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Abstract: – The work explores the possibility of a significant reduction in processor time required to optimize analog circuits. 

For this, we can reformulate and generalize the problem of chain optimization based on the approaches of optimal control 

theory. The analog circuit design process is formulated as a dynamic controlled system. A special control vector has 

been defined to redistribute the computational cost between circuit analysis and parametric optimization. This 

redistribution significantly reduces CPU time. The task of designing a circuit for the minimum processor time can 

be formulated as a classical optimal control problem while minimizing some functional. The introduction of the 

concept of the Lyapunov function of a controlled dynamic system made it possible to use it to analyse the main 

characteristics of the design process. An analysis of the behaviour of a special function, which is a combination of 

the Lyapunov function and its time derivative, made it possible to compare various design strategies and select the 

best ones that are executed in minimal CPU time. 
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1 Introduction 
Reducing computer time in the design of large 

systems is one of the sources of overall improvement 

in design quality. In addition to the traditionally used 

ideas and methods of a sparse matrix and 

decomposition methods [1-5], other methods for 

reducing the total CPU time in the design of systems 

were previously proposed [6-8]. A generalized 

approach to the design of analog systems based on 

the formulation of control theory was developed in 

some previous works, for example [9-10]. This 

approach serves to determine the system design 

algorithm for the minimum CPU time. On the other 

hand, this approach makes it possible to analyse the 

system design process with great clarity when 

moving along a trajectory in the design space. The 

main concept of this approach is the introduction of 

special management functions, which, on the one 

hand, generalize the design process, and on the other 

hand, make it possible to control the design process 

to achieve the optimal point of the cost function for 

minimal computer time. This possibility appears 

because an almost infinite number of different design 

strategies exist within the framework of the proposed 

approach. Different design strategies have different 

numbers of operations and different CPU times. 

Within this concept, a traditional design strategy is 

just one representative of a vast array of different 

design strategies. As shown in [9], the potential gain 

in computer time, which can be obtained using a new 

formulation of the design problem, increases with 

increasing size and complexity of the system. 

However, this gain can be realized in practice only 

when the optimal algorithm has already been created 

and it implements the optimal design strategy. 

 This paper compares various design strategies in 

terms of CPU time and stability. This analysis is one 

of the main steps to constructing an optimal 

algorithm. The main tool on this path is the 

introduction of the Lyapunov function of the circuit 

optimization process. 

 

2 Problem formulation 
The design process for any analog system design can 

be defined in discrete form [9] as the problem of the 

generalized cost function ( )UXF ,  minimization by 

means of the system (1) with the constraints (2): 
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where N
RX ∈ , ( )XXX ′′′= , , 

KRX ∈′  is the vector of 

the independent variables and the vector 
MRX ∈′′  

is the vector of dependent variables ( MKN += ), 

( )Xg j  for all j presents the network model, s is the 

iterations number, st is the iteration parameter, 

1
Rt s ∈ , H ≡ H(X,U) is the direction of the 

generalized cost function ( )UXF ,  decreasing, U is 

the vector of the special control functions 

( )U u u um= 1 2, ,..., , where u j ∈ Ω ; { }Ω = 0 1; . The 

functions ( )UXf i ,  for example for the gradient 

method are defined as: 
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to ( )x t dti − ; ( )ηi X  is the implicit function 

( ( )x Xi i=η ) that is determined by the system (2). The 

generalized cost function ( )UXF ,  can be defined as:   

 

      ( ) ( ) ( )UXXCUXF ,, ψ+=     (4) 

 

where ( )XC  is the non negative cost function of the 

design process, and ( )UX ,ψ  is the additional 

penalty function: 
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 This formulation of the design process permits 

the redistribution of the computer time expense 

between the solution of problem (2) and the 

optimization procedure (1) for the function ( )UXF , . 

The control vector U is the main tool for the 

redistribution process in this case. Practically an 
infinite number of the different design strategies are 

produced because the vector U depends on the 

optimization procedure current step. The problem of 
the optimal design strategy is formulated now as the 

typical problem for the functional minimization of 

the control theory. The functional that needs to 

minimize is the total CPU time T of the design 
process. This functional depends directly on the 

operations number and on the design strategy that 

has been realized. The main difficulty of this 
definition is unknown optimal dependencies of all 

control functions u j
. It is necessary to find the 

optimal behavior of the control functions u j  during 

the design process to minimize the total design 
computer time.  

 The idea of the system design problem 

formulation as the functional minimization problem 

of the control theory is not depend of the 

optimization method and can be embedded into any 

optimization procedures. In this paper the gradient 

method is used, nevertheless any optimization 

method can be used as shown in [9]. 

 Now the process for analog circuit design is 
formulated as a dynamic controllable system. The 

minimal-time design process can be defined as the 

dynamic system with the minimal transition time. 

So, we need to find the special conditions to 

minimize the transition time for this dynamic system. 

 

3 Definition of the Lyapunov function 
On the basis of the analysis in previous section we 

can conclude that the minimal-time algorithm has 

one or some switch points in control vector where 
the switching is realize among different design 

strategies. As shown in [10] it is necessary to switch 

the control vector from like modified traditional 

design strategy (MTDS) to like traditional design 

strategy (TDS) with some adjusting. Some principal 

features of the time-optimal algorithm were 

determined previously. These are: 1) an additional 

acceleration effect that appeared under special 

circumstances [10]; 2) the start point special 

selection outside the separate hyper-surface to 
guarantee the acceleration effect, at least one 

negative component of the start value of the vector X 

is can be recommended for this; 3) analysis of 
stability and the structure of more perspective 

strategies. The two first problems were discussed in 

[10-11]. The third problem is discussed in the 
present paper. 

 The main problem of the time-optimal algorithm 

construction is unknown optimal sequence of the 

switch points during the design process. We need to 

define a special criterion that permits to realize the 

optimal or quasi-optimal algorithm by means of the 

optimal switch points searching. A Lyapunov 

function of dynamic system serves as a very 

informative object to any system analysis in limits of 
the control theory. We propose to use a Lyapunov 

function of the design process to detect the optimal 
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algorithm, particularly for the optimal switch points 
searching. The Lyapunov function properties can 

help us to solve this problem. 

 There is a freedom of the Lyapunov function 
choice because of a non-unique form of this 

function. Let us define the Lyapunov function of the 

design process (1)-(5) by the following expression: 
 

    ( ) ( )∑ −=
i

ii axXV
2

     (6) 

where ia  is the stationary value of the coordinate ix , 

in other words the set of all the coefficients ia  is the 

main objective of the design process. The function 

(6) satisfies all of the conditions of the standard 
Lyapunov function definition for the variables 

iii axy −= . In fact the function  

 

      ( ) ∑=
i

iyYV 2       (7) 

 

is the piecewise continue. Besides there are three 
characteristics of this function: i) V(Y)>0, ii) V(0)=0, 

and  iii) ( ) ∞→YV  when ∞→Y .  

 Inconvenience of the formulas (6) or (7) is an 

unknown point A= ( )Naaa ,...,, 21 , because this point 

can be reached at the end of the design process only. 

We can use this form of the Lyapunov function if we 

already found the design solution someway. On the 

other hand, it is very important to control the 

stability of the design process during the 

optimization procedure. In this case we need to 

construct other form of the Lyapunov function that 

doesn’t depend on the unknown stationary point. Let 

us define two new forms of the Lyapunov function 
by the next formulas: 
 

            ( ) ( )[ ]r
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where F(X,U) is the generalized cost function of the 

design process. The formula (8) can be used when 

the general cost function is non-negative and has 

zero value at the stationary point A. Other formula 

can be used always because all derivatives 
ixF ∂∂ /  

are equal to zero in the stationary point A. So, the 

function V for both formulas has properties: 

V(A,U)=0, V(X,U)>0 for all X and at last, this 
function increases in a sufficient large neighborhood 

of the stationary point. Besides, the function V is the 

function of the vector U too, because all coordinates 

ix  are the functions of the control vector U.  

  We can define now the design process as a 

transition process for controllable dynamic system 

that can provide the stationary point (optimal point of 
the design procedure) during some time. The 

problem of the time-optimal design algorithm 

construction can be formulated now as the problem 

of the transition process searching with the minimal 

transition time. There is a well-known idea [12-13] to 

minimize the time of the transition process by means 
of the special choice of the right hand part of the 

principal system of equations; in our case these are 

the functions ( )UXf i , . It is necessary to change the 

functions ( )UXf i ,  by means of the control vector U 

selection to obtain the maximum speed of the 

Lyapunov function decreasing (the maximum 

absolute value of the Lyapunov function time 

derivative dtdVV /=
•

). 

 

4 Stability analysis 
Normally the time derivative of the Lyapunov 

function is non-positive for the stable processes. The 

design process is stable if the Lyapunov function time 
derivative is negative. On the other hand, the direct 

method of Lyapunov gives the sufficient stability 

conditions but not necessary [12-13], so the process 
loses the stability (or not loses) if this derivative 

becomes positive. The stability of the different design 

strategies for two-stage transistor amplifier of Fig. 1 

was analyzed by the Lyapunov direct method. This 

network is characterized by five dependent parameters and 

the control vector includes five control functions: 

U=(u u u u u1 2 3 4 5, , , , ). The structural basis consists of 32 

design strategies. The Ebers-Moll static model of the 

transistor has been used [14]. 
  

 
 

Fig. 1 Two-stage transistor amplifier 

 

 The Lyapunov function time derivative dV/dt is a 

negative for all trajectories on the initial part of the 

design n process; i.e. all admissible strategies are 
stable at the beginning. It is supposed that the 

integration step is sufficiently small. However, when 
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the current point of the trajectory gets to the ε -

neighborhood of the stationary point A, the strategies 

can lose the stability because the time derivative of 
the Lyapunov function becomes positive. It means 

that all trajectories of this group do not guarantee the 

convergence from the ε -neighborhood. In fact, each 

of the trajectories of this group has own critical ε -

neighborhood, which defines the maximum 

achievable precision. Another consideration is 

important too: the design process convergence slow 

down strongly before the ε -neighborhood reaching 

for all strategies of this group. It means that the 
derivative dV/dt is the negative but very small on the 

absolute value. The critical values of the ε -

neighborhood of some design trajectories for the two-

stage transistor amplifier are shown in Table 1. 

 

Table 1. Criticalε  value for two-stage amplifier 

 

The termination of the design process has been 

defined by means of the special criterion: the time 

derivative 
•

V  has positive value in the set of positive 

measure. The optimization process was provided on 

the basis of the formula (1) with variable step. As a 

result the significant variations of the derivative 

value 
•

V  have been observed. We average the 

derivative values for 30 integration steps to smooth 

these variations.  

 The analysis of results in Table 1 gives the next 

regularities: there is a correlation between processor 

design time and a critical ε -neighborhood. The 

processor design time is lesser for the strategies that 

have lesser critical ε -neighborhood. We can rank all 

the strategies of Table 1 in the order of computer 

time or in the order of critical ε -neighborhood. The 

results of this ranking are presented in Table 2. 

Table 2. Strategy ranking for two-stage amplifier  

 

 The places of each strategy, which defined by two 

different methods of regulation, are differed very 

small. This place is the same for two strategies (13 

and 6). The difference in one place appears seven 

times, the difference in two places appears four 

times, and the difference in three places appears three 

times. The average value of this difference is 1.5. We 

can consider that the correlation between a computer 

time and a critical ε -neighborhood is acceptable. 

From the other hand the critical ε -neighborhood 

values were obtained by the analysis of the Lyapunov 

function and its derivative. So, we can state that there 
is a close relation between the computer time and the 

properties of the Lyapunov function. 

 The analysis of the three-stage amplifier of Fig. 2 

shows very similar results. The critical value of ε -

neighborhood of some design trajectories for the 

three-stage transistor amplifier is shown in Table 3.  
 

 
 

Fig. 2 Three-stage transistor amplifier 

 

Table 3. Criticalε  value for three-stage amplifier 

N Control vector  Iterations  Computer  Critical value of

U(u1,u2,u3,u4,u5,u6,u7)  number  time (sec)       -neighborhood

1        ( 0 0 0 0 0 0 0 ) 9106       45,75               7,27E-07

2        ( 0 0 1 0 1 1 0 ) 1844         8,63               1,91E-07

3        ( 0 0 1 1 1 0 0 ) 3067       15,65               6,77E-07

4        ( 0 0 1 1 1 1 1 ) 647         1,87               4,73E-09

5        ( 0 1 1 0 1 0 1 ) 627         1,42               4,69E-09

6        ( 0 1 1 0 1 1 0 ) 1513         4,01               5,62E-07

7        ( 0 1 1 0 1 1 1 ) 643         1,21               9,07E-09

8        ( 0 1 1 1 1 1 0 ) 3229         7,30               7,54E-07

9        ( 1 0 1 0 1 0 1 ) 2069         4,06               1,43E-07

10        ( 1 0 1 1 1 0 1 ) 1657         2,53               2,13E-07

11        ( 1 1 1 0 1 0 1 ) 1477         2,09               1,33E-07

12        ( 1 1 1 0 1 1 0 ) 3931         6,48               9,21E-07

13        ( 1 1 1 1 1 0 0 ) 3626         7,85               6,25E-07

14        ( 1 1 1 1 1 0 1 ) 1793         2,03               2,12E-07

15        ( 1 1 1 1 1 1 0 ) 2345         3,51               2,08E-07

16        ( 1 1 1 1 1 1 1 ) 2149         0,61               7,59E-08

ε

N Control vector Iterations Computer Critical value of

U(u1,u2,u3,u4,u5) number time  (sec)     -neighborhood

1        ( 0 0 0 0 0 ) 3177           7,25             2,78E-08

2        ( 0 0 0 0 1 ) 3074           8,02             3,36E-07

3        ( 0 0 0 1 1 ) 11438         26,36             8,18E-07

4        ( 0 0 1 0 1 ) 799            1,16             9,38E-09

5        ( 0 0 1 1 0 ) 1798            2,6             1,61E-08

6        ( 0 1 0 1 1 ) 43431          76,89             3,16E-05

7        ( 0 1 1 0 0 ) 1378            2,25             1,67E-08

8        ( 0 1 1 0 1 ) 571            0,72             6,83E-09

9        ( 0 1 1 1 0 ) 1542            2,03             2,05E-08

10        ( 1 0 0 1 1 ) 11839          21,37             1,68E-05

11        ( 1 0 1 0 0 ) 2097            3,57             5,47E-07

12        ( 1 0 1 1 0 ) 6026            8,31             4,94E-07

13        ( 1 1 1 0 0 ) 6602            8,84             7,41E-07

14        ( 1 1 1 0 1 ) 935            0,71             1,33E-08

15        ( 1 1 1 1 0 ) 2340            2,31             1,62E-07

16        ( 1 1 1 1 1 ) 1502            0,38             1,09E-08

ε

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of strategies regulated                 

by the computer time 16 14 8 4 9 7 15 5 11 1 2 12 13 10 3 6

Number of strategies regulated                 

by the      -neighborhood 8 4 16 14 5 15 7 9 1 2 12 11 13 3 10 6ε

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2020.19.10 Alexander Zemliak

E-ISSN: 2224-266X 87 Volume 19, 2020



  

As for the first example we can formulate the rule 

– the less value of the critical ε  - neighborhood  for 

some strategy provoke the less value of the computer 
time for this strategy. The regulations of all the 

strategies of Table 3 in order of the computer time 

and in order of the critical ε -neighborhood are 

presented in Table 4. 

 
Table 4. Strategy ranking for three-stage amplifier 

 

 The places of each strategy, which defined by two 
different methods of regulation, are differed small. 

The average value of this difference is 2.6. We can 

conclude that the Lyapunov function can serves as 
the informative source for the searching of the 

perspective strategies that have the minimal 

computer time. 

 

5 Analysis of structural basis 
The analysis of trajectory stability and the correlation 

between a Lyapunov function and CPU time can be 
done better by means of a special function. We can 

define more informative function as a time derivative 

of the Lyapunov function relatively the Lyapunov 

function: VVW /
•

= . In this case we can compare the 

different design strategies by means of behavior of 

the function W(t). 
 The results of the analysis of some optimization 

strategies from the structural basis for the iterations 

number and computer time for two-stage amplifier 
are shown in Table 5. 

 The behavior of functions V(t) and W(t) were the 

main objects of the analysis and have been analyzed 
for some strategies that compose the structural basis 

of the general  methodology. The behaviour of these 

functions that correspond to the data of the Table 5 is 

shown in Fig. 3. These graphs correspond to a time 

interval when the majority of the design strategies are  

 

Table 5. Data of some strategies for circuit in Fig. 1 

 
 

Fig. 3 Behaviour of the functions V(t) and W(t) for 

some strategies during the optimization process 

 

finished. Strategies 6, 7, 8, and 9 have a greater value 

of the relative derivative W at the beginning of the 
design process than other strategies. This property 

provides extremely fast decreasing of the Lyapunov 

function. We can see that just these strategies 6, 7, 8 
and 9 have the design time lesser than other 

strategies. The strategies 4, 5 and 10 have an average 

value of the function W in the initial part of the 
design process and these strategies have an average 

value of the design time. At last, the strategies 1, 2, 

and 3 have a large design time and just these 

strategies have a very fast decreasing of the function 

W during initial part of the design process when the 

Lyapunov function had a relatively large value. After 
this the Lyapunov function decreases very slowly and 

the design time is large. 

 So, we can state that the large absolute values of 
the function W(t) provoke the lesser computer time. 

We got a correlation between the behavior of the 

function W(t) and CPU time. 
 The results of the analysis of three-stage amplifier 

are presented below in Table 6 and Fig. 4.  Functions 

V(t) and W(t) were the main objects of the analysis 

and its behaviour has been analyzed for some 

strategies that compose the structural basis of the 

general methodology. Fig. 4 shows the behaviour of 

the functions V(t) and W(t) for some strategies. 

 

Table 6. Data of some strategies for circuit in Fig. 2 

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of strategies regulated                 

the computer time 16 7 5 4 14 11 10 15 6 9 12 8 13 2 3 1

Number of strategies regulated                 

by the    -neighborhood 5 4 7 16 11 9 2 15 14 10 6 13 3 1 8 12ε

N    Control   Iterations  Total design

   vector   number   time (sec)

1   (0 0 0 0 0) 165962 299,56

2   (0 0 0 0 1) 337487 737,55

3   (0 0 1 0 0) 44118 68,87
4   (0 0 1 0 1) 14941 19,06

5   (0 0 1 1 1) 21971 22,03

6   (0 1 1 0 1) 4544 4,56

7   (1 0 1 0 1) 2485 1,65
8   (1 0 1 1 1) 7106 3,57

9   (1 1 1 0 1) 2668 1,32

10   (1 1 1 1 1) 79330 10,11

N Control Iterations Total design
vector number time (sec)

1 ( 0 0 0 0 0 0 0 ) 2354289     420.18 
2 ( 0 0 1 0 1 0 1 ) 110889     117.15   

3 ( 0 1 1 1 0 0 0 ) 1075433     272.01  

4 ( 1 0 1 0 1 0 1 ) 102510       49.76   
5 ( 1 0 1 1 1 0 1 ) 107541       43.99 

6 ( 1 0 1 1 1 1 1 ) 38751       12.53   
7 ( 1 1 1 0 1 1 1 ) 43387       13.67  
8 ( 1 1 1 1 1 0 0 ) 185085     110.62   

9 ( 1 1 1 1 1 1 0 ) 147094       66.13  
10 ( 1 1 1 1 1 1 1 ) 52651         4.56   
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Fig. 4 Behaviour of the functions V(t) and W(t) for 

different design strategies during the design process 

for three-stage amplifier 

 

 These graphs correspond to a time interval when 

the majority of the design strategies are finished. The 

strategies 6, 7, and 10 have a minimal relative 

computer time because the function W(t) for these 
strategies has a relatively large negative value during 

a long time of the design process in spite of the large 

value of Lyapunov function V(t) in the initial time 

interval. On the contrary, the function W(t)  has a 

relatively small value for  the strategies 1, 2 and 3. 

That is why these strategies have a large computer 
design time. Once again, we got a strong correlation 

between the behavior of the function W(t) and 

processor time. 
 So, the main result of the analyzed examples can 

be formulated as follows: the behavior of the 

Lyapunov function V and the relative time derivative 
W determine the CPU time with confidence. This 

means that by analyzing the behavior of these 

functions, you can predict the CPU time for any 

design strategy. We could analyse the behaviour of 

the functions V(t) and W(t) for the initial time interval 

for some strategies, and based on this analysis we can 

predict strategies that have minimal computer design 

time. 

 

6 Conclusions 
The problem of the minimal-time design algorithm 

construction can be solved adequately on the basis of 

the control theory. The design process in this case is 
formulated as the controllable dynamic system. The 

Lyapunov function of the design process and its time 

derivative include the sufficient information to select 

more perspective design strategies from the infinite 

set of the different design strategies that exist into 

the generalized design methodology. A special 

function W(t) was proposed for analyzing the 

behaviour of various optimization strategies. This 

function serves as the main criterion for comparing 
strategies and allows you to choose the most 

promising of them, providing the minimum CPU 
time. The obtained result will allow us to choose the 

best strategies in the construction of the optimal 

algorithm. 
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