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Abstract: The present paper deals with the memory response on thermal disturbances emanating from a cylindrical
cavity in an unbounded thermoelastic solid. Here we have theoretically demonstrated the memory response of ther-
mal disturbances in the generalized magneto-thermo-elastic materials. Firstly, the characteristics of thermoelastic
disturbances originated from the cavity in an unbounded elastic solid under the light of generalized magneto-
thermoelasticity theory with memory dependent derivatives (MDD). For numerical computation, cylindrical-polar
coordinate system with radial symmetry subjected to two different types of heat sources into the cavity are con-
sidered. An integral transform method and, while in inverse transformation, an efficient and pragmatic NILT
(Numerical Inverse Laplace Transform) is adopted. Finally, parameter studies are performed to evaluate the effect
of the kernel function and time delay. For thermal wave the results show appreciable differences with those in the
usual magneto-thermoelasticity theory.
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1 Introduction
The classical theory of thermoelasticity was origi-
nated with the works of Duhamel [?]. His proposed
uncoupled theory was of parabolic type and it con-
tained no terms that involved elastic deformations.
There were two primary paradoxes present in that
theory which was not compatible with the physical
phenomena. The first paradox was that, elastic
deformations doesn’t produce thermal effects and the
second one was that the heat conduction equation
being of hyperbolic type predicted infinite velocity of
thermal waves, which were contrary to the physical
observations.

Over a century later, Biot [?] came upon with a
classical theory of coupled thermoelasticity, which
eliminated the first paradox inherent in Duhamel’s
uncoupled theory. Biot’s theory concluded that elastic
changes affect temperature. Even after the introduc-
tion of Biot’s coupled theory, the second paradox in
Duhamel’s uncoupled theory still remained unsolved.
This was due to the fact that both the theories were
of diffusion type predicting infinite speeds of propa-
gation of thermal signals. To overcome this paradox,
it was essential to obtain a wave-type heat equation
instead of the conventional diffusion-type. In the late

sixties of the twentieth century, Lord and Shulman
[?] modified the conventional classical theory by
replacing the Fourier’s equation of heat conduc-
tion with their newly postulated equation of heat
conduction which contained one thermal relaxation
time parameter connected to the heat flux vector.
Lord and Shulman were the first to propose their
generalization and thus introducing the generalized
theory of thermoelasticity (LS theory) for the first
time. Later on, Green and Lindsay (GL theory) [?]
produced their generalization by modifying not only
the heat conduction equation but also the equation of
motion in coupled theory introducing two relaxation
time parameters. This theory is often called the
temperature rate dependent thermoelasticity. The
heat conduction equation associated in both LS and
GL theories is of hyperbolic type. Owing to such
reason the generalized theories are also labeled as
theories of hyperbolic thermoelasticity. During the
final decade of the last century three models (Model
I, II and III) concerned to the generalized theory
of thermoelasticity were developed by Green and
Naghdi (GN theory) [5-8]. The three models of GN
theory are in accordance to three types of constitutive
equations depending upon the characteristics of
material response for thermal phenomena. When the
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theory is linearized, type I converges to the Fourier’s
classical heat equation. Type II theory predicts finite
speeds for propagation of thermal waves and involves
no dissipation of thermal energy, whereas the type III
theory predicts an finite speed of thermal propagation
and involves a thermal damping term.

Owing to the contributions made by Lord-
Shulman, Green-Lindsay and Green-Naghdi, much
interest have been aroused during the last few decades
towards the development of generalized thermoelastic
theories. Several applications have been attempted
and made in various fields of applied sciences, math-
ematics and engineering viz. earthquake prediction,
soil dynamics, mineral exploration, etc. In the applied
science and engineering problems, mathematical
modeling is an important and primary task before
proceeding any further. Several researchers have
attempted to introduce different types of differential
operators into the basic equations of thermoelasticity.
One such trend was the introduction of fractional
ordered derivatives into different models thermoelas-
ticity and analyzing the subsequent results. Caputo
and Mainardi [?]-[?] found a synchronization among
the theoretical and experimental results. The integer
ordered differential operator is a local operator
whereas that fractional ordered differential operator
is non local. The non local nature of the fractional
derivative establishes its somewhat memory depen-
dent nature, which is a much more realistic fitting
to the real world physical problems. Thus in some
recent studies fractional ordered derivatives come
into account more frequently than integer ordered
derivatives in various physical problems. Recently,
Sherief et al. [?] and Ezzat et al. [?] came upon with
their fractional models and developed the results on
fractional ordered heat conduction equation in several
coupled thermoelastic problems of solid mechanics.

Mathematical modeling comprises of con-
structing and introducing mathematical tools whose
results and behaviours correspond in some way to
a concerned physical system. Over the past few
decades it has now become an established fact that
the next state of a physical system does not only
depend upon its present state but also upon all of
its historical states. In the year 2011, Wang and Li
[?] introduced the concept of memory dependent
derivatives. This new type of derivative proved to be
an useful mathematical tool and served a missing link
to many physical problems. Thus as of now, parallel
to fractional ordered derivatives, memory dependent
derivatives serves as an important mathematical tool
in describing many real world phenomenons.

During the later half of the twentieth century,
nonisothermal problems played a crucial role in the
development of various theories of elasticity. This
was mainly due to the application and collaboration of
the elasticity problems with various fields of applied
sciences and engineering. One such collaboration was
due to the increasing demand of research, considering
the electromagnetic effects upon thermoelastic prob-
lems. For example in geophysics an important study
is to analyze the effect of interactions among Earth’s
electromagnetic field with its plates concerning the
effective changes in temperature, stress and strain
giving rise to seismic waves. Among other branches
such as plasma physics, nuclear engineering,electrical
power engineering, rocket sciences, etc; the effect of
electromagnetism upon thermoelastic models plays a
vital role in the development of the respective fields.

The foundations for the study of magnetic effects
upon thermoelastic problems were presented by
Knopoff [?] and Chadwick [?] and developed by
Kaliski and Petykiewicz [?]. In these works it was
presumed that the interactions between the magnetic
field and the strain field can be modeled by consid-
ering Lorentz force in the equation of motion and
by a term entering Ohm’s law. Eventually reporting
the electric field to be produced by the velocity
of a particle, moving in a magnetic field. Later
Paria [?] studied the plane magneto-thermoelastic
waves in an infinite isotropic body with an uniform
thermal field. Paria considered the magnetic field
acting transversely to the direction of propagation,
whereas Wilson [?] discussed a similar problem by
considering a component of magnetic field parallel
to the direction of propagation. Since the last few
decades of the previous century a wide attention was
dedicated to the study of electromagneto thermoe-
lastic coupled models based upon various theories of
hyperbolic thermoelasticity. This is because when
we have to consider short time effects, the uses of
coupled parabolic thermoelasticity models produces
a huge loss of accuracy. Among authors who were
instrumental in studying and applying the generalized
electromagneto-thermoelastic equations in the past
few decades are Nayfeh and Namat-Nasser [?],
Chowdhuri [?], Sherief and Ezzat [?], Ezzat et al.
[?]-[?], etc.

In this paper we have considered the problem
of an infinitely long elastic body having a cylindri-
cal cavity, whose inner surface is assumed to be in
a stress-free state, but subjected to only time depen-
dent thermal disturbances. The axis of the cylindrical
cavity is assumed to coincide with the z-axis, spread
along with an axially uniform magnetic field. Such
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a problem can be considered to be an approximate
replica of the situation inside the nuclear reactors,
which are commonly made up of elastic materials,
where heat transfer occurs through the inner surface
of their cylindrical cavities.

2 Mathematical preliminaries
In the year 2011 Wang and Li [?] introduced a new
class of derivatives, where he they defined the first or-
der derivative of a function f(x, t) in an integral form,
in terms of normal partial derivative of f(x, t) with a
kernel function on a slipping interval as follows:

D(1)
ω f(x, t) =

1

ω

∫ t

t−ω
k(t− ξ)f ′ξ(x, ξ)dξ (1)

where ω is the time delay and k(t − ω) is the kernel
function which can be chosen freely.

The above modifications to the definition of
derivatives are denominated as memory dependent
derivatives (MDD). Due to the form of its integrand,
MDDs resonate the memory effect better than the pre-
viously used fractional ordered derivatives in several
thermoelastic models, thus showing better clairvoy-
ance in understanding the physical nature of the mate-
rial.

Even though the kernel function can be chosen
freely Wang and Li [?] indicated that to educe the
memory effect better, the magnitude of MDD should
be smaller than that of the common partial deriva-
tive, and for that the bounds of the kernel should be
0 ≤ K(t− ξ) ≤ 1 for ξ ∈ [t− ω, t].

It should be noted that, following the definition
of MDD, in case K(t− ξ) = 1,

D(1)
ω f(x, t) =

1

ω

∫ t

t−ω
f ′ξ(x, ξ)dξ

=
f(x, t)− f(x, t− ω)

ω
This indicates that, as ω → 0, MDD tends to common
partial derivative of first order.

Recently in 2014, Yu et al. [?] introduced MDD
instead of factional derivative in the generalized heat
conduction law. They inserted MDD into the Lord-
Shulman (LS) generalized thermoelasticity theory in
the rate of heat flux to indicate the memory reliance in
the following manner:

qi + τDaqi = −Kθ,i (2)

where Daqi = D
(1)
a qi = 1

a

∫ t
t−a k(t, p)q

(1)
i (p)dp.

Nunziato [?] proposed heat conduction model
with memory response at slightly different way. He
assumed the response functional can memorized
upto the present time of the temperature and the
temperature gradient. In this model, heat conduction
depends also on the present value of the temperature
gradient so that Fourier’s law of heat conduction is
obtained as a particular case, if k(0), the instanta-
neous conductivity, is non-zero. On the other hand, if
k(0) = 0, Nunziato’s heat conduction equation agrees
with that of Gurtin and Pipkin. Chen and Gurtin[?]
extended the theory presented by Gurtin and Pipkin
[?] to deformable media. They proposed with the
constitutive assumptions that the response functional
depend on the present values of the temperature and
the deformation gradient and the integrated histories
of the deformation gradient, temperature and the
temperature gradient.

Presence of memory in the generalized thermoe-
lasticity theories became well established since last
decade of the twentieth century. Due to the presence
of a time convolution integral, the Coleman-Gurtin
[?] theory is referred to as the theory of heat conduc-
tion with a thermal memory. In this regard, we can
mention the work of Shaw [?], a note on generalized
thermoelasticity with memory dependent derivatives,
in which author shown how MDDs play a significant
impact in thermoelasticity theory.

The kernel k(t, p) and the time delay a(> 0) in
the definition of MDD should always be chosen in an
arbitrary manner so that the material’s real behavior
can be understood more properly.

In common practice, the kernel function is con-
sidered in the following form:

k(t, p) =

(
p− t
a

+ 1

)b
(3)

The following are three different forms of kernels and
the respective forms of heat conduction laws:

1. Constant kernel (b = 0): q(x, t) +
τ

a
[q(x, t)− q(x, t− a)] = −K ∂θ

∂x

2. Linear kernel (b = 1): q(x, t) +
τ

a2
∫ t
t−a q(x, p)dp = −K ∂θ

∂x

3. Parabolic kernel (b = 2): q(x, t) +
2τ

a3
∫ t
t−a (p− t+ a)q(x, p)dp = −K ∂θ

∂x
.
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The kernel shows monotonic nature with K = 0
for the past time t−ξ andK = 1 for the present time t.

In various thermoelastic investigations, Ezzat and
his co-workers [?] have proposed another form of the
memory kernel as follows:

k(t− p) = 1− 2b

ω
(t− p) +

a2 (t− p)2

ω2
(4)

where a, b and ω are the parameters to be chosen.

Laplace transform of a function containing the
MDD would have been a challenging task in our suc-
ceeding discussion. Thus, Laplace transform of any
function f(t) with first order MDD is demonstrated
here,

L [Dωf(t)] =
f(s)

ω

(
1− 2b

ωs
+

2a2

ω2s2

)
−e
−ωsf(s)

ω

(
1− 2b2 + a2 +

2
(
a2 − b

)
ωs

+
2a2

ω2s2

)
(5)

If the kernel function in MDD is constant i.e.
when k(t, p) = 1 then,

L [Dωf(t)] =
1

ω

(
1− e−ωs

)
f(s) (6)

where f(s) denotes the Laplace transform of f(t) and
f(t− ω) = 0 for t < ω.

3 Basic equations
The electrodynamics theory before Maxwell con-
tained an inconsistency in its formulas. Maxwell cor-
rected the inconsistency by introducing an extra term
in the Ampere’s law. He called the extra term the ”dis-
placement current”, ∂D

∂t . Maxwell’s correction to Am-
pere’s law had an important conclusion, that a change
in electric field induces a magnetic field. Henceforth
all electromagnetic quantities satisfy Maxwell’s equa-
tions,

curl h = J +
∂D
∂t

(7)

curl E = −∂B
∂t

(8)

div h = 0 (9)

div E = 0 (10)

B = µ0 (H0 + h) (11)

D = ε0E (12)

where H0 is the constant magnetic field strength,
h is the induced magnetic field, E is the induced
electric field, J is the electric current density, B is the
magnetic induction vector, D is the electric induction
vector, µ0 is the magnetic permeability and ε0 is the
electric permittivity.

In absence of inner heat sources and all other ex-
ternal body forces except the Lorentz force, the equa-
tion of motion has the following form:

div −→σ + F = ρ
∂2u
∂t2

(13)

where −→σ is the stress tensor, ρ is the density and F is
an external body force also called the Lorentz’s force,
given by,

F = J× B (14)

The equation of energy balance is given by,

∂

∂t
[ρceθ + γθ0e] = −div q (15)

where ce is the specific heat at constant strain,
γ = αt(3λ + 2µ) is the material constant, q is the
heat flux vector and θ0 is the reference temperature
such that | θ−θ0θ0

| � 1.

For a moving media, the modified Ohm’s law in
vector form is stated as:

J = σ0

[
E + µ0

∂u
∂t
× (H0 + h)

]
(16)

where σ0 is the electric conductivity.

We may linearize the above equation by neglect-
ing small quantities of second order, thus the Ohm’s
law can be reduced as,

J = σ0

[
E + µ0

∂u
∂t
×H0

]
(17)

The Hooke-Duhamel-Neumann law is,

σij = 2µeij + λeδij − γθδij (18)

where δij is the Kronecker’s delta and eij is the strain
tensor given by,

eij =
1

2
(ui,j + uj,i) (19)

[13]
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Considering the time derivative to be memory de-
pendent we may generalize the heat conduction equa-
tion as:

q + τDωq = −k grad θ (20)

where ω is the time relaxation parameter that is to be
chosen according to the requirement of the problem.

Using equations (18) and (19) in equation (13) we
get,

µ∇2u + (λ+ µ)grad div u− γ grad θ+ F = ρ
∂2u
∂t2
(21)

Applying divergence operator on both sides of equa-
tion (21) we arrive at the following equation,

(λ+ 2µ)∇2e− γ∇2θ + div F = ρ
∂2e

∂t2
(22)

where e is the cubical dilatation given by,

e = div u (23)

Again applying divergence operator to equation (20)
and using the equation of energy balance (15) we get,

K∇2θ = (1 + τDω)
∂

∂t
(ρceθ + γθ0e) (24)

4 Statement of the physical problem
Let us consider an infinitely long homogeneous,
isotropic elastic body with a cylindrical cavity of ra-
dius a0, as depicted in Figure 1.

Fig. 1 Schematic diagram of the problem

The cylindrical coordinate system is taken to be
(r, ψ, z) with the z axis being the axis of the cylindri-
cal cavity. We consider the field variables to be u and
θ, where u is the displacement variable and θ is taken
to be the temperature change above a uniform refer-
ence temperature θ0. The surface of the cavity is as-
sumed to be in a stress-free state and is prone to ther-
mal disturbances which depends only upon the time
t. Owing to the cylindrical symmetry of the problem

and if there is no z-dependence, all the concerned field
variables will be dependent upon r and t only.
Hence the Laplacian operator∇2 will be of the form:

∇2 ≡ ∂2

∂r2
+

1

r

∂

∂r

The displacement vector will be of the form,

u = (u, 0, 0) (25)

Thus the strain tensor components are given by,

err =
∂u

∂r
, eψψ =

u

r
, ezz = erz = erψ = eψz = 0

(26)
Hence the cubical dilatation e will be of the form,

e =
∂u

∂r
+
u

r
(27)

From equation (18) we obtain the stress tensor
components as follows:

σrr = 2µ
∂u

∂r
+ λe− γθ

σψψ = 2µ
u

r
+ λe− γθ

σzz = λe− γθ
σrz = σzψ = σψr = 0

(28)

Since the constant magnetic field strength H0 acts
in the direction of the z-axis, we consider its compo-
nents to be (0, 0, H0). Thus it can be shown that, for a
conducting material the induced magnetic field h will
have only one component in the z-direction and the
induced electric field E will have only one component
in the ψ-direction,

E =

(
0, µ0H0

∂u

∂t
, 0

)
(29)

h = (0, 0,−H0e) (30)

From equations (7), (29) and (30) we obtain the
components of the electric current density as,

J =

(
0, H0

(
∂e

∂r
− ε0µ0

∂2u

∂t2

)
, 0

)
(31)

From equations (11) and (30) the components of
the magnetic induction vector is obtained as,

B = (0, 0, µ0H0(1− e)) (32)

Using equations (14), (31) and (32) we get the
components of the Lorentz force as,

F =

(
µ0H

2
0

(
∂e

∂r
− ε0µ0

∂2u

∂t2

)
(1− e), 0, 0

)
(33)
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Since e is very small, we neglect the term containing
the product of e and hence rewrite equation (33) as,

F =

(
µ0H

2
0

(
∂e

∂r
− ε0µ0

∂2u

∂t2

)
, 0, 0

)
(34)

Thus from equations (22) and (24) we obtain,

(1 +RH)

(
∂2e

∂r2
+

1

r

∂e

∂r

)
− γ

λ+ 2µ

(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
=

(
ε0µ0RH +

1

c21

)
∂2e

∂t2

(35)

K

(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
= (1 + τDω)

∂

∂t
(ρCeθ + γθ0e)

(36)
where c21 = λ+2µ

ρ and RH =
µ0H2

0

ρc21
.

We note that here RH is the effect of external mag-
netic field in the thermoelastic process proceeding in
the body.

For mathematical analysis it is convenient to
rewrite the governing equations in dimensionless
forms. For this we shall use the following non-
dimensional transformations

r′ = c1η0r, u′ = c1η0u, θ′ =
γ

λ+ 2µ
θ,

t′ = c21η0t, τ ′ = c21η0τ, σ′ij =
1

µ
σij

(37)

where η0 = ρCe

K .
Thus using these transformations in equations (35),
(36) and (28), and suppressing the primes for simplic-
ity in the notations, we obtain the following equations
which are in dimensionless form:

R2
M

(
∂2e

∂r2
+

1

r

∂e

∂r

)
−
(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
= R2

N

∂2e

∂t2

(38)(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
= (1 + τDω)

∂

∂t
(θ + εe) (39)

σrr = β2
(
∂u

∂r
+ η

u

r
− θ
)

(40)

σψψ = β2
(
η
∂u

∂r
+
u

r
− θ
)

(41)

σzz = β2
(
η

(
∂u

∂r
+
u

r

)
− θ
)

(42)

Here, R2
M = 1 +RH , R2

N = c21ε0µ0RH + 1,
ε = γ2θ0

ρCe(λ+2µ) , β2 = λ+2µ
µ and η = λ

λ+2µ .

5 Initial and boundary conditions
The initial conditions of the problem are given by,

u(r, 0) = u̇(r, 0) = θ(r, 0) = θ̇(r, 0) = 0 (43)

The boundary conditions can be written in the follow-
ing form:

θ(a0, t) = f(t) (44)

σrr(a0, t) = 0 (45)

where a0 is transformed dimensionless in accordance
to equation (37) and f(t) is a known function.

6 Solution in the integral transform
domain

Performing Laplace transform upon equations (38)
and (39) we obtain the following transformed govern-
ing equations for e and θ:

R2
M

(
d2e

dr2
+

1

r

de

dr

)
−
(
d2θ

dr2
+

1

r

dθ

dr

)
= R2

Ns
2e

(46)(
d2θ

dr2
+

1

r

dθ

dr

)
= s1s

(
θ + εe

)
(47)

where the expression for s1 is:

s1 = 1 + τ
ω (1− e−sω), when we consider the

constant kernel form in MDD, and
s1 = 1 + τ

ω

(
1− 2b

ωs + 2a2

ω2s2

)
−

τe−ωs

ω

(
1− 2b2 + a2 +

2(a2−b)
ωs + 2a2

ω2s2

)
, when

we consider the kernel form as mentioned in Ezzat et
al. [?].

Considering the operator L ≡ d2

dr2
+ 1

r
d
dr , equa-

tions (46) and (47) can be represented as,

L
[
R2
Me− θ

]
= R2

Ns
2e (48)

Lθ = s1s
(
θ + εe

)
(49)

Using equation (49) upon equation (48) we ob-
tain,

Le =
s

R2
M

[
s1θ +

(
R2
Ns+ s1ε

)
e
]

(50)

Equations (49) and (50) can be written in the form
of a vector matrix differential equation as:

Lṽ = Ãṽ (51)
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where

Ã =

(
c11 c12
c21 c22

)
v =

(
θ e

)T
in which,

c11 = s1s, c12 = s1sε,

c21 =
s1s

R2
M

, c22 =
s

R2
M

(
R2
Ns+ s1ε

) (52)

The characteristic equation of matrix Ã can be
written as:

λ2 − (c11 + c22)λ+ (c11c22 − c12c21) = 0 (53)

Assuming the eigenvalues of the matrix Ã to be of
the form: λ1 = m2

1 and λ2 = m2
2, the right eigen vec-

tor X̃ corresponding to the eigenvalue λ of the matrix
Ã can be calculated as:

X̃ =
(
−c12, c11 − λ

)T (54)

Thus one can calculate the eigen vector corre-
sponding to the eigenvalues λi (i = 1, 2). We de-
note them as:

X̃1 =
(
− c12, c11 −m2

1

)T
X̃2 =

(
− c12, c11 −m2

2

)T (55)

In order to satisfy the regularity conditions at r →
∞ of the field functions, solution of equation (51) can
be taken in the following form:

ṽ =
2∑
i=1

AiX̃iK0

(
mir

)
(56)

where, K0 (.) being the modified Bessel function of
second kind of 0th order.

The transformed cubical dilatation e is given by,

e = div u =
1

r

d

dr
(ru)

Integrating both sides of the above equation, we get
the following relation:

u =
1

r

∫
re dr (57)

Using equations (51) and (56) along with the re-
lation (57) and considering the boundary conditions
taken in dimensionless form, we obtain,

u(r, s) =

[
ξ2
m1∆

(
c11 −m2

1

)
K1(m1r)

]
f(s)

−
[
ξ1
m2∆

(
c11 −m2

2

)
K1(m2r)

]
f(s)

(58)

θ(r, s) =
c12
∆

[ξ2K0(m1r)− ξ1K0(m2r)] f(s)

(59)

σrr(r, s) =
β2ξ1f(s)

(
c11 + c12 −m2

2

)
K0(m2r)

∆

+
β2ξ1f(s)

(
c11 −m2

2

)
(1− η)K1(m2r)

∆m2r

−
β2ξ2f(s)

(
c11 + c12 −m2

1

)
K0(m1r)

∆

−
β2ξ2f(s)

(
c11 −m2

1

)
(1− η)K1(m1r)

∆m1r
(60)

σψψ(r, s) =
β2ξ1f(s)

(
c12 + η

(
c11 −m2

2

))
K0(m2r)

∆

+
β2ξ1f(s)

(
c11 −m2

2

)
(η − 1)K1(m2r)

∆m2r

−
β2ξ2f(s)

(
c12 + η

(
c11 −m2

1

))
K0(m1r)

∆

−
β2ξ2f(s)

(
c11 −m2

1

)
(η − 1)K1(m1r)

∆m1r
(61)

σzz(r, s) =
β2f(s)ξ1

(
c12 + η

(
c11 −m2

2

)
K0(m2r)

)
∆

−
β2f(s)ξ2

(
c12 + η

(
c11 −m2

1

)
K0(m1r)

)
∆

(62)

where,
∆ = Ω2ξ1 − Ω1ξ2

Ωi = −c12K0(mia0)

ξi = β2
[(
c11 −m2

1

)(
K0(mia0) +

1− η
mia0

K1(mia0)

)
− Ωi

]
m2
i =

2s1s
2R2

N

Υ + (−1)i+1
(
Υ2 − 4R2

NR
2
Ms1s

) 1
2

Υ = s1R
2
M +R2

Ns+ s1ε

.
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6.1 Applying a constant heat source at the in-
ner boundary of the cylindrical wall:

Suppose a constant step up temperature is applied in
the inner surface of the cylindrical cavity, then the
function f(t) in equation (44) can be taken as the
Heaviside function. For this the solution in Laplace
transform domain will be given as:

u(r, s) =
ξ2

∆sm1

(
c11 −m2

1

)
K1(m1r)

− ξ1
∆sm2

(
c11 −m2

2

)
K1(m2r)

(63)

θ(r, s) =
c12
∆s

[ξ2K0(m1r)− ξ1K0(m2r)] (64)

σrr(r, s) =
β2ξ1

(
c11 + c12 −m2

2

)
K0(m2r)

∆s

+
β2ξ1

(
c11 −m2

2

)
(1− η)K1(m2r)

∆sm2r

−
β2ξ2

(
c11 + c12 −m2

1

)
K0(m1r)

∆s

−
β2ξ2

(
c11 −m2

1

)
(1− η)K1(m1r)

∆sm1r

(65)

σψψ(r, s) =
β2ξ1

(
c12 + η

(
c11 −m2

2

))
K0(m2r)

∆s

+
β2ξ1

(
c11 −m2

2

)
(η − 1)K1(m2r)

∆sm2r

−
β2ξ2

(
c12 + η

(
c11 −m2

1

))
K0(m1r)

∆s

−
β2ξ2

(
c11 −m2

1

)
(η − 1)K1(m1r)

∆sm1r
(66)

σzz(r, s) =
β2ξ1

(
c12 + η

(
c11 −m2

2

)
K0(m2r)

)
∆s

−
β2ξ2

(
c12 + η

(
c11 −m2

1

)
K0(m1r)

)
∆s

(67)

6.2 Applying an instantaneous heat source
at the inner boundary of the cylindrical
hole:

Sometimes inside the nuclear reactors a sudden huge
rise in temperature is a very common phenomenon.
Hence by considering Dirac’s delta function in the

boundary condition (44) we may replicate the situ-
ation of a sudden infinite impulse of temperature in
the inner surface of the cylindrical cavity. For such a
problem corresponding expressions for the field vari-
ables in transformed domain can be obtained just by
multiplying ”s” to the corresponding variables as ob-
tained in the previous subsection (6.1).

7 Numerical results and discussion
In order to obtain the final solutions of the physical
quantities in space-time domain, we must invert the
transforms given in equations (58-62). Considering
the fact that the expressions formi and Ωi given in the
preceding sections are complicated functions of s, the
Laplace inversion for the expressions of u and θ given
in equations (58) and (59) for all values of s becomes
redoubtable in nature. Hence we adopt the path of
deriving the numerically approximate solutions for the
field equations. For inverting the Laplace transforms
in the required equations we employ the algorithm for
numerical inversion given by Honig and Hirdes [?].

In this method, the Laplace transform f (r, s) has
the inverse f (r, t), which is given by the relation

f (r, t) =
eνt

2π

∫ ∞
−∞

eiωtf (r, s) dω (68)

where s = ν + iω (ν, ω ∈ R)

Darbin derived the approximated numerical in-
version relation by expanding the function h(r, t) =
e−νtf(r, t) in a Fourier series in the interval [0, 2T ].
After summing the series upto a finite number N , we
get the approximated value for f(r, t) as,

fN (r, t) = −e
νt

2T
Re
{
f(r, ν)

}
+
eνt

T

N∑
k=0

Re

{
f

(
r, ν + i

kπ

T

)}
cos

(
kπ

T
t

)

−e
νt

T

N∑
k=0

Im

{
f

(
r, ν + i

kπ

T

)}
sin

(
kπ

T
t

) (69)

Now, for reducing the total error we use the Korrektur
method and then the ε− algorithim for reducing the
discretizational error and hence to accelerate conver-
gence.

For the purpose of numerical evaluation in the
space time domain, we choose the parameters of
copper-like materials where the values of physical
constants are as follows:
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λ = 7.76× 1010Nm−2, µ = 3.86× 1010Nm−2,

ρ = 8954 kgm−3, ε = 0.0168, CT = 2,

a0 = 1, T0 = 293K, Ce = 381Jkg−1K−1,

k = 400Wm−1K−1, k∗ = 300Wm−1K−1s−1

Numerical computations were carried out com-
paring the displacement, temperature, radial and axial
stress in context MDD model with various paramet-
ric values. The comparisons are demonstrated graph-
ically in Figures 2-13 for different values of a and b,
and also with and without magnetic effects.

Figures 2-3 represented the various displacements
along the radius in comparison with various memory
dependent models and the LS model, with and with-
out magnetic effects. In Figures 2 and 3 we observed
that the magnitude of displacement is maximum near
the surface of the cylindrical cavity and it proportion-
ately decreases along the radius of the elastic body.
Further in Figure 3, the magnitude of displacement
under magnetic effects is noted to be greater for the
LS model than the MDD model (a = 0, b = 0.5),
even though they coincide to a constant value as we
move away from the cavity. Figures 4-5 showed that
for all memory dependent thermoelasticity models un-
der consideration, the temperature is maximum at the
surface of the cavity and it gradually decreases as we
move away radially in the near vicinity of the cav-
ity. Figure 4 showed that the introduction of mag-
netic effect in the problem causes a rise in tempera-
ture near the surface of the cavity. It is observant that
even though they both converge as we move away ra-
dially from the cavity, for the non-linear MDD model
(a = 1, b = 1) without magnetic effect, the fall in
temperature is much more than the non-linear MDD
model with magnetic effect near the vicinity of the
cavity. Figure 5 depicted that the memory effect en-
hances an increase in temperature when compared
with the LS model. Figures 6-9 exhibited that al-
though the radial and axial stresses get maximized
near the inner surface of the cavity, for different mod-
els they gradually converge to zero as we move away
from the center of the cavity. The radial and axial
stresses are observed to get decreased under magnetic
effects. Figures 10-13 shows comparative studies be-
tween the boundary conditions of Heaviside and Dirac
delta functions. The results are taken from subsections
(6.1) and (6.2). In all comparisons, it is observed that
the effect of delta function upon the physical changes
is much more than the Heaviside boundary condition.
The increase in radial and axial stress is effectively
much high near the neighborhood of the cavity when
we apply delta function in the boundary condition.

Fig. 2 Comparison of displacement u(r, t) with
MDD.

Fig. 3 Comparison of displacement u(r, t) with
MDD and LS model.

Fig. 4 Comparison of displacement θ(r, t) with
MDD.
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Fig. 5 Comparison of temperature θ(r, t) with MDD
and LS model.

Fig. 6 Comparison of radial stresses σrr(r, t) with
MDD.

Fig. 7 Comparison of radial stresses σrr(r, t) with
MDD and LS model.

Fig. 8 Comparison of axial stresses σzz(r, t) with
MDD.

Fig. 9 Comparison of axial stresses σzz(r, t) with
MDD and LS model.

Fig. 10 Comparison of displacement u(r, t) with
MDD.
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Fig. 11 Comparison of displacement u(r, t) with
MDD.

Fig. 12 Comparison of radial stresses σrr(r, t) with
MDD.

Fig. 13 Comparison of axial stresses σzz(r, t) with
MDD.

8 Conclusion
The present article provided a detailed analysis of
the memory response on thermal disturbances in the
context of the recently proposed generalized thermoe-
lasticity theory with memory dependent derivatives
(with and without magnetic effects). A comparative
study was analyzed for the effects in physical changes
in context of a constant heat source and an infinite
impulsive heat source in the inner surface of the
cavity. Upon selecting an appropriate kernel with the
required values of the constants, one may enhance the
memory effects in the theory of thermoelasticity. The
influence of memory in thermoelastic models under
consideration had a consequential effect over them.
The graphical results suggested that the memory
connected to thermal displacement was insufficient
to cater the needs of non locality phenomenon in
hyperbolic thermoelasticity. The graphical results
revealed that the introduction of magnetic effect
upon MDD models causes the drop in temperature
significantly less than those without magnetic effects.
The results also suggested that one can effectively
reduce axial and radial stress upon the elastic body by
bringing magnetic effects in the surroundings. The
effect of providing an infinite impulsive temperature
upon the inner boundary of the cavity revealed a
significantly huge rise in radial and axial stress near
the vicinity of the cavity, when compared with the
condition of providing a constant step in temperature
in the inner boundary of the elastic body. The analysis
and results exhibited in this article may prove to be
functional for researchers who are working on mate-
rial science, mathematical physics, electromagnetism,
thermodynamics with low temperatures as well as
on the evolution of the hyperbolic thermoelasticity
theory.
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