Space of the Voltage 
x and its Derivative y of the System (3) for  = 0.05. 

 

 

Figure 5(b). Simulation of Phase Space of the Voltage 
x and its Derivative y of the System (3) for  = 0.05. 

 

3 Route to Chaos 

The main characteristic of a chaotic systems is its 
sensitivity to initial conditions. A slight change in 
initial conditions result in very different results. There 
are several tools to study the dynamical behavior of 
chaotic systems such as Lyapunov exponent and 
bifurcation diagram. Evaluating the Lyapunov 
spectrum gives essential information to help 
distinguishing among various types of orbits that the 
chaotic system undergoes [14]. Based on Lyapunov 
spectrum of a third-order jerk system, there are four 
types of attractors.  

 (LE1, LE2, LE3) → (-, -, -): fixed point. 
 (LE1, LE2, LE3) → (0, -, -): limit point. 
 (LE1, LE2, LE3) → (0, 0, -): two-torus. 
 (LE1, LE2, LE3) → (+, 0, -): strange. 

 

The bifurcation diagram displays the dynamics of a 
chaotic system and the route to chaos as a control 
parameter is varied in the system. Kaplan and Yorke 

defined the attractor dimension or Lyapunov 
dimension, as follows [15]: 

��� = � +
∑ ���

���
���

�������
(7) 

where j is the largest integer such that ∑ ���
���
��� ≥ 0 

and ∑ ��� < 0
�����
��� . 

 

To investigate the dynamics of the system (3), a 
preliminary simulation using Multisim was carried out 
to determine the range of the control parameter . It 
was found that the op amps in the circuit will get 
saturated for values of R6 less than 200 Ω this will set 
an upper limit of  to 5. To remain safe in the active 
region of the op amps, simulations and experiments 
were conducted to maximum value of 4. Numerical 
study was performed by breaking down the range of  
into three intervals to avoid long simulation and to be 
able to capture an approximate picture of the behavior 
of the chaotic system in (3). Figure 6(a) shows the 
bifurcation diagram of the system (3) of the value of � 
when �̇  is a local maximum versus the bifurcation 
parameter in the range  0 ≤ � ≤ 0.25.  Figure 6(b) 
shows the bifurcation diagram of higher values of . In 
the range of  0.25 ≤ � ≤ 2.5, there was nothing 
special in the bifurcation diagram just pure chaotic. 
Finally, the higher range  2.5 ≤ � ≤ 4 is plotted in 
Figure 6(c). 

The Lyapunov spectrum was calculated for the range 
0 ≤ � ≤ 4 by breaking the range into eight intervals 
each with width of 0.5 then combined together as 
shown in Figure 7(a). Special attention has been paid 
for the low range as shown in Figure 7(b). 
 
Based on the results shown in bifurcation diagram and 
Lyapunov spectrum, it is expected to have chaotic 
strange attractors for most of the values of  except for 
several points where the system exhibits limit cycles 
scenarios. To be concise, in the lower range of , a one-
period limit cycle scenario for the range 0 ≤ � ≤ 0.04, 
period doubling at 0.04 ≤ � ≤ 0.06. Period-four is 
expected at � ≅ 0.06 and another limit cycle is 
expected in the range 0.2 ≤ � ≤ 0.21. Strange 
attractors are expected for the range 0.22 ≤ � ≤ 2.86. 
At higher range of , from Lyapunov spectrum and 
bifurcation diagram, we should have limit cycle for 
2.86 ≤ � ≤ 4. The next step is to verify simulation 
results experimentally. This will be discussed next. 
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Figure 6(a). Bifurcation Diagram of the system (3) of 
the value of � when �̇  is a local maximum versus the 
bifurcation parameter  0 ≤ � ≤ 0.25. 

 

 

Figure 6(b). Bifurcation Diagram of the system (3) of 
the value of � when �̇  is a local maximum versus the 
bifurcation parameter 0.25 ≤ � ≤ 2.5. 

 

 

Figure 6(c). Bifurcation Diagram of the system (3) of 
the value of � when �̇  is a local maximum versus the 
bifurcation parameter 2.5 ≤ � ≤ 4. 

 

 

Figure 7(a). Lyapunov Spectrum of the System (3) for   
0 ≤ � ≤ 4. 

 

 

 

Figure 7(b). Lyapunov Spectrum of the System (3) for 
0 ≤ � ≤ 0.5  

 

4 Experimental Results 

In order to verify the simulation results experimentally, 
the jerk circuit under study was constructed on 
breadboard using standard components. Resistors R3 is 
fixed at 2 kΩ, R6 is tunable from 0.25 to 35 kΩ, 
remaining resistors are with fixed value of 1 kΩ, 
rectifier diode type 1N4001, and 741 op amps biased 
at ±15V. Measurements were performed using Cassy 
Lab 2 data acquisition software. Measuring time was 
set to 500 msec and the step size was set to 5 µsec. 
Experiment begins by setting �� = 35 kΩ and 
gradually decreases its value while observing the 
output. The phase space trajectories, Fourier spectra, 
and time variation of x and y were captured at transition 
points. The time variation of x and y will be shown for 
selected values because they display somehow a 
similar pattern. The following scenarios were detected. 

X
m
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For 25.8 < �� < 35 kΩ, a one-period limit cycle, two-
period limit cycle in the range  13.6 < �� < 25.8 kΩ, 
four-period limit cycle in the range 12.7 < �� < 13.6 
kΩ. Figure 8 shows the phase space and frequency 
spectrum for �� = 35, 25, and 13.4 kΩ, respectively. 
As the tuning resistor was further reduced, the 
following results were obtained: strange attractor in the 
range 4.9 < �� < 12.6 kΩ, two-period limit cycle in 
the range 4.5 < �� < 4.9 kΩ, and strange attractor in 
the range 1 < �� < 4.5 kΩ. 
 
Figure 9 shows the phase space for �� =
5, 4.9, and 4.5 kΩ, respectively. It can be concluded 
that a close agreement between theoretical and 
practical results has been achieved when the tuning 
parameter  is less than 0.5. 
 
Furthermore, from Lyapunov spectrum and bifurcation 
diagram, it is expected to experience strange attractors 
for 0.5 < � < 2.85 and limit cycles for � > 2.85. The 
results obtained are again very close to theoretical ones 
except for few points. The attractor begins to change 
its pattern for � > 0.6 and strange attractors of the 
second type were produced for up to � = 3.45 (�� =
290Ω) except at � = 0.76 (�� = 1.32 kΩ) and � =
1.0753 (�� = 0.93 kΩ)  , a one-period limit cycle was 
experimentally produced against theoretical 
prediction.  For � > 3.45, a one-period limit cycle of 
another different attractor has been produced down to 
the rest of the range while the op amps are still 
operating in the active region. The peak frequency of 
this attractor was surprisingly high (500 Hz) compared 
to other values and this frequency slightly increased as 
we decrease R6. Figure 10 shows the phase space for 
�� = 1.32, 1, and 0.93 kΩ, respectively. Moreover, 
the time variation of x and y for � > 3.45 has no 
intersection and they have a sort of repulsive nature as 
shown in Figure 11. Finally, the op amps in the circuit 
went into saturation when reducing R6 below 200 Ω. 
From the frequency spectrum produced, it is clear that 
limit cycles are of periodic nature and strange attractors 
have aperiodic spectrum. Furthermore, the frequency 
produced when R6 has lower value than 290 Ω was 
very high, reason could be due the op amps 
nonlinearity. Theoretical and experimental results for 
selected values are summarized in Table1. 
 

 

 

 

 

Table 1. Summary of Theoretical and Experimental 
Results for Selected Values 

 
Lyapunov 
Exponents 

Attractor Dimension 
Peak 

Frequency 
(Hz) 

0.0286 
0, -0.0048, -

0.4956 
One-period 
Limit cycle 

1 32 

0.0400 
0, -0.0049, -

0.4954 
Two-period 
limit cycle 

1 37 

0.0746 
0.0177, 0, -

0.5188 

strange 
(against 

experimenta
l) 

2.0341 48 

0.2000 
0 , -0.1009, -

0.3996 
Two-period 
limit cycle 

1 60 

0.2041 
0.0053, -
0.0393, -
0.4660 

Two-period 
limit cycle 

1 62 

0.2222 
0.086, 0, -

0.5871 
Strange 2.1465 65 

0.7576 
0.1710, 

0.0010, -
0.6719 

Strange 
(against 

experimenta
l) 

2.2545 80 

1.0000 
0.1895, 0, -

0.6901 
Strange 2.2746 87 

1.0753 
0.195, 

0.0018, -
0.6966 

Strange 
(against 

experimenta
l) 

2.2799 80 

3.4483 
0, -0.2486, -

0.2521 
One-period 
limit cycle 

1 500 

 

 

5 Conclusion 
 

In this paper, a relatively simple chaotic jerk circuit has 
been analyzed numerically and experimentally. Using 
Lyapunov exponents and bifurcation diagrams, 
dynamical properties of the chaotic systems under 
investigation has been categorized in terms of types of 
attractors produced as a result of tuning only one 
parameter. As a major contribution to this work, 
experimental results have shown that simple jerk 
circuits can exhibit unexpected behavior that differs 
from its theoretical complement. Furthermore, 
experimental verification of Fourier spectra of chaotic 
jerk circuits has contributed to understand the periodic 
and aperiodic nature of chaotic systems. Finally, 
randomness in chaotic jerk circuits can be utilized in 
the implementation of secure communication systems. 
This is to be considered as a potential future work. 
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Figure 8(a). Phase space of  �� = 35 kΩ. 
 
 

 
Figure 8(b). Phase space of  �� = 25 kΩ. 
 
 

 
Figure 8(c). Phase space of  �� = 13.4 kΩ. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 9(a). Phase space of  �� = 5 kΩ. 
 
 

 
Figure 9(b). Phase space of  �� = 4.9 kΩ. 
 
 

 
Figure 9(c). Phase space of  �� = 4.5 kΩ. 
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Figure 10(a). Phase space of  �� = 1.32 kΩ. 
 
 

 
Figure 10(b). Phase space of  �� = 1.0 kΩ. 
 
 
 

 
Figure 10(c). Phase space of  �� = 0.93 kΩ. 
 
 
 
 
 
 
 
 

 
Figure 11(a). Phase space of  �� = 0.29 kΩ. 
 
 
 

 
Figure 11(b). The Time Variation of the Voltage x and 
its Derivative y of  �� = 0.29 kΩ. 
 

 
Figure 11(c). Frequency Spectrum of  �� = 0.29 kΩ. 
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