
QING K. ZHU

Electrical Engineering Department

International Technological University

355 W. San Fernando St.,
San Jose, CA 95113, USA

USA

qkzhu@yahoo.com

Abstract: - This paper presents the new methodology and CAD programs to detect two serious faults in VLSI
design: HV/LV connection faults and floating gate faults. A hierarchical circuit netlist is flattened in order to
trace the connectivity of MOS devices in hierarchically designed circuits. Programs were coded in Python and
table-look up techniques were used to speed up the program run. Program flows and specification files are
discussed. Specification file commands allowed designers to waive non-critical faults after reviewing them in
the design. We developed GUI capability for highlighting nets in the schematic window. GUI helps designers
review and fix faults in Cadence design environment. Programs and GUI capability have been applied in one
industry project.

Key-Words: - VLSI, Design, Multiple voltages, HV/LV, Floating gate, CAD, Tapeout.

1 Introduction

Low power and mixed signal requirements drive the
application of dual or multiple supply voltages in
VLSI designs. Dual-voltage circuits need special
level shifter buffers between HV devices and LV
devices [1]. Direct connections between HV and LV
devices are not allowed, which can cause significant
circuit errors. Floating gate faults occur when one
gate terminal of CMOS devices is floating or not
connected to other source/drain terminals of CMOS
devices. Note that I/O ports can be waived for
floating gate faults since they will be connected in
the higher-level design. Floating gates may cause
the instability of the circuit due to noise coupling
from neighboring lines [2,3]. In general, floating
gates in the circuit (except I/O ports) have to be
connected either to power net or ground net that is
called tie-high/tie-low techniques [4].

 This paper describes our methodology and
developed programs to detect the above two design
faults: HV/LV connection faults and floating gate
faults in hierarchically designed VLSI circuits.
Methods to deal with multiple voltage domains have
been investigated in [6,7,8]. We have not been
aware of academic publications on methods how to
detect HV/LV connection and floating gate faults in
VLSI design. Commercial tools such as Synopsys
CustomSim are available to detect HV/LV
connection faults. Assura tool from Cadence Design
System Inc. can detect floating gates using the
command ercCheckFloatingDevices [11].
Commercial simulation tools are expensive to
purchase and take CAD efforts to setup. EDA
licenses are limited in industry design environment.
Meanwhile designers would like to check the above
two faults frequently in order to fix circuit errors in
the early design stage.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 220 Volume 18, 2019

Α New Methodology and CAD Programs to Detect Two Serious Faults

in VLSI Design: HV/LV Connection Faults and Floating Gate Faults.

Note: Τhis paper is the extended version of a Draft Paper that was presented in the conference: "2017

MIXDES - 24th International Conference on Mixed Design of Integrated Circuits and Systems".

 This paper is organized in the following sections.
Section 2 defines two types of faults: HV/LV
connection faults and floating gate faults. Section 3
shows our methodology and GUI capability.
Program flows and specification file commands are
explained. Section 4 describes hierarchical netlist
flattening process and look-up tables for speeding
up programs. Section 5 shows experimental results
of test circuits from one industry project. Section 6
gives conclusions.

2 Problem Formulation

Semiconductor devices in dual supply voltages
environment can be classified in the following two
types:

 HV device: the device is connected to high VDD
supply network.

 LV device: the device is connected to low VDD
support network.

HV/LV connection fault is defined as follows:

 HV device is directly connected to a LV device
or vice versa in the circuit.

 HV device is connected to low VDD supply
network.

 LV device is connected to high VDD supply
network.

Figure 1 illustrates the definition of HV/LV
connection faults. “Net 1” is marked as a HV/LV
fault since high-voltage devices “a” or “b” are
directly connected to low-voltage devices “c” or
“d”. Notice that “Net 1” crosses two circuit blocks
in the design. “Net 3” is not an HV/LV connection
fault since a voltage level shifter between low-
voltage devices “e” or “f” and high-voltage devices
“g” or “h” in the circuit.

Fig. 1 HV/LV Connection Faults.

Floating gate fault is defined as follows:

 Gate terminal of a device is not connected to
any source/drain terminals from other devices in
the circuit.

 I/O ports are waived from floating gate faults.

Figure 2 illustrates the definition of floating gate
fault. “Net 5” is a floating gate fault since it is not
connected to an I/O port and also not connected to
source/drain terminals of other devices. “Net 1” is
not flagged as a floating gate since it is an input
port.

Fig. 2 Floating Gate Faults.

3 Flows and GUI

HV/LV connection checking program reads in a
specification file containing the following
commands:

 HV – a list of high voltage device models.

 LV – a list of low voltage device models.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 221 Volume 18, 2019

 SKIPCELL – a list of master cells or sub-circuit
names which will be skipped in the checking.

 SKIPINST – a list of flattened instance names,
which will be skipped in the checking.

 SKIPNET – a list of flattened net names, which
will be skipped in the checking.

Specification File of HV/LV Connection Fault
Checking:

Spec file for checkHV.py

HV pch_hvt nch_hvt

LV pch_lvt nch_lvt

SKIPCELL inv*d3

SKIPNET */gnd

SKIPINST xxx/xxx/*_digital*

SKIPDEVICE top/*/IO_buffers/*

SKIPNET top/XI10/sa/*

The above HV command lists high-supply voltage
devices. LV command lists low-supply voltage
devices. The specification file accepts hierarchy
specification (/) and “*” notation for pattern
matching of cell names or net names. Comments (#)
are accepted in the specification file. Some faults
reported by the program are non-critical and they
can be waived in the design after careful reviewing
from design team. The waived cells or waived nets
can be defined in commands SKIPCELL or
SKIPNET. For example, HV devices connected to
the lower supply voltage could be waived in some
designs, since HV devices have the impact on the
circuit delay but not the circuit reliability.

The general methodology to fix and waive
HV/LV connection faults is as follows. Designers
run the program to report HV/LV faults. Designers
fix real faults in the circuit. Designer can waive
some faults after reviewing results from the program
run. A list of cells or nets are then added in the
specification file using SKIPCELL or SKIPNET
commands. Then rerun the program using the new
specification file and modified circuits. The above
process is iterated until all the faults are either fixed
or waived for the specific circuit. GUI capability has
been developed and provided to designers to speed
up the above reviewing and fixing process.

Figure 3 shows the flow to detect HV/LV
connection faults. Floating gate fault program reads
in another specification file. It only has one
command SKIPNET that specifies a list of nets to
be waved during the checking of floating gates. For
example, I/O nets on the top block can be waived,
since I/O ports can be connected in the higher-level
design. Appendix II shows the Python code of
floating gate checking program. A net, belonging to
GATENET[net] but not in SOURCENET[net] or
DRAINNET[net] or IO[net] in the program, is
identified as floating gate fault. Designers run the
program to review all the floating gate faults. Some
non-critical floating gate faults can be waived by
using the SKIPNET command in the specification
file. The process is iterated until all the floating gate
faults are reviewed, fixed or waived in the current
design.

Fig. 3 Flow to Detect HV/LV Connection Faults.

Figure 4 shows the flow to detect floating gate
faults.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 222 Volume 18, 2019

Fig. 4 Flow to Detect Floating Gate Faults.

It is hard to identify and locate HV/LV or floating
gate faults in a complex circuit based on textual
report files. GUI capability was developed to review
reported faults in Cadence design environment. GUI
was written in Cadence Skill Language [14]. It reads
in errors in report files from HV/LV or floating gate
programs in a window panel. When the designer
clicks on one specific error in GUI panel, it
automatically descends into the corresponding
schematic level and highlights the fault net. GUI
panel is connected to Cadence schematic window
through Skill-based inter-process message
communications [15]. GUI also provides the zoom-
in capability to narrow down the location of fault
nets in Cadence schematic window. GUI improves
the productivity significantly for the purpose of
locating and reviewing HV/LV and floating gate
faults especially in hierarchically designed circuits.

 Figure 5 shows the snapshot of GUI panel
communicated with Cadence circuit design window.
Figure 6 shows the entire flow to use GUI for
reviewing and fixing HV/LV connection faults.

Fig. 5 Snapshot of GUI Panel and Circuit Design
Environment.

4 Circuit Netlist Flattening and Look
Up Tables

Hierarchical design methodology is commonly used
in VLSI projects. Cadence Virtuoso design platform
supports hierarchical design methodology based on
design cells and views [12-13]. Circuit netlist is a
textual file generated from the schematic view of the
design in Cadence Virtuoso platform. The netlist
defines the hierarchy of sub-circuits and
connectivity of sub-circuits and devices in the
design. The most popular formats of circuit netlists
in the semiconductor industry are CDL netlist and
SPICE netlist. We take CDL (Circuit Description
Language) netlist format as the input to programs.
To detect HV/LV connection faults, we may flatten
the hierarchical netlist so we can trace the
connectivity of devices in hierarchically designed
circuit. The netlist flattening algorithm is critical to
the accuracy to detect faults.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 223 Volume 18, 2019

Fig. 6 Flow to Launch and Execute in GUI.

Two subroutines PP() and flattenInstCDL()
implemented in Python code are shown below that
are recursively called that starts from the top-level
cell down to leave cells in the hierarchy of the
netlist as shown in Figure 7. PP() subroutine passes
port labels from parent cell to the child cell. As
shown in Figure 7, annotations P1-P8 indicate the
mapping of port names from the parent cell to child
cells. For example, P1 mapping function transfers
net names in cell “Top” to port names in subcell
“Top/XI0” as follows: {net1->in1, gnd->in2, gnd-
>out1, net2->out2, gnd->in_gnd, vdd->in_vdd}. The
flattened device name is named as
<top_cell>/<child_cell>/…/<device> in the
flattened netlist. The flattened netlist is then used by
programs to acquire the connectivity of devices in
the circuit. The top-level circuit may contain
thousands or millions of MOS devices in modern
VLSI circuits, the size of flattened netlist could be
extremely large. Lookup tables are used in problems
to store critical data that will be reused multiple
times in the program run. We expect look-up tables
can speed up the problem for large-size circuits.
Experimental results in Section 5 shows one test
circuit with about 0.2M devices can be finished in
about 5 second including both steps of netlist
flattening and HV/LV connection faults detection.

Fig. 7 Hierarchy Tree of Circuit Netlist.

Two Subroutines for Recursive Port Labels Passing
and Instance Names Flattening from Parent Cell to
Child Cells in a Hierarchical Netlist:

PP() —

Find the root net in hierarchical passing of port

labels in CDL netlist.

def PP(label, PORTMAP):

 label1 = label

 while label1 in PORTMAP.keys():

 label1 = PORTMAP[label1]

 return(label1)

flattenInstCDL() —

Flatten out the current instance recursively in a
flattened netlist format

def flattenInstCDL(curInst, curCell, PORTMAP,

 SKIPCELL, skipInsts,

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 224 Volume 18, 2019

 instmaster, INST, PORT):

 for line in INST[curCell]:

 if line[0] == ‘M’:

 words = line.split()

 inst = curInst + “/“ + words[0]

 label1 = curInst + “/“ + words[1]

 label2 = curInst + “/“ + words[2]

 label3 = curInst + “/“ + words[3]

 label4 = curInst + “/“ + words[4]

 label1 = PP(label1, PORTMAP)

 label2 = PP(label2, PORTMAP)

 label3 = PP(label3, PORTMAP)

 label4 = PP(label4, PORTMAP)

 f1w.write(“%s %s %s %s %s” %(inst,

 label1, label2, label3, label4))

 for i in range(5, len(words)):

 f1w.write(“ %s” %(words[i]))

 f1w.write(“\n”)

 elif line[0] == ‘X’:

 words = line.split()

 childCell = getChild(words)

 if childCell != “” and childCell not in

 SKIPCELL:

 childPortList = PORT[childCell]

 if instmaster == 1:

 childInst = curInst + “/“ + words[0] +

 “/” + childCell

 else:

 childInst = curInst + “/“ + words[0]

 for i in range(0, len(childPortList)):

 childLabel = childInst + “/“ +

 childPortList[i]

 parentLabel = curInst + “/“ +

 words[i+1]

 PORTMAP[childLabel] = parentLabel

 childInst2 = curInst + “/“ + words[0]

 if checkSI(childInst, skipInsts) == 0

 and

 checkSI(childInst2, skipInsts) == 0:

 flattenInstCDL(childInst,

 childCell,

 PORTMAP,

 SKIPCELL,

 skipInsts,

 instmaster, INST,

 PORT)

Programs detecting HV/LV connection or floating
gate faults have to be efficient to process large-size
circuits. We adopt the table look-up technique in our
programs. Look-up tables are built up only one time
during the execution and they are reused during the
program run. Table 1 lists look-up tables employed
in programs. Modern Linux machines contain about
10G-100G bytes memory sizes. HVDEV and
LVDEV tables in Table 1 need 10M bytes in the
memory size for one circuit with 10M devices.
Other tables in Table 1 need much smaller sizes
compared to HVDEV and LVDEV tables.

Table 1. Look-up Tables in Programs.

HV/LV connection
faults

Floating gate faults

HVDEV[device]: a high-
voltage device.

LVDEV[device]: a low-
voltage device.

SKIPCELL[cell]: a
master cell to skip the
checking.

PORT[cell]: list of port

PORT[cell]: list of port
names associated with
the master cell in the
original netlist.

INST[cell]: list of
instances inside the
master cell in the
original netlist.

INSTDEVICE[inst]:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 225 Volume 18, 2019

names associated with
the cell in the original
netlist.

INST[cell]: list of
instances in the cell in
the original netlist.

INSTDEVICE[inst]:
device model
corresponding to the
instance in the flattened
netlist.

HVNET[net]: list of HV
devices connected to this
net in the flattened
netlist.

LVNET[net]: list of LV
devices connected to this
net in the flattened
netlist.

device model
corresponding to the
instance in flattened
netlist.

SOURCENET[net]: list
of source terminals of
devices connected to the
net.

GATENET[net]: list of
gate terminals of devices
connected to the net.

DRAINNET[net]: list of
drain terminals of
devices connected to the
net.

IO[net]: list of IO nets.

FLATNET[net]: list of
flattened nets.

5 Experimental Results

The described programs have been applied in one
industry project. Programs and specification files
are enhanced during the design process.
Specification file commands are continually refined
based on the feedback from design team in order to
review and waive errors in an efficient way. GUI
debug tool was requested by design team for
identifying and locating faults in Cadence design
environment to improve the productivity.

 Table 2 shows experimental results and run time
of HV/LV connection fault program in circuits from
the project. Table 3 shows experimental results and
run time of floating gate program. CPU time was
measured in Intel Xeon CPU E5-3630 @ 2.4GHZ
machines and Redhat 6.8 Linux operating system.
Running speeds of programs are reasonably fast
even for large-size circuits including both steps of
netlist flattening and detection of faults. One circuit
containing ~0.2M devices is finished in 5 seconds to
check HV/LV connection faults. One circuit
containing ~2M devices is finished in 100 seconds
to check and report floating gate faults.

Table 2. Experimental Results of HV/LV
Connection Fault Program.

 Circuit A Circuit B Circuit C

Total
devices

204536 1786 3143

HV devices 114208 1784 589

LV devices 90328 2 2554

Total nets 71207 1151 540

HV nets 35871 1150 375

LV nets 36494 4 228

HV/LV
faults

1069 2 58

CPU time 5.45s 0.04s 0.15s

Table 3. Experimental Results of Floating Gate
Fault Program.

 Circuit A Circuit B Circuit C

Total
devices

1979170 218428 2260

Total nets 1805322 173228 1160

Floating
faults

50 70 55

CPU time 99.46s 5.79s 0.05s

6 Conclusion

This paper describes the new methodology and
CAD programs to detect two types of faults in VLSI
design: HV/LV connection faults and floating gate
faults. Our programs can improve the accuracy for
identifying and fixing these two types of faults in
the early design stage. Program details and Python
procedures for flattening hierarchical circuit netlists
are included. Look-up tables are extensively used in
programs to improve the speed for large-size
netlists.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 226 Volume 18, 2019

 Reviewing textual report files from program runs
can be tedious and easy to miss real faults. We
develop GUI capability to identify and highlight
errors in Cadence design environment. Programs
and GUI have been demonstrated and acknowledged
by the design team.

References:

1. I. H. Lysfjord, "Multiple Power Domains",
Department of Electronics and
Telecommunications, Norwegian University of
Science and Technology, 2008.

2. H. J. M. Veendrick, "Short-circuit dissipation on
static CMOS circuitry and its impact on the
design of buffer circuits", IEEE Journal of
Solid-State Circuits, Vol SC-19, No 4, Aug
1984, pp. 468-473.

3. P. Lee, "Introduction to physical integration and
tapeout in VLSIs", lulu.com, 2010.

4. V. Kumarreddy, "Dummy transistors
connection", edaboard.com, 2006.

5. M. Lapedus, "10nm Versus 7nm",
semiengineering.com, 2016.

6. Efram Rotem, Avi Mendelson, Ran Ginosar, Uri
Weiser, "Multiple clock and Voltage Domains
for chip multi processors", 2009 42nd Annual
IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2009.

7. M. Igarashi, K. Usami, K. Nogami, F. Minami,
Y. Kawasaki, T. Aoki, M. Takano, S. Sonoda,
M. Ichida, N. Hatanaka, "A low-power design
method using multiple supply voltages",
International Symposium on Low Power
Electronics and Design, 1997.

8. Martin D.F. Wong, "Low power design with
multi-Vdd and voltage islands", 7th
International Conference on ASIC, 2007.

9. A. B. Khang, S. Muddu and D. Vidhani, "Noise
and delay uncertainty studies for coupled RC
interconnects", Proc. of International ASIC/SOC
Conference, 1999.

10. A. Vittal and M. Marek-Sadowska, "Crosstalk
reduction for VLSI", IEEE Transactions on
Computer-aided Design of integrated circuits

and systems. Vol. 16. No. 3, March 1997, pp.
290-298.

11. "Find a list of floating gates in schematic",
https://community.cadence.com

12. A. J. L. Martin “Tutorial: Cadence design
environment”, http://www2.ece.ohio-
state.edu

13. “Virtuoso® analog design environment user
guide”, http://home.engineering.iastate.edu

14. T. J. Barnes, "SKILL: a CAD system extension
language", 27th ACM/IEEE Design Automation
Conference, 1990.

15. “Inter-process communication SKILL functions
reference”, http://read.pudn.com

Appendix I - Python Code of Hierarchical Netlist
Flattening and HV/LV Connection Check

#!/usr/bin/env python

import sys

import re

import os.path

import fnmatch import fnmatch, fnmatchcase

import time

getChild() —

Get master cell name based on words of instance
line

def getChild(words):

master = “”

for i in range(0, len(words)):

 if words[i] == “/“:

 master = words[i+1]

return(master)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 227 Volume 18, 2019

XL() —

If ass the XLine in the instance list

Filter out XR case

def XL(line)

status = 0

if line != “”:

 if (line[0] == “X”) and (line[1] == “R”):

 status = 0

 else:

 status = 1

return(status)

PP() —

Find the root net in the hierarchical passing of
port labels in CDL net list

def PP(label, PORTMAP):

label1 = label

while label1 in PORTMAP.keys():

 label1 = PORTMAP[label1]

return(label1)

checkSI() —

check if it is a skip instance

def checkSI(inst, skipInsts):

 skip = 0

 if len(skipInsts) > 0:

 for skipInst in skipInsts:

 if fnmatch(inst, skipInst):

 skip = 1

 return(skip)

checkSN() —

check if it is a skip net

def checkSN(net, skipNets):

 skip = 0

 if len(skipNets) > 0:

 for skipNet in skipNets:

 if fnmatch(net, skipNet):

 skip = 1

 return(skip)

checkSD() —

check if it is a skip device

def checkSD(device, skipDevices):

 skip = 0

 if len(skipDevices) > 0:

 for skipDevice in skipDevices:

 if fnmatch(device, skipDevice):

 skip = 1

 return(skip)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 228 Volume 18, 2019

Main program

start = time.time()

if len(sys, argv) != 3:

 print “ Command: checkHV.py <topCell>.cdl

 checkHV.spec”

 exit()

cdlFile = sys.argv[1]

Merge the continuous lines with beginning “+” in
CDL netlist

netlist = cdlFile + “.tmp”

if os.path.exists(cdlFile):

 fc1 = open(cdlFile, “r”)

else:

 print(“ERROR: %s does not exist !” %cdlFile)

fc2 = open(netlist, “w”)

lastLine = “”

for line in fc2:

 words = line.split()

 if len(words) > 0:

 if words[0][0:1] == “+”:

 lastLine2 = lastLine.rstrip(‘\n’)

 line2 = line.lstrip(‘+’)

 lastLine = lastLine2 + line2

 else:

 if lastLine != “”:

 fc2.write(“%s” %lastLine)

 lastLine = line

if lastLine != “”:

 fc2.write(“%s” %lastLine)

fc1.close()

fc2.close()

Read the spec file

specFile = sys.argv[2]

if os.path.exists(specFile):

 fs = open(specFile, “r”)

else:

 print(“%s does not exists !” %specFile)

 exit()

print(“Spec file: %s” %specFile)

Build map tables from the spec file

HVDEV = dict()

LVDEV = dict()

SKIPCELL = dict()

……

fs.close()

Build map tables for each subckt in CDL net list

Skip the subckt in the SKIPCELL table

PORT is the list of ports to a subckt

INST is the list of instances to a subckt

PORT = dict()

INST = dict()

if os.path.exists(netlist):

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 229 Volume 18, 2019

 fn = open(netlist, “r”)

else:

 print(“%s does not exist !” %netlist)

 exit()

print(“CDL net list: %s” %netlist)

subckt = 0

for line in fn:

words = line.split()

if words[0] = “.SUBCKT”:

 if “.SUBCKT” in line:

 subCkt = 1

 master = words[1]

 portList = list()

 instList = list()

 if master not in SKIPCELL:

 PORT[master] = portList

 INST[master] = instList

 for i in range(2, len(words)):

 portList.append(words[i])

elif words[0] == “.ENDS”:

 subCkt = 0

elif subCkt == 1:

 # Add all instance lines in the instList for INST

 mapping table

 instList.append(line)

if topCell == “”:

 # The last master becomes the top cell

 if master not in SKIPCELL:

 topCell = master

if topCell == “”:

print(“ERROR: top cell name is not defined \n”)

exit

fn.close()

Flatten the CDL netlist in the recursive way

flatCDL = topCell + “.cdl.flat”

f1w = open(flatCDL, “w”)

PORTMAP = dict()

flattenInstCDL(topCell, topCell, PORTMAP,

 SKIPCELL, skipInsts, instmaster,

 INST, PORT)

print(“Flattened CDL netlist: %s” %flatCDL)

f1w.close()

Report HV/LV connection errors

errFile = topCell + “.err.flat”

f2w = open(errFile, “w”)

HVNET = dict()

LVNET = dict()

INSTDEVICE = dict()

FLATNET = dict()

flatNets = list()

f1r = open(flatCDL, “r”)

totalHVDevices = 0

totalLVDevices = 0

totalDevices = 0

for line in f1r:

 words = line.split()

 inst = words[0]

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 230 Volume 18, 2019

 device = words[5]

 INSTDEVICE[inst] = device

 totalDevices = totalDevices + 1

 if device in HVDEV:

 totalHVDevices = totalHVDevices + 1

 elif device in LVDEV:

 totalLVDevices = totalLVDevices + 1

 for i in range(1, 5):

 net = words[i]

 if net not in FLATNET:

 FLATNET[net] = 1

 flatNets.append(net)

 if device in HVDEV:

 if net in HVNET:

 hvInstList = HVNET[net]

 hvInstList.append(words[0])

 else:

 hvInstList = list()

 hvInstList.append(words[0])

 HVNET[net] = hvInstList

 elif device in LVDEV:

 if net in LVNET:

 lvInstList = LVNET[net]

 lvInstList.append(words[0])

 else:

 lvInstList = list()

 lvInstList.append(words[0])

 LVNET[net] = lvInstList

 else:

 print(“WARNING: Instance %s %s is not

 specified as HV or LV devices \n”

 %(words[0], device))

f1r.close()

Go through HVNET and LVNET to report error
nets

for net in flatNets:

 if (net in LVNET) and (net in HVNET):

 if checkSN(net, skipNets) == 0:

 f2w.write(“ERROR: net %s is connected to

 both HV and LV devices in the

 following instances - \n” %net)

 for inst in LVNET[net]:

 if checkSD(inst, skipDevices) == 0:

 device = INSTDEVICE[inst]

 vddNet = topCell + “/“ + “VDD”

 if net != vddNet:

 f2w.write(“\tLV device: %s %s\n” %

 (inst, device))

 for inst in HVNET[net]:

 if checkSD(inst, skipDevices) == 0:

 device = INSTDEVICE[inst]

 vddioNet = topCell + “/“ + “VDDIO”

 if net != vddioNet:

 f2w.write(“\tHV device: %s %s\n”

 %(inst, device))

 else:

 print(“WARNING (skip net): net %s is

 connected to both HV and LV devices

 but waived in the spec file \n” %net)

f2w.close()

print(“HV/LV checking results: %s” %errFile)

print(“Statistics: total devices = %d HV devices =

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 231 Volume 18, 2019

 %d LV devices = %d” %(totalDevices,
totalHVDevices, totalLVDevices))

totalNets = len(flatNets)

totalHVNets = len(HVNET.keys())

totalLVNets = len(LVNET.keys())

print(“Statistics: total nets = %d HV nets = %d LV

 nets = %d” %(totalNets, totalHVNets,

 totalLVNets))

print(“Checking is finished in %s seconds !”

 %(time.time() - start))

Appendix II – Python Code of Floating Gate
Program

#!/usr/bin/env python

This python program reads in a CDL netlist and a
specification file.

It first flattens the CDL netlist. Then detects
floating gate faults based on the flattened netlist

import sys

import re

import os.path

import fnmatch import fnmatch, fnmatchcase

import time

Main program

start = time.time()

if len(sys, argv) != 2 and len(sys, argv) != 3:

 print “ Command: floatGate.py <topCell>.cdl”

print “ Command: floatGate.py <topCell>.cdl

 skipFile”

exit()

cdlFile = sys.argv[1]

Merge the continuous lines with beginning “+” in

 CDL netlist

netlist = cdlFile + “.tmp”

if os.path.exists(cdlFile):

 fc1 = open(cdlFile, “r”)

else:

 print(“ERROR: %s does not exist !” %cdlFile)

fc2 = open(netlist, “w”)

lastLine = “”

for line in fc2:

 words = line.split()

 if len(words) > 0:

 if words[0][0:1] == “+”:

 lastLine2 = lastLine.rstrip(‘\n’)

 line2 = line.lstrip(‘+’)

 lastLine = lastLine2 + line2

 else:

 if lastLine != “”:

 fc2.write(“%s” %lastLine)

 lastLine = line

if lastLine != “”:

 fc2.write(“%s” %lastLine)

fc1.close()

fc2.close()

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 232 Volume 18, 2019

Read spec file

skipNets = list()

instmaster = 0

if len(sys.argv) == 3:

 specFile = sys.argv[2]

 if os.path.exists(specFile):

 fs = open(specFile, “r”)

else:

 print(“%s does not exists !” %specFile)

 exit()

 print(“Spec file: %s” %specFile)

 for line in fs:

 if len(line) > 1:

 words = line.split()

 if words[0].lower() == “skipnet”:

 for i in range(1, len(words)):

 skipNets.append(words[i])

 elif words[0].lower() == “instmaster”:

 if words[1].lower() == “t”:

 instmaster = 1

fs.close()

Build map tables for each subckt in CDL net list

Skip the subckt in the SKIPCELL table

PORT is the list of ports to a subckt

INST is the list of instances to a subckt

PORT = dict()

INST = dict()

if os.path.exists(netlist):

 fn = open(netlist, “r”)

else:

 print(“%s does not exist !” %netlist)

 exit()

print(“CDL net list: %s” %netlist)

subckt = 0

for line in fn:

 words = line.split()

 if words[0] = “.SUBCKT”:

 if “.SUBCKT” in line:

 subCkt = 1

 master = words[1]

 portList = list()

 instList = list()

 if master not in SKIPCELL:

 PORT[master] = portList

 INST[master] = instList

 for i in range(2, len(words)):

 portList.append(words[i])

elif words[0] == “.ENDS”:

 subCkt = 0

elif subCkt == 1:

 # Add all instance lines in the instList for INST
mapping table

 instList.append(line)

if topCell == “”:

 # The last master becomes the top cell

 if master not in SKIPCELL:

 topCell = master

if topCell == “”:

print(“ERROR: top cell name is not defined \n”)

exit

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 233 Volume 18, 2019

fn.close()

Flatten the CDL netlist in the recursive way

flatCDL = topCell + “.cdl.flat”

f1w = open(flatCDL, “w”)

PORTMAP = dict()

flattenInstCDL(topCell, topCell, PORTMAP,
SKIPCELL, skipInsts, instmaster, INST, PORT)

print(“Flattened CDL netlist: %s” %flatCDL)

f1w.close()

Flatten the CDL netlist in the recursive way

flatCDL = topCell + “.cdl.flat”

f1w = open(flatCDL, “w”)

PORTMAP = dict()

flattenInstCDL(topCell, topCell, PORTMAP,
SKIPCELL, skipInsts, instmaster, INST, PORT)

print(“Flattened CDL netlist: %s” %flatCDL)

f1w.close()

Report floating gate errors

errFile = topCell + “.cdl.err”

f2w = open(errFile, “w”)

SOURCENET = dict()

GATENET = dict()

DRAINNET = dict()

BULKNET = dict()

flatNets = list()

FLATNET = dict()

NETINST = dict()

INSTDEVICE = dict()

totalDevices = 0

f1r = open(flatCDL, “r”)

for line in f1r:

 words = line.split()

inst = words[0]

 sourceNet = words[1]

 gateNet = words[2]

 drainNet = words[3]

 bulkNet = words[4]

 if sourceNet not in SOURCENET:

 SOURCENET[sourceNet] = [inst]

 else:

 SOURCENET[sourceNet].append(inst)

 if gateNet not in GATENET:

 GATENET[gateNet] = [inst]

 else:

 GATENET[gateNet].append(inst)

if drainNet not in DRAINNET:

 DRAINNET[gateNet] = [inst]

else:

 DRAINNET[gateNet].append(inst)

device = words[5]

INSTDEVICE[inst] = device

totalDevices = totalDevices + 1

f1r.close()

Go through flatNets to report error nets which are
only connected to GATENET

errorNets = 0

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 234 Volume 18, 2019

for net in flatNets:

if (net in GATENET) and ((net not in
SOURCENET) and (net not in DRAINNET)):

 if checkSN(net, skipNets) == 0:

 errorNets = errorNets + 1

 f2w.write(“ERROR: net %s is connected to gate
only (No connections to source/drain) - \n” %net)

 for inst in GATENET[net]:

 device = INSTDEVICE[inst]

 f2w.write(“\tInstance: %s %s \n” % (inst,
device))

f2w.close()

print(“Floating gate checking results: %s” %errFile)

totalNets = len(flatNets)

totalHVNets = len(HVNET.keys())

totalLVNets = len(LVNET.keys())

print(“Statistics: total nets = %d Total devices =
%d” %(totalNets, totalDevices))

print(“Number of error nets: %d” %errorNets)

print(“Checking is finished in %s seconds !”
%(time.time() - start))

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qing K. Zhu

E-ISSN: 2224-266X 235 Volume 18, 2019

