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Abstract: Continuous Markov processes widely used as a tool for modeling random phenomena in 
numerous applications, can be defined as solutions of generally nonlinear stochastic differential 
equations (SDEs) with certain drift and diffusion coefficients which together governs the process’ 
probability density and correlation functions. Usually it is assumed that the diffusion coefficient 
does not depend on the process' current value. Sometimes, in particular for presentation of non-
Gaussian real processes this assumption becomes undesirable, leads generally to complexity of the 
correlation function estimation. We consider its analysis for the process with arbitrary pair of the 
drift and diffusion coefficients providing the given stationary probability distribution of the 
considered process.   
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1  Introduction 
     There is a wide range of phenomena in 
economics (stock prices) [1, 2], biology 
(population, epidemics) [3, 4], радио physics 
[5] that can be modeled as diffusion 
(continuous-time) Markov processes, which 
in turn, are represented by solutions of 
certain first-order stochastic differential 
equations (SDEs) characterized by the drift 

)(1 xK and diffusion )(2 xK coefficients. For 
some of them, those coefficients depend on 
their current values, and for such diffusion 
Markov process their generating SDE is 
written as [6] 

               txKxKx 21 )(               (1) 

where  t  is White Gaussian Noise (WGN) 
with correlation function  
                          tt .            (2) 
     Our purpose is to find an approximate 
method of calculation the correlation 
function for the continuous Markov process 
with the given stationary probability density 
and arbitrary diffusion coefficient. The paper 
is organized as follows: some preliminary 
results are presented in Section 2. Exact 

solution, i.e. spectrum of eigenvalues and 
expression for eigenfunctions of the Fokker-
Planck equation (FKE) corresponding to 
SDE (1), known only for some particular 
pairs of functions )(1 xK  and )(2 xK , is 
considered in Section 3. Section 4 is devoted 
to n application of the Galerkin method for 
analysis of the correlation properties of the 
process with arbitrary pair of aforementioned 
functions.   
 

2   Preliminary results     
      Using the Stratonovich definition of 
stochastic integral [6] we can express the 
drift coefficient )(1 xK as a function of the 

process  tx  stationary density  xfst  and 
)(2 xK  

                xKxfxK st 21 4

1
)(                (3) 

and the density  xfst  depends on )(1 xK  and 
)(2 xK  as 
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For a given  xf st , solving (4) with respect to 
 xK1  we obtain 
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According to (4) the prescribed stationary 
density  xfst can be obtained for SDE with 
any diffusion coefficient.  
     To find the correlation function of a 
stationary continuous Markov process the 
parabolic type Fokker-Planck equation 
(FKE) for the probability density ],[ txf of 
the process has to be solved. One of the 
methods of the FKE solution [4, 6] is based 
on the presentation of this density as   
                        tTxYtxf ],[ .                (6) 
Substituting (6) in the FKE [6] 
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    (7)  

we obtain the following transformation 
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(8) 

which, in turn, is equivalent to the system of 
two ordinary differential equations 

                    0,
1

 tT
dt

d

tT
,         (9) 
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xYxYxK
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,   (10)       

and the solution of the FKE may be written 
as 

              





0

exp,,
n

nnnn txYtxf  .    (11) 

Here n  and   xYn  are real eigenvalues and 
eigenfunctions of (10) corresponding to the 
boundary conditions 

                        00  nn YY                 (12) 
or 
                   0 nn YY ,                (13) 
depending on the process range.   

    The eigenvalue 00   is related to the 

stationary solution of the FKE )(xf st . If the 

initial value of the process is fixed, i.e.  
                    00, xxtxp   ,            (14) 
the transitional density of the process is 
written in the following form [5]  
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,     (15)  

while the correlation function is expressed as 

                





0

2 exp
n

nnhB  ,           (16) 

where 

                )(xfxxYh stnn 




 .                 (17) 

 

3  Correlation function of the 
continuous Markov process with 
particular pair of the drift and 
diffusion coefficients  
     As is clear from (16) the correlation 
function of the diffusion Markov process is 
monotonically decreasing but its 
convergence to an approximately exponential 
function depends on the set of functions 

  xYn  and on the spectrum of eigenvalues 

 n  of the equation (10)  considering (5) can 

be rewritten as   
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(18) 
The closed form solution of (18) may be 
obtained only for special pair of )(2 xK  and 

 xf st . In the case of the process with 
constant diffusion it is available for the 
Gaussian or the Nakagami-m density [7] 
(generalizing Rayleigh, Weibull, Maxwell, 
the single-sided normal and the 
multidimensional vector modulus 
distributions)   
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(19)       
For the Gaussian process generated by SDE 
with linear drift and constant diffusion all 
eigenvalues except the first are equal to zero 
and the correlation function is exactly 
exponential [5]. For densities of the group 
(19), the solution of (18) may be found in [7]                         
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n 
 ,           (21) 

where    zL m
n

1  is the generalized Laguerre 

polynomial [9]. The correlation function of 
such processes is represented by the row [8] 

      
   

 
 
 






















1
2
0

2

22

2
exp

!

5.0

4

5.0

n

n
mN

nnm

n

mm

m
B







.    (22) 

     In the case of Gamma distribution [10] 
generalizing Pearson, Erlang, Laplace, 
exponential power distributions  
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(23) 
and constant diffusion coefficient, 
eigenfunctions of equation (18) cannot be 
expressed with the help of known functions, 
but this can be done if  
                        xNxK 02  .                   (24)                                        
In this case its eigenfunctions are  
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and the only nonzero eigenvalue is  

                          



2

0
1

N
                       (26) 

                        11  h ,           (27) 

while the correlation function of the Gamma 
distributed Markov process with linear 
diffusion coefficient is 

            







 




2
exp1 02 N

B ,        (28) 

which is identical to that of the Gaussian 
Markov process [6].  
 
 
4 Correlation function of the 
continuous Markov process with 
arbitrary pair of the drift and 
diffusion coefficients     
In [8] it was shown that for a process with 
constant diffusion and symmetrical density   
close to Gaussian the correlation function 
may be approximately presented by an 
exponential form  
                baaMB x 312 exp  ,      (29)      

where 
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     To find correlation function of the process 
generated by SDE (1) with arbitrary pair of 
drift and diffusion we consider here the 
Galerkin method [11] for the solution of 
equation (18). The important feature of this 
method is that it provides uniform 
convergence to the exact solution that is 
being looked in the form  

                  



p

k
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p xaYxY
1

 ,          (33) 

where  pkak ,..,2,1,     

are undetermined coefficients and   xk  is 

the complete system of chosen beforehand 
mutually independent functions satisfying the 
boundary conditions (12) or (13). In the first 
case, these functions may be polynomials 
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and for the case of the boundary conditions 
(13) polynomials 
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Multiplying  xk  in (34) by 
1

1

x
 and 

 xk  in (35) by 
1

1
2 x

, instead of (34) we 

obtain 
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and instead of (35) we obtain  
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The systems of functions 
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and  
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are complete, i.e. for any function    xY p
n  

continuous with its derivative and satisfying  
(12) or (13) the following linear form exists  
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k
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 ,                      (40) 

that  
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and  
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where   is an arbitrary small positive 
number. 
     Denoting 

                          
1


x

x
z                       (43) 

or  
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x

x
z ,                    (44) 

we obtain the system complete at the interval 
[0, 1] and common for both cases of bounded 
conditions  
                          11  k

k zzz .            (45) 
Let us write, conforming to [9], the system of 
linear equations for coefficients ka  
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where the term in brackets are   

          

   
 

 

   

   

   
 

 dxx

x

xxf
dx

d

dx

xdf
xK

dx

d
dx

xdf
xK

dx

d

dx

xd

xf

xK

dx

d

dx

xd

l

k

kst

st

st

k

st

kl








 
















































































ln

ln

ln

ln

2

2

2

2

2
2

2

  

                                                              (47)        
and  
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Substituting in (47) and (48) expressions for 
 xk  and its first and second derivatives,  
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we obtain for the boundary conditions (12) 
the following expressions for the coefficients  

kl  and kl  
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(53)               
 and  

             
  










0 2

2

1
2 dx

xxK

x
lk

lk

kl ,       (54) 

For the bounded conditions (13) we have 
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and  
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    For a given diffusion  xK 2  and stationary 

density  xf st  we can write the determinant 

of the p –th order 
      plkDet klkl  ,, , plk , .(57)   

If it equals zero we obtain the equation of the 
p –th order regarding   with p  positive 

roots        p
p

p
i

pp  ,...,.,..,, 21  representing 

approximate values of eigenvalues, and the 
approximation of eigenfunctions may be 
written as 
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where  constant values   p
nC  can be found 

with the help of normalization condition 
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Calculating for any pi   

                   




 xdxxYCh p
i

p
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p
i               (60) 

and substituting the resulting expression in 
(15), we obtain the approximate expression 
of the correlation function of the continuous-
time Markov process with the given 
stationary density and diffusion coefficient  
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5  Conclusions 
     Continuous Markov process may be 
presented as a solution of a generally 
nonlinear stochastic differential equation 
(SDE). The process' properties, including   
stationary probability distribution and 
correlation function, depend on its drift and 
diffusion forming the operator of SDE. The 
required process' density may be obtained 
with the help of their different pairs, while 
the correlation function appears as an infinite 
sum of exponents with the decays to be 
found from the corresponding Fokker-Planck 
equation with certain boundary conditions. 
Its closed form solution may be obtained In 
this paper we have consider analysis of the 
correlation function of the continuous 
Markov process, which consists in trying to 
solve the corresponding Fokker-Planck 
equation at certain boundary conditions, 
while its closed form solution rarely occurs. 
We consider process with arbitrary pair of 
drift and diffusion assuring its required 
density, and apply the approximate Galerkin 
method which guaranties uniform 
convergence to the exact expression of 
correlation function     
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