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Abstract: - The full derivation of the generalized and extended solution to the equations describing three-
conductor transmission line is given in this paper; the brief results are presented in a previous paper. The
considerations proceed from the C. Paul formulation of lossless transmission lines terminated by linear loads. In
contrast to C. Paul, the conjoint interaction between the two lines is considered here and the influence of the
receptor line is not neglected, that is the weak-coupling approximation is not applied. In result, an extended and
generalized mathematical model compared the original model of C. Paul is obtained. In particular, a mixed
problem for the hyperbolic system describing the three-conductor transmission line is formulated. It is shown
that the formulated mixed problem is equivalent to an initial value problem for a functional system on the
boundary of hyperbolic system’s domain with voltages and currents as the unknown functions in this system are
the lines’. The system of functional equations can be resolved by a fixed-point method that enables us to find an
approximated but explicit solution. The method elaborated in this paper might be applied also for linear as well as
nonlinear boundary conditions.
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1 Introduction the line voltages is denoted by the ground symbol.
Although it could represent an infinite ground plane,
VLSI systems and their electromagnetic a wire, an overall shield, in our setup it is a land of a
compatibility (EMC) aspects have attracted a lot of printed circuit board. The rest conductors are also
research interest (cf. [1]-[8]). In this paper an EMC lands of a printed circuit board, nevertheless they
model of a 3-conductor transmission line is could be other objects as well. We presume the line
considered taking into account the results of Clayton to be an uniform and lossless line (cf. [7], [8]).
R. Paul [9]. In contrast to the considerations in [9], a The top circuit is the generator circuit. It is
generalized approach for solving the above problem terminated by a resistive load R_ and it is driven by
is pI‘OpOSCd. It is also pI‘OVGd that the weak coupling a voltage source with open-circuit Voltage Us(t) and
assumptions introduced in [9] are a particular case source resistance Rs The bottom circuit is the
of the more general handling. receptor circuit. It is terminated by a resistive load
R\e at the near end and by a resistive load Reg at the
We obtain a general solution of the system by far end. At the terminals of the receptor circuit, the
modeling pairwise the interacting 3-conductor electric and magnetic fields originating by the
transmission line introduced in [9] by keeping to the voltage and current of the generator circuit, interact
methods in [11]-[13] that were also used in other with the receptor circuit producing crosstalk
solutions such as [14], [15]. Our starting circuit is voltages.

given in Fig. 1 (cf. [9]). The reference conductor for

E-ISSN: 2224-266X 90 Volume 19, 2020



WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2020.19.11

3
-
-

N

o~

Uin (50

4 £

George Angelov
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and introduce denotations

R R
N A L )
u, (0

4 o
T -

x=A

U (X,1) = Ug (Xt);
i](X,t) = iG(th);

U, (X,t) = Ug(X,t);
i (X t) =ig(X1)

Fig. 1. Circuit of the 3-conductor transmission line.

We aim at finding a solution for the crosstalk
voltages based on a system that is more than the one
in [9]. That is, we proceed from the hyperbolic
system (1) obtained in accordance to the TEM mode
of propagation (cf. [1]-[8]). The voltages with
respect to the reference conductor Uk (X, t) (k= 1; 2)
and the currents of each circuit ix (X, t) (k=1, 2) are
functions of position X and time t.

OUg (X,t) N Oig(X1) _ Oir(X%,t)

dx ot ™ot
Ois (Xt OUg (X, t OUg (Xt

G( )+(CG+Cm) G( ): o R( )

oX ot ot (1)
OUg(X,1) Oig(X%,t) Oig(%,t)

+Lg =,

OX ot ot
Oir(X%,t) OUR(X1) OUg (X,t)
SR L (Co+C =

ox  EGREm 5 "ot

with the following boundary

Ug (0,1) =Us()— Rig (0,1), Upg =Ug(0,1) = —Ryeir(0,t)
UG(A:t): RAiG(Ant)a UFE :uR(Aat): RFEIR(Aat)
@)

and initial conditions:

Ug (%,0) = Ugy (%),

UR(%,0) =Ugy(X) 3)
IG(X70) = iGO(X)7

iR(X,0) =ige(X), x€[0,A]

Before going further, we would stress upon the
fact that in our considerations, we do not apply the
weak coupling assumption as opposite to [9] where
this assumption is applied. This means that we do
not neglect the right-hand side of (1). Therefore, our
method is a more general case of (1).

Rewrite the above system (1) in the form
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C1=C+Cy, G, =G, =-C,, G, =Cr+C,
L11=LG9 L12=L21=Lm5 L22=|-R

C:[Cn Cl2)’ L:[Lu lej
Ch Cp Lo L

Then we reach the following mixed problem in
the new denotations

c, 8ula(tx,t) +C,, auza(tx,t) . ailé:,t) _o,
C, aula(:(,t) +C,, auza(tx,t) N 6i26()>(<,t) _o,
L, ailé:’t) L, aizg,t) . 8ula(;<,t) —o,
L, 8i1;<,t) Ly, aiz(;;(,t) N auza(;(,t) _0

u,(0,t) =U g (1) — Rsi; (0,t), Upg =U,(0,1) =—Rygi, (0,1),
U (At =R (ALY, Ure = U (A1) = Reglh (AT)
4)
U, (%,0) =Uy(X), x[0,A]
5(%,0) =1i5,(X), Xe[0,A]

U; (%,0) = Uy (%),
(%0) =i;(X),

2 Hyperbolic system transformation

In a matrix form the above system (4) is
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C, C, 0 0[oy/ot o o <92 %o
C, C, 0 0 |lou /ot A Ac
ot |t C, G
0 0 L, L,||oai/eat 0 0 2 L
0 0 L, Ly,||ai/ot . _ Ac Ac
L L
0 0 1 0ffoy/ox] [0 -2 12 9 0
AL AL
+00016u2/ax_0 L L
1 0 0 0f|ai/ox]| |0 —2 dL 9 0
: AL AL
01 0 0f|di,/ox]| |0 - -
: we obtain
Since
A¢ =C,Cp, —C2 =(C4 +C,,)(Ca+C,)-C2 = fou] | o o L2 Curay]
=C,Cr+C.C, +C:C, >0 ot Ac  Ac || Tox
ou, 0 0 -G, & ou,
we have to assume ot Ac  Ac || ox 0 (6)
+ =
. Oi L —L Oi
Assumption (L): A, =L.L,-L} =L,L,,—L;, #0. —L =2z 12 0 || =+
p ( ) L G—R m 1122 12 8t AL AL ax
This implies 0iy -1, L, Ol
E R e Y
Ci Cy 0 0 -t - -
W:Clz Cp 0 0 —AcA, #0 Rewrite (6) in a matrix form
0 0 L, L,
0 0 L, Ly 8U(X,t)+BGU(X,t)=0 o
ot oX
and therefore A does exist: _
Substitute Y (0 =H 200 (7):
ChA CpA, 0 0
0Z(x,t 0Z(x,t
JE. -Ch,A. Cj AL 0 0 B HMJF BH é—’):o
TAGA| O 0 LpAc -LpAc| X
0 0 -LpAc L Ac and multiplying by H ~' we obtain
Cpn/Ac —Cy/Ac 0 0 OZ(XY) , \y-1gy PZO6D _
0 0 Loy fAL =L /Ay We have to find H such that H'BH = B, where
0 0 L, /AL Ly /AL

Multiplying (5) from the left by A™! and in view
of

_i __CIZ 0 0
€. G o |00 1o
a_| A Ac o o0 1]
0 o Lo Lot oo
AL A o1 00
0 =E AL TE
L A A
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and 4, (k=1,2,3,4) are the eigen values of B, i.e. the
roots of the equation

|B—Al|=
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4 L,,C,; +2L,,C, +L,,Cy, PENE S corresponding to eigenvector
H® = (&b aoa) 5 (K=1,2,3,4).
:AcALlA‘_(LllCll+2L]2C12+L22C22)ﬂ42+1=0 (élk §2k §3k §4k) ( )
AcA| To solve (9) we have to assume:
We suppose Li2Ci1 +L55Cip = L (Cs +C) —LrCr %0
Assumption (D): and
D= (|_“C11 +2L,,C,, + Lzzczz)z - LG +L4,G, = Lm(CR+Cm)_LGCm #0
~4(C11Cyy —Ch )(LiLas — L2 ) > 0 Therefore
2
For the characteristic roots we obtain &y = AALC + Ly ,
A (L2Cy 1 +155C15)
_ (l-llcll"'2|-12C:12""l-zzczz)"'\/B £ = Ly, —4A.C,
2<C11C22 —C122)<|—11|-22 - L%z) 2 A (Li2Cyy +10,Ci5 )
\/_ Sk =1
L, +2L,C, +L,,Cy, )—+/D
A= ( 1C 12 212 22 22) 3 ) Eu = |—12C12+L22C22_/1|<2ALAC
2(C11C22_Clz)(LllLZZ_LIZ) a (L,2C22+L22C,2)
Introduce denotations:
A= I(L] 1Cy +2L,C, + |—22C22)"F\/5
\l Z(Cllczz _CIZZ)(LIILZZ - L%z) (1//11(2)—(L11C11 +1,,C),)
7/k = =
LxC+ LG,
A= (L11C11+2L12C12+L22022)_\/5 1 Zkz(L G +L,,C, ) (k=1,2).
4 = . _
2(C11C22_C122)(L11L22_L%2) = P L . 1272
A (L12C11+L22012)
R rk. For the sake of simplici 1
emal ' or the sake of simplicity, we could Note that
find the eigenvectors of
~1 &) _ . ﬂ“l>/12>0;j’3:_/11;ﬂ’4:_;t‘2;
(B™ — sl JH™ =0; 5
“ ;e N LR
te =1/ 24, H =(§1k’§2k7§3ka§4k) SESTRATISE

] . Then we obtain the following eigenvectors:
(instead of (B- 4 1)H™ =0) because

H(l):(pl’qlalayl)T’ H(Z):(p2’q2’l’72)T’
0 0 L, Ly

0 0 L12 L22 T T
Cll C12 0 0 H(Z):(_pls_qlalayl) s H(l):(_pzs_q2’1:}/2)

C, Cp 0 O where

B =

L12 + /Isz LCIZ

has a simpler form than B. P, =
ﬂ’k (LIZCII + L22C12)

= (Lu + leyk)
Now we have to solve the following systems in
order to obtain 4 eigenvectors H® (k=1,2,3,4) q = L, -4A.C,
‘ ﬂ“k (LIZCII + L22C12)

=2 (L, +Ly,7), (k=12)

Thus transformation matrix becomes

©)
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p1 pz _p1 _pz

q] qz _Q1 _Q2
1 1 1 1

Vi 72 N Y

Since |H|=4 AL/AC(?’Z—J’I)Z #0

George Angelov

_qz\/AC/AL UI(X,I)+
1

LX) =———| +p,/Ac /A U, (X1)+

3( ) 2(72_71) p2 C L 2(X>)

+7,0, (X 1) =i, (X1)

GifAc /AL U, (X t)—

1
) ) . I D=————| —p,JAL /A, U, (X1)—
for the inverse matrix we obtain s(%0) 2(72—7/1) pl_ ¢ _L : (%D
=7, L (X +1,(X1)
H' =
Then the mixed problem (1)-(3) becomes as
GyAS A =Py AL Ay, - follows: to find a solution of the system
_ 1 —OJA /A prAL/Ac -7 1
2(72_71) _qzx/AL/Ac pz\/AL/Ac V> -1 allé:(’t)-i-ﬂl alléx’t)=0,
X
AVAL/Ac ~PALAe =7 al,(xt) . 1, (xb)
o, =0,
because ot ox (10)
LU AL AL
P, p ey B =Y
‘ i l;tz(L“ LnJ( jz AT A (72 =71). ot X
a; 9, 2t A\ 7> 8|4(X,t)_ﬂ a|4(X,t)_0
ot *oox

3 Boundary conditions derivation
with respect to the new variables

Introduce new variablesU =HZ and Z=H U,

where U = (u,,U,,i,i,) ,Z=(1,,1,,15,1,)" .

Then

ul(xat) = pl |1(X,t)+ pzl 2(X>t)_ p1| 3(X,t)— pzl 4(X,t)
UZ(X,t)=q1 |](X,t)+q2|Z(X,t)—q||3(X,t)—q2|4(X,t)

LD =10+, )+, (D) +1,(xt)

LD =7, XD+, LD+ 71,60+ 7,1 ,(x1)

and

q2 \/AC /AL U](X,t)—
—PoJAC /A U (X 1)+

+7,, (%) =1, (X 1)

=0, A /A U (X 1)+
1 —
N +p1 AC/ALUZ(Xst)_

27271)) i 0+, 00

I (xt) =

1
2(72_71)

|2(X,t)=

E-ISSN: 2224-266X

with initial conditions and boundary conditions in
the new variables:

qz\/Ac /AL u1o(X)_
1
_ —pz,/AC A Uy (X)+

27277)] Ly i 00-im0

1,(x,0)= =1,,(X)

_ql AC/AL UIO(X)+
1

m P A/ A Uy (X) =
O i (05 (X)

O, Ac /AL U, (X)+
1

m +P, A /A Uy (X) +
2 1 (0 =5 (%)

A /AL U (X)—
1

2— _pl\jAc/AL uzo(x)_

(}/2 _7/1) 1 (X) +15,(X)

|2(X,0)=

[,0(X)

1,(X0)=

[5,(X)

|4(X,0)= |40(X)

(D
To obtain the boundary conditions

L‘I] (Oat) =U S(t) - RSil (O,t), u] (Aat) = R/\il (Aat)o
u ne = Uy (0,1) = _RNEiZ(O:t)a U e =W, (AD)= RFEiZ(A:t)

with respect to the new variables we take into
account
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UI(O,t): P, |1(0,t)+ pzl z(Oat)_ p1|3(0,t)— p2|4(03t)

Uz(O,t) =q I1(0at)+q2|2(Oat)_q1|3(Oat)_q2|4(oat)

i,(0,t)=1,(0,t)+1,(0,t)+1,(0,t)+1,(0,t)

iz(ost):71 |1(0>I)+72 |2(0,t)+71|3(0,t)+}/2|4(0,t)
(12)

and

UI(A,t): P, II(A’t)+ pzl z(Ast)_ p1|3(A’t)_ p2I4(A,t)
Uz(/\,t) =q, |](A,t)+q2| 2(A9t)_q1|3(A:t)_q2|4(A:t)
L (AD =1 (AD+1L, (A D+ (A D)+, (A

iz(Ast):71 |](A,t)+}/2 |2(A,t)+71|3(A,t)+}/2|4(A,t)

Consequently

P 10,0+ p, 1, (0,0~ p,15(0,8) = p,1,(0,1) =
=Us(t)—RS[II(O,t)+I2(O,t)+I3(0,t)+I4(O,t)]
a,1,(0,1)+0,1,(0,1)~q,1,(0,H) -, ,(0,1) =
=—R [7 10,0 +7, 1,(0,)+7,1,(0,t) + 7,1 ,(0,1)]
P, |1(A,t)+ pzl z(A’t)_ p1|3(A>t)_ p2|4(A:t):
=R, [ LA D+, A D+ (AD+1,(AD)]
q, I1(A,t)+qzlZ(A,t)—qll3(A,t)—q2I4(A,t):
=R [}/1 LLAD+y, [LAD+7 1A D+, 4(A,t)](14)

4 Obtaining functional equations
equivalent to the mixed problem
Proceeding as in [11], we find the characteristics of

the system (10) which are forming four families of
curves

dx dx dx dx
—_— . —_— ﬂ N —_—= —ﬂ, N _— = —ﬂ, 15
d "V odt T dt Yodt . (1)
Through each point
(xt) eI ={(x,t) €[0,A]x[0,T]} there are 4

characteristics: C;, C, with positive slopes and C;,
C, with negative slopes. A characteristic Cx (K= 1,2)
through a point (0,f})intersects the boundary x=[1 at

some point (A,f, +T,)where T¢ can be found by
integration of % = A . Since the characteristic Cy is

X-AT = const, then the straight line through (0,f,)is
- X 4
Ak

Setting x = A and t={, +T, we obtain

E-ISSN: 2224-266X
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A= (E+T ) =-A4f = T =A/2.

Similarly, a characteristic Cp, (p=3,4) is
X+ApT =const (with A3=-4; , A4=-4) and the
straight ~ line  through a point  (A,f,)is

X+ At=A+A,t,.
(0,t,+T,). Therefore

It intersects X=0 at a point

Ap(fo+Tp)= A+ 2,0, =Ty = A/ 2,(p=3.4),
(13)
i.e. T3 = T1, T4 = Tz.
Introduce directional derivatives

6,0d :i_lki(k=1,2,3,4).
oxdt ot *ox

< at
Then system (10) can be written in the form:

Dl =0 (k=1,2) (16)

D I, =0 (k=34) (17)

Integrating each equation from (16) along the
characteristic Cy from (0,t) to (A, t+Tx) (where the
integration is a line integral along Cy), we obtain

L (A t+T ) =1,00,t) (t>0).

In the same way, by integrating in (17) from
(0, t+Ty) to (A1), we get

L (AD =1,(0,t+T,) (t>0).
Present (12) in the form:

(P, +Rs)1,(0,0)+(p,+Rs)1,(0,t) =
:Us(t)+(p2 —RS)I3(0,'[)+(pl —RS)I4(O,t)
(0, + Rz ) 1 (0,0)+(a, +7,Re ) 1,(0,1) =
= (G, —Rye7,) 15 (0.0 +(0, = Ryer, ) 1,(0,t)
(RA+ pz)l3(A,t)+(pl+RL)I4(A,t):
=(p,—R)LAD+(p,—R )1, (A
(0, + Ree7y ) (A D) +(a, + Reey ) 1 (AL =
=(0, =Ry (A D+(a, =Ry, ) 1L, (AD)

Since

(18)

B p,+Rg B

o +Rer G +Rer|

:(plqz_pzq1)+(7z_71)RsRNE+
+(P 7, = P71 )Re +(9,—6)Rs =

P, +Rg

12
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:(72_71)\/AL/AC+(72_71)RSRNE+ \/B(VAL/AC"'RFERL) A =4,

— — X
CZZAL + Lll ALAC LIZCll + L22C12 L12C11 + L22C12

+(A4, -2 R +(d,—0)Rs =
( 1 2) L.C, +L.C, NE ( 2 1) S X[(C Nl KR )R +(L22+/112,2A|_C”)R ]¢
22=L 11 L=C FE L
VD (A /A +RRe ) (4 -4) Ay
= =+ X
I'IZCll + L22C12 (LIZCII + LZZCIZ) * 0
(CZZAL + I_ll ALAC ) RNE +
Consequently
% +(L22+1122ALC11)R *
v s L(AD)=B,1,(A)+B,I, (AL,
£0 where
B — 2pyRee —2qR |
Hence, we can solve first two equations with " A, ’
respect to 1,(0,t), I,(0,t) which leads to 5 _ (P2q1 _ P1q2)—(q1 +q2)RL .
12—
1,(0,t) = A,(D+A,1,0,t)+ A,l,(0,1), Ay,
where +(p271+p172)RFE+(72_71)RLRFE
A34
g, +R Ug(t)
Am(t):( 2 rfh) s ;
12
(A1) =By 1 (A1) +Boy |, (AL),
Al :2(p272RNE_q2RS). 4( ) 21 1( ) 22 2( )
! A, ' where
P4, - P9 —(9,+9, )R
A, = 142 b) 1A( 2 1) S 4 5 _(pqu—plq2)+(q1+q2)RL
12 21 +
+(p172+szl)RNE"'(?/l_?/z)RSRNE =
A, +(72_71)RLRFE_(p271+p172)RFE
A34
20,R -2p,7
LOD=A O+ ALOD AL O, B~ 2P
34
So, we have obtained a system of functional
where equations
A (t)__(ql +Re7 )Us® | 1,(0,t) = Ay () + A, 1,(0,0)+ A,1,(0,1)
0 - 5
Ay 1,(0,t) = A, () + A, 1,(0,t)+ A,1,(0,1)
p, = P10 =Pl +(9, +a )Rs I,(AH) =B, 1, (A1) +B,1,(AD) '
A, [,(At) =B, 1,(A1)+B,1, (A1)
_(pl72 + P.71)Re +(71-7:)RRee : Taking into account |, (A,t—T,)=1,(0,1),
Ay (k=3,4) we can rewrite the first two equations in
A, _ 2Py +2GRs the following way:
A
; 10D = A O+ AL (AL-T)+ Al (AL-T)
Similarly LOH=A,0+A,LAI-T)+A,l, (AL-T,)
_| PR PR Similarly in VinW of
34 q2 +]/2RFE q1 +]/l RFE Ik(A,t) = |k(0,t—Tk) (k = 1,2) we Obtall’l
=(p, +R )(a +7Ree) = (A +7,Ree ) (P +R) = Ly(At) =By, 1,(0,t=T))+ B, 1, (0,t=T,)
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Denoting the unknown functions by
LO.D=1,@1, 1,0,0=1,(),
L) =10, L,O=1,A1
and taking into account T, =T;, T, =T, we obtain the

following system:

(@) = A+ AL E-T)+A,l,(t-T,)
(0 = Ay O+ Ay L (E=T)+ Ayl (t-T,)
() =B, I, (t-T)+B,l,(t-T,)
[,)=B,1,t-T,)+B,l,t-T,)

To obtain initial conditions on the intervals
[-T,,0],[-T,,0] one can shifted the initial functions

Uy (X), Uy (X), 1,5(X), T5(X)

from the interval [0, A] along the characteristics to
the intervals [-T1,0], [-T2,0] (cf. [12]).

The obtained functions after the above
transformation on the boundary we denote by

1o, 1,1, @), 1,00).

If U0 (X),Uz0(X),119(X),159(X) are
functions then |, (t),l,,(t),15,(t),14,(t) are periodic

periodic

functions too.

5 Operator presentation of the
periodic problem

Introduce the sets

B l,(t) € Cy [0,0): |I (t)|g| gHKTy)
= t€[kT07(k+1)To]a | (t)_llo(t)te[ Tl,O]

[0,00): |1, (D) <1, ™,
L) =1,,().te[

I, eCy
te[kTO,(k+1)T 1;

0,00): [1,(0)] < 1,8,
|3(t) = |30(t),t el
|4(t)€C [0,00): || (t)|<| k)
L =1,0.te[

{ LM eC, [ }
M3
t e [KT,,(K+DT,1;

t e [KT,,(k+ DT, ];

E-ISSN: 2224-266X
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(k=0,1,2,...) (k=0,1,2,...), where Cr, [0,00) is the set

of all continuous Ty-periodic functions and lok, To, £
are positive constants and uTo = £ = const.

We use the technique of fixed point theory in
uniform spaces (cf. [13]). For that purpose, we
introduce a saturated family of pseudo-metrics in
the Cartesian product

M=M,xM,xM;xM,
p(k)(ln’l_n):
=max{ ) —I_n(t)|e"’“’”°):te[kTO,(k+1)T0]}
(N=1,2,3,4;k=0,1,2,...),

where the index set of this family consists of all
ordered fours

(P1s P2, P3Py ) € Ngx Ngx N x Ngs Ny ={0,1,2,...}

corresponding to the initial points of the intervals
[P To, (P +DToIX[ P, T, (P, + DTy ]x
X[ P3To»(P3 + DTo1x[ P4 Tp, (Py +DTy]
Introduce maps j,(k):N; —> N, (n=12) in the
following way:

i i Ny = Ng; [KT,, (k+ DT, 1= [KT, =T,,(k+ DT, -T,]

We suppose that T, =m_T,, (p=12). Therefore

[KT, =T, (k+ DT, =T, 1=[ (k=m, ) T,, (k+1-m, )T, |

and then j,(k):k—>k-m  provided k-m >0;
") =j,(iy7 k), j,"(k)=k. The definition of jp
implies that j]'(k) e N, only for finite m.

Define

j(pp P,, Ps, p4) = (j](p1)> jz(p2)9 j3(p3)» ]4(p4))
PPy P2y Py P = (57 (P, 12 (P ) 1(Py), 15(PL))

In particular,

i, P, P, P) = (3,(P), 1> (P)s (D), 4 ()

The set M turns out into a complete uniform
space with a saturated family of pseudometrics (cf.

[13])
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p(pl’pz,p“pﬁ((h, o131, (11,15, 1) = Lo 130() €C [-T,,01, 1,(),14() € Cy [T,,0]
= P14 p P (1) + p P (1, )+ p P (1, T,) Us()eCy[0,0), Ug=max{|Ug(t):te[0,T,]}
Now we formulate the main problem: to find a Assumptions (D) and (L) are valid;
To-periodic solution of: T, =mT,,T, =m,T, for positive integers m;,m, @
L =A0+AE-T)+A,l,t-T,)
DI gy Pt |
(0= Bl (=T + Bl (T, E R T MRCR CTERAECT ey
2, (L,Cy +L,Cyy) |
where 22)
[,®)=1,0),te[-T,,0], I,@t)=1,(),te[-T,,0], <min{l,y,1,}
[,(t)=1,@),te[-T,,0], I,t)=1,(@),te[-T,,0]
We define an operator with components B = (B, AL, +(L22/11 + RNE)x
B2, Bs, By) by the formulas: il |+ARN|E7 ly, - b (LG + LCr) Us <
AO+ALE-T)+A,l,-T,) ’ ’ A7 (L,Cy +L,,Cyy) |
B (,,1,, 151 )1):= I,(t)=1,,@t),te[-T,0] (23)
L, =1, .t e[-T,.0 <min{l . 1,)

t€[0,0)
Then there exists a unique To-periodic solution of
(19).
Azo(t)+ A21| 3(t_T1)+ Azzl 4(t_T2)
B,(1,,1,,15,1,)t)= [,(t)=1,,(t),t [-T,,0]
I, () =1,(01),te[-T,,0]

Proof: The set M, xM,xM,xM, is a uniform

space with the above saturated family of pseudo-

metrics. In view of 4, >4, = A/ 4, >A/ 4, =T, >T,
tel0,0) we show that B maps M, xM,xM, xM, into itself.

It is easy to verify that all components of the

Bl (t=T)+B,1,(t-T,) operator B are periodic functions.

By(1,, 15,15, 1,)(®):= L (@) =1,,(t),te[-T,0] )
1, (t) =V, (t),t [T,,0] For te[kT,,(k+1)T,] and sufficiently large

t €[0,00) 4 >0, having in mind (12), (13) we obtain:

(k)
lell(t—T1)+Bzzl2(t—T2) |B1 (|1,|2’|3’|4)(t)| <
B,(I, 11,1 D=1 1, () =1,,(t),te[-T,,0] <A O+ A1 =Tl +| A1, (=T, | <
|A|o(t)|+|A“| I 306"(17T|*kTM+|A2| | e T <

e"“”"{'qz +Re’s|
|A|

I,(t)=1,(),te[-T,,0]
t €[0,)

IA

IA

Us+|A1||me"T‘+|Alz||4oe"BJS

IA

eﬂ([*kTu)I
10

6 Existence-uniquenessof periodic
solution

The main result is:

Theorem 1. Let the following conditions be
fulfilled:
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|B<k>(|l, 2,I3,|4)(t)| <
<[ Ay O]+ Ay |1 E=T)|+ AL |1, =T | <

|q1 + RNE71| s
A

<ent kTU)[ q, + RNE71| s

A,
< eﬂ(tfan)l 20

+|A21| | Boeﬂ(t*ﬂ*kTu) +|A22| [ 4Oeﬂ(‘*Tz*an) <

+|Am|lme~“+|A22||40e~%}

B0 0] <
S|Bll||| l(t_T1)|+|Blz|||2(t_T2)| <
< | B“| I 1Oey(t—Tl—kTo)_'_|Blz| I 2Oey(t—Tz—kTu) <
< eﬂ(t_km(' Bll| I 1067“1 +|BIZ| I 2oeiﬂT2) <

(t—KTy)
<e!

B, 151510 <
<[B, |1, =T)| +[By |l (t-T) <
<|B, | 1,8 TV 4B, |1 e T <
<e* “*”w( B, |16 +[By|l 2Oeﬂ) <

1 (KT, )
<e,

It remains to show that B is contractive operator.
We notice that T, >T, = — 4T, <—uT,=> e * " <e*"
Then

aX{|A”|eyTl +|A, e

B, e +|B,|e
11

Al +|A, e }<

) |}
<e’"max =K(n)
{|B”|+|B]2| |le| |B..|

and for t e[KT,,(K+1T,] we have

B0 1)O-B (1)) <
<AL E-T)-Ta-T)[+[A ) LE-T)-Tt-T)|<
= |A“||| 5(t _Tl)_|_3(t —T1)| @ H KTy T)gu (KT, T
* | A | | 1, @-T,)~ |_4 (t-T,) | g H (KT ) gu(t-KTy-Ty) <

< e#(t*kTo) |:

All|e,ynpjl(k)(|3’|_3)+|A12|eszpiz(k)(|4’|4):|

that implies
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P (BI(,.1).B ()<
<A e TP 1T ) +|A e o (1T, ) <
<(|A e +Ae ™ )(p"® (1,.1,)+ Jz<k>(

)
. - pjl(k) | 1 +pl (k)
s(|A“|e’”' +|A‘2|e“){ (11 I_) ]

+ph(k>( T Jz(k)
1.(k>( ) i (k)(
1)+

20
Jl(k)(| ) Jz(k)(|4’|_4)J

<

smm[

[BY (1,10 -BX ([, T)H)| <
<A T =TT+ AT -Tie-T) <
<[ A1 E-T)) =T, A -T))|e 4 Tere 0T

+|A22||| LA-T)-1,t-T,) |e’*‘ (AT, Ty (KT, T,

< ell(‘*kTo) |:|A2]|e—/1T1pjy(k) ( I 3’|_3)+|A22|e—/1szjz(k) (l 4,|_4 ):|

which implies

p(k’(B‘k>(I3 1), B(k)(l_3,l_4))<
<Iafe (LT o (1,
—(IAuIe‘”'+|Azz|8’”2)(/)“‘”(' L)ep (1]

r)
ph(k)| +pz(k)
s<|/s1|eﬂ“+l%zle””>{ ot

1.(k)( -
11<k>( ) Jz(k)( |_ )
P (1T, TJ

o1,

<

Jg

lz(k)

smm{

Further on we have

BE,1,)H-BY (1)1 | <
<IBy |1 =TTt =T)|+[Bo 1.t -T) -, t-T) | <
<[B [, =T, T, (T e 0T T

+|Blz||| t-T)-1, (t—Tz)|ef/:(t—kTosz)eﬂ(t,kTHZ)S
<ett an)UB e h(k)(ll’l_l)+|Blz|e_m—zpj2(k)(|2,|_2):|

which implies
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P (BR(,,1,),BR(,T)) <
S|Bll|e*/fr1pj|(k)(|]’ ])+|B |e /’Tz i (k)(lz’l_z)g

S(|B“|e*#T. +|Blz|e*/1Tz)( J;(k)( . )+,OJ (k)(
£(|B“|eﬂ +|812|emz)[ i (k)(

o))

sz(k)(| )+ph(k)(|4’|4)

L)<

_,’_le(k)(

< K(#)[

Finally, we have
B0, 1)O-BR(L.T)0|<
<[By|[1, =T =T, =T +[B,y|| 1L, -T)) - T,
<[By |1 =T =T, (t=T,)|e K0 T KT,
+[By |l (t=T,) —T,(t~T,) g™ T Tt 0T <
< @ (k) [|BZI|e—uTlpn<k> (|1’|—1)+|Bzz|e—ﬂnpjz<k> (| T

which implies

P (BR(1,.1,).BR(,.T)) <
<[B, e (1T ) +[Bale o (1,.T,) <
<(|Bu| e +[B e ) (0" (1,1, )+ (1,T,)) <

g(|521|eﬂ+|322|e‘”2){ o

(1)
1)+

sK(ﬂ)[ h(:io ,2) JZT)(E)(' '2)]

Therefore

wof (BEALL)BEAL1L)BR(L1L)LBE( L)),
<
(B, 1), B (1,1, BY(, 1), B (,T,))

Jl(k)( ) J<k>( 2’—2) ]
MO (1,T)+ o0 (1,1,

It is easy to see that j"(kk,k,k)<Q(K)<oo
(n=1,2,...) is uniformly bounded by n; Q is a
positive constant not depending on n. Indeed, every
interval goes to the left from the initial point after a
finite number n of iteration of j. This means that the
operator B is contractive one in the sense of

<4K( ){
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definition from [13] and has a unique fixed point
(I L, 1,0, 15,1 4(t)) , which is a solution of (19).

Finally, we note that the solution can be
approximated by a sequence of successive
approximations with advanced prescribed accuracy.

Theorem 1 is thus proved.

7 Resultsvalidation

Since our goal is to find
U,e =U,(0,1); U =u,(A,t) we have (cf. (12), (13)):

UZ(O,'[) = qll 1(0>t)+q2| 2(0at)_Q1| 3(0’t)_Qz|4(O,t) =
:Q1|1(t)+qz|2(t)_q1|3(t_T1)_Q2|4(t_T2)

uz(Aﬂt):qlll(A’t)+q2|Z(Aat)_q1|3(A’t)_q2|4(07t):
:Chl1(t_T1)+q2|z(t_Tz)_q1|3(t)_q2|4(t)
(1,@),1,(),1,),1,()) is the solution

obtained in the above theorem.

where

We have to check the conditions of our
Theorem 1 referring to the data from [9] :

Li1 =Le=Lr=L2=0.8529 uH/m;
Lm=0.3725 pH/m;
Li2=Ls =Lm;
Cii=Cc+Cn=Cr+Cn=
Ci2=C1 =—Cn=-18.036 pF/m;

C = 46:762 pF/m;

L12Ci + L2 Cia = Lm(Cs + Cy) — LrCm = 0.3725 x
x 46.762 —0.8529 x 18.036 = 2.036 £ 0;
L12Cy + L11 Ci2=Lm(Cr+ Cy) — LcCmn=0.3725 x

x 46.762 — 0.8529 x 18.036 = 2.036 # 0;
Ac=Ci; Cn— C*2=(Cs+ Cn) (Cr+ C) - Cm=

=46.762% — (~18.036)* ~ 1861.3874 > 0;
AL=Lelr— L’m=Lilon—L%*2=
=0.85297-0.3725% ~ 0.5887 > 0;

]LHC]I +2L|2C12 + Lzzczz
i 2ACA,
1 = 3 ~
+\/(L11C11+2L12C12) _4ACAL

2AGA,

~~0.0321157 =0.1792
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’LIICII +2L12C12 + L22CZZ _
2AcA,

/1 = ~
’ \/(L11C11 "'2L12C12)2 —4AA | >

2AA,
~+/0.0284 ~0.1686
Loy + A AL Ci1=0.8529 4+ 0.1792 x 0.1686 x

0.5887 x
x 16.762 ~ 1.6846 ;

CuA, +L,,\JA Ac =46.762x0.5887 +
+0.8529/0.5887x1861.3874 ~55.7546 .

N VD(JA /Ac +RR )+ 4, -4, )

" L]2Cll + LZZCI2

><((szAL + LIIVALAC)RNE +%R5) =
1772

=0.427+24.051RR,. +3.5014R +19.6R;

A DA /A +RRe) A -4
* LIZCII + LZZCIZ L12C11 + L22C12
X((CZZAL+L11VALAC)RNE+%RA):
1772

=—(0.427+24.051R, Rz +3.5014R, +19.6R, );

y, = 1_/112(|-11Cll + L12C12) _
l j'12(|-12C11 + L22C]2)

_1-0.0321157(0.8529x46.762-0.3725x18.036) _

0.0321157(0.3725%x46.762—-0.8529x18.036)

_1-1.0646

~ ~—0.987979;
0.065386

_ 1_’122(|-11(:11 + L12C12) _

}/ =
P A(LCL +L,C)
_ 1-0.0284(0.8529%x46.762—-0.3725%18.036) N
0.0284(0.3725%46.762—-0.8529%x18.036)
L1094 03
0.0578

The inequalities from the main theorem are:

| 4L, + (LA + Ry, |U _
<=
Ay,
B |0.0667—-0.98798(0.1528+ R;) | g
0.427+(24.051R; +3.5014)R +19.6Rg

<min{l, 1}

s <

E-ISSN: 2224-266X

George Angelov

|12L12+(L2212+RNE)7/2|G _
<=
Ay,
a [0.0628+1.038(0.1437+ Rye) | g
0.427+(24.051R; +3.5014)Rz +19.6Rg s

<min{l,,,1,}

<

In what follows we verify how the same data
satisfy the conditions generated by the particular
case under weak coupling assumptions. Indeed, the
main system becomes

(C, +Cm)aue(x,t) N Oig(%1) _0
ot OX
. Oug(Xt) +(C. +Crn)8uR(x,t) N dig(xt) _ 0
ot ot X
L Oig(Xt) N Oug (X,t) _0
ot OX
L Oig(X1) L, Oig(X,1) N Oug(Xx,1) _0
ot ot OX
recalling that

U (X1 =Ug(Xt); U, (X1) =Ug(X1);

L) =ig(%t); 1,(%t) =ig(X1);
C,=C,+C,; C,=C, =—C,; C,,=Cr+C,
L,=Ls; L,=L, =L L,=L,

or in a matrix form

C, 0 0 07 [ou/ot] [ou,/ox

Cp € 0 0 ou/at| fou/ox|_,

0 0 L, O dij/ot | |ai/ox |

0 0 L, L,| |ai,/at] |ai,/ox
Since

Ac=C,C,, =(Cs+C,)(Cr+C,)>0
(L):A, =L,L, =Ll >0
it follows | A=A A, #0

and therefore
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Con 0 0 0
AC
-C
2 C,A; 0 0
Aflz AC L
0 0 -2 0
AL
-L
0 0 A“ L, A,
L L J
In view of
= 0 0 0 ]
AC
- 0 0
C, C,A. 0 0
Ac 0 0
B= L “11 0
0 0 -2 0
A, 0 1
-L
0 0 A” L, A,
L L i
0 0 Sy 0
AC
-C
0 0 A” C,, Ac
_ ¢
Ly 0 0 0
AL
-L
2 L A0 0
_AL i
we obtain
w0 0 S= oo | [fou]
ot Ac ot
oo 0 e ocoa.| |0
ot Ac ot
o+ x|~
% i 0 0 0 &
ot A, ot
oi, L 0i,
R 12 J——
o) | L,A, 0 0 ot

We find the eigenvectors

H® =(51k552k9§3k9§4k)T; (k=1,2,3,4)
of (B = 1)HY =0; y, =1/ 4, , where

0 0 L, 0

0 0 L, L,
C, 0 0 0
C, C, 0 0
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In view of L,C, +L,C,#0 and
L,,C,, +L,,C,, #0 we obtain the roots of
|B™ —ul |=(L,,Cy, —#°)(Ly,Cpp —1*) =0
From the matrix
-4 0 L, 0
0 -u L, L, -
C, 0 —-u O
C, C 0 -—u
-u 0 L, 0
N 0 -u L L,
0 0 L,C,, — 4’ 0
0 0 L,C,+L,Cp, L,Cp-p’

we obtain for 4, =—u, =./L,,C,, the eigenvectors

£, = L12C11 + LZZCIZ i £, = L11C11 — L22sz
12 > 31
L11C12 + leczz Cll L11C12 + leczz
E,=1, &, =-— L11C11_L22C22 i
41 > 13
L11C12 + L12C22 C11
En=1 &,=- L,C +L,Cp, h
43 =5 23 >
L,C, +L,Cy, VG
£, = LG —LyCy
33 :
L,Ci, +L,Cy
Similarly for g, =-u, =4/L,,C,, =
L,,Cy, 0 Ly 0
0 L,,Cy, L L,
0 0 I-11(:11 - Lzzczz 0
0 0 L11C12 - L12C22 0

we have

¢, =0, égzzlel-zz/czza $»=0, &,=1
514:03 524:_\/L22/C22’ 534:0’ 544:1'

Consequently, the transformation matrix is :

L1|C1| - Lzzczz L _ L11C11 - Lzzczz L

i 0 1 0
L,C,+L,Cu VG, L,C,+L,Cn VG,

I-12(-\'11 + L22C12 \/K i _ lecn + L22C12 ﬁ _ Ly,
L,C,+L,Cn VG, C, L,C,+L,Cu VG, C,
I-11(-\’11 — Lzzczz 0 I-11011 — Lzzczz 0

LIICIZ + L1zczz I-11012 + leczz

1 1 1 1
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And then in view of (12) we have

ul(x,t):M {Ll I (xt) -
I‘11C12 + L12C22 C11
_L11C11_Lzzczz L11| (X t);
I‘11(:12 + L12C22 C11
L,C, +L,,C L
Uy (xt) = Tzt 12| LGt + |22, (1) -
L,,.C,+L,C,, \C,, C,,
L12011+L22C12 12| (X t)— il (X t);
L,,C,+L,C,, \C,, C,, ’
L,,C,, -L,C -L,,C
i X,t — 11 22 22| Xt ll l] 22 22| Xt
'()LHC +L,C,, ()+LC +L,,C,, s (60);

LOGH =1L+ GO+, D+, (XT).

If we take the specific parameters again from [9]
L11 = LG = LR: L22 =(.8529 uH/m
Ci1=Cs+ Cn=Cgr+ Cn=Cy =46.762 pF/m

it is obvious that L;; Ci; — Ly, Gy, = 0. This implies
u(xt)=us(xt)=0. The -contradiction obtained

shows the advantages of our method.

8 Conclusion

In this paper we presented the full derivation of the
equations describing a 3-conductor transmission line
terminated by linear loads. In such way, we
extended the general method from [12] by shrinking
the mixed problem for the hyperbolic system
expressing TEM propagation lengthwise the lines to
a functional system on the boundary. In result, by
applying the fixed point method we can obtain in an
explicit form the solution to the system of functional
equations by successive approximations beginning
with simple initial approximation. Our method is
applicable to nonlinear boundary conditions too.
Besides, in this paper we prove existence-
uniqueness of a more general periodic solution and
demonstrated the benefits of our method on the
samples related to examinations of cross-talks. It
should be noted that the method elaborated here can
be applied to nonlinear boundary conditions.
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