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Abstract: The artificial bee colony algorithm (ABC), a population based algorithm, provides solutions with better
accuracy compared to other competitive population based algorithms. However, it suffers from slow convergence
speed. We suggest modifications in search strategy of ABC to improve overall performance and named this modi-
fied algorithm, Efficient ABC algorithm (EABC). The performance of EABC is compared with ABC by conducting
experiment on 15 well-known scalable benchmark functions and synthesizing two analog circuits, two stage op-
amp and bulk driven OTA, in 130µm CMOS technology. The proposed algorithm is performing significantly
better than ABC for 14 benchmark functions and for remaining one the results are comparable. With the two-stage
op-amp design problem, the average design error is 0.4% with EABC compared to 2.10% with ABC. Not only
that the average design time is only 19.8 minutes with EABC in contrast to 22 minutes with ABC. In case of bulk
driven OTA design, the average design error with EABC algorithm is zero compared to 1.26% with ABC. The
average design time taken to design bulk driven OTA by EABC is only 4.62 minutes compared to 9.07 minutes
with ABC. Apart from this, EABC is also compared with GABC and MABC algorithms, the variants of ABC.
This comparison clearly indicates that EABC is performing better than ABC, GABC and MABC.
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1 Introduction
Inspired from nature and life-system, the researchers
have developed many heuristic algorithms and
demonstrated their applications to solve complex
problems. The Genetic Algorithm (GA) is based
on Darwian law of survival of fittest [1]. The par-
ticle swarm optimization (PSO) algorithm simulates
the behavior of birds flocking in search of food
[2].The ant colony algorithm (ACO) is inspired from
the foraging behavior of the ant colonies [3]. The
biogeography-based optimization (BBO) is based on
speciation and extinction of the species [4]. The
ABC algorithm simulates the foraging behavior of the
honey bees [5].

The ABC algorithm is tested for solving multi-
modal and uni-modal benchmark functions and its
performance is compared with other algorithms such
as DE, PSO and EA [6, 7]. The comparison shows
that, the ABC algorithm provides better performance
than the mentioned algorithms and it can be efficiently
employed to solve the multi-modal engineering prob-
lems with high dimensionality.

In [8] the application of ABC algorithm for global
maximum power point tracking in the PV system un-
der conditions of in-homogeneous isolation is demon-

strated. The results of [8] show that the ABC algo-
rithm perform better than PSO and EPO (enhanced
perturb and observe) techniques. In [9], the ABC
algorithm is used to design active analog filters and
its performance is compared with GA and PSO al-
gorithms. The results of [9] describe that, ABC out-
performs other methods by means of execution time.
[10] has demonstrated the application of ABC algo-
rithm for data clustering. For the data clustering prob-
lem [10], the performance of the ABC algorithm is
compared with PSO algorithm and other nine tech-
niques. The results show that the ABC algorithm
can be used efficiently for multivariate data clustering.
[11] utilizes ABC for the Synthetic Aperture Radar
(SAR) image segmentation. The experiment results
of [11] indicate that ABC algorithm based method for
SAR image segmentation is superior to the GA based
and Artificial Fish Swarm (AFS) optimization based
methods in term of segmentation accuracy and seg-
mentation time. In [12], ABC algorithm is applied for
the optimization of the truss structures and concluded
that for the optimization of the truss structures, the
ABC algorithm provides more accurate results com-
pared to HS, SA, PSO and HPSO. However, ABC suf-
fers from slow convergence speed. In [13], the ABC
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algorithm and other competitive algorithms are used
to design loud speaker. The result of this work indi-
cates that for design of loud speaker, the performance
of ABC is better that GA, PSO and DE but suffers
from slow convergence speed. Zhang also suggests
modified version of ABC algorithm to overcome the
problem of slow convergence.

In this work, we present improved and efficient
version of the ABC algorithm, namely Efficient Arti-
ficial Bee Colony algorithm (EABC). In EABC two
different search strategies are presented which are uti-
lized at different phases of the algorithm to improve
overall efficiency of the algorithm. The performance
of the EABC is tested by performing the experiments
on 15 different numerical benchmark functions. The
results of these experiments show that the perfor-
mance of EABC algorithm is better than ABC. The
performance of EABC algorithm is also compared
with the other variants of the ABC algorithm.

Other than this, we address the problem of the au-
tomatic CMOS analog circuit design. With the ad-
vancement in CMOS technology, the size of MOS-
FET device shrinks. The smaller device size brings
more non-linearity in the characteristics of the device.
This makes deciding optimum device sizes extremely
difficult. Under such circumstances, the traditional
design approach based on the analytical calculations
followed by the simulation fails to provide time ef-
ficient ASIC development cycle. On the other hand,
with increasing power of the modern CPU, it is possi-
ble to use optimization algorithms effectively for cir-
cuit design. Researchers have already applied vari-
ous evolutionary algorithms and swarm optimization
techniques to solve the problem of the circuit design.
[14] design real life circuits such as RF Low Noise
Amplifier, Leapfrog Filter, and Ultra Wideband LNA
are designed using NSGA-II algorithm. The modi-
fied GA algorithm algorithm based design tool is used
to design CMOS operational amplifier by [15]. In
[16], design of CMOS buffers and CMOS amplifiers
using GA algorithm and PSO based algorithms are
discussed. This work demonstrates the application
of EABC to design Two stage CMOS amplifier and
CMOS bulk-driven OTA. The performance of EABC
for CMOS circuit design is compared with ABC and
its variants, GABC and MABC.

The paper is organized as follows. Section 2 de-
scribes the ABC algorithm. The EABC algorithm is
presented in section 3. The performances of compari-
son of EABC and ABC is discussed in section 4. The
framework for the automatic circuit design problem
using ABC and EABC along with the design exam-
ples is illustrated in section 5. Finally conclusions are
drawn in section 6.

2 ABC algorithm
The Artificial Bee Colony algorithm (ABC) simulates
the intelligent behavior of the bees and [5] proposed
this swarm optimization technique. In ABC algo-
rithm, there are three types of artificial bees: em-
ployee bee, onlooker bee and scout bee. The em-
ployee bees and onlooker bees are equal in number.
Each employee bee tries to find better food source
around location in its memory and shares this infor-
mation with the onlooker bees. The onlooker bees
only select food sources where the probabilities for
improvement are higher and try to improve selected
food sources. The scout bee drops the food sources
which cannot be improved after per-determined trials
and instead of each dropped food source, new food
source is selected randomly. The ABC algorithm fol-
lows the iterative process and the major phases are ini-
tialization, employee bees phase, onlooker bees phase
and scout bee phase.

Let’s take swarm population 2 ×N for the prob-
lem with D dimensions. This leads to N employee
bees and N onlooker bees. The algorithm starts with
random initialization. First, N numbers of the food
sources are initialized randomly. Each food source
represents the solution candidate and it can be mod-
eled by an vector Xi = {xi1, xi2, ..., xiN}. Each food
source can be initialized randomly as follows,

xij = xmaxj + φij(xmaxj − xminj) (1)

where, i = 1, 2...N , j = 1, 2, ..., D, φij is uni-
formly distributed random number between 0 and 1.
For jth dimension, xmaxj represents upper bound of
search space and xminj represents lower bound of
search space. After the random initialization, each
food source is evaluated for the its fitness.

Each employee bee finds a new food source Vi
around assigned food source Xi, by sharing the infor-
mation with other employee bee. The Vi can be given
by following search equation,

Vij = xij + θij(xij − xik) (2)

where, j ∈ {1, 2, ..., D} and selected randomly, k ∈
{1, 2, ..., N} and different form i, θij is a random
number between −1 and 1. Vi is evaluated for its fit-
ness. If fitness of Vi is better than fitness of Xi, then
Vi is selected otherwise it is rejected. In other words,
greedy selection is applied between food sources Xi

and Vi.
After search process for better food site, each

Employee bee shares the information about its food
source with onlooker bees. Based on the fitness of
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Table 1: Benchmark functions used for experiment.
Function Search Space Minimum

Value

Sphere f1(X) =
∑N

i=1 xi
2 [−100, 100]N 0

Griewank f2(X) = 1
4000

∑N
i=1 xi

2 −
∏N

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]N 0

Rastrigin f3(X) = 10n+
∑N

i=1(x
2
i − 10cos(2πxi)) [−5.12, 5.12]N 0

Rosenbrock f4(X) =
∑N−1

i=1 (100(x2i − xi+1)
2 + (1− xi)2) [−10, 10]N 0

Schwefel f5(X) =
∑N

i=1(−xisin(
√
|xi|)) + 418.982887272 [−500, 500]N 0

Schwefel’s
2.21

f6(X) = maxi{|xi|, 1 ≤ i ≤ N} [−100, 100]N 0

Alpine f7(x) =
∑N

i=1 |xisin(xi) + 0.1xi| [−10, 10]N 0

Shifted
Sphere

f8(X) =
∑N

i=1 zi
2, Z = X −O [−100, 100]N 0

Shifted
Griewank

f9(X) = 1
4000

∑N
i=1 zi

2 −
∏N

i=1 cos
(

zi√
i

)
+ 1, [−600, 600]N 0

Z = X −O

Shifted Rast-
rigin

f10(X) = 10n+
∑N

i=1(z
2
i − 10cos(2πzi)), Z = X −O [−5.12, 5.12]N 0

Non Continu-
ous Rastrigin

f11(X) = 10n+
∑N

i=1(y
2
i − 10cos(2πyi)) [−5.12, 5.12]N 0

yi =

{
xi if |xi| < 1

2
round(2xi)

2
if |xi| ≥ 1

2

Dixon-price f12(X) = (x1 − 1)2 +
∑N

i=2 i(2x
2
i − xi−1) [−100, 100]N 0

Sum Square f13(X) =
∑N

i=1 ix
2
i [−100, 100]N 0

Zakhorav f14(X) =
(∑N

i=1 0.5ixi
)4

+
(∑N

i=1 0.5ixi
)2

+
∑N

i=1 x
2
i [−5, 10]N 0

Ackley f15(X) = 20+e−20exp(−0.2
√

1
N

∑N
i=1 x

2
i )−exp( 1

N

∑N
i=1 cos(2πxi)) [−32, 32]N 0
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each food source, the probability for further improve-
ment associated with each food source is calculated
using roulette wheel selection, as follows,

pi =
fi∑i=N
i=1 fi

(3)

where fi is the fitness of the ith food location. The
food location with higher fitness value has better
chance for the improvement.

The onlooker bees only select certain food
sources where probabilities for improvements are
higher. The new food source location Vi is found us-
ing Equ. 2. Based on the fitness of Vi and Xi, greedy
selection process is carried out.

The scout bee drops the food site which cannot
be improved after certain per-defined trails Tmax and
finds new food source for each dropped food source
by random re-initialization as described by Equ.1

3 Efficient ABC algorithm
The population initialization in evolutionary algo-
rithm is a very crucial task. It affects the convergence
speed and quality of the final solution. However if the
nature of the problem is unknown, the random initial-
ization is a best choice. In Efficient ABC algorithm
(EABC), random population initialization is used. In
EABC like ABC, there are three types of bees : em-
ployee bees, onlooker bees and scout bees. Half of the
bees are employee bees and remaining half become
onlooker bees. However, the behavior of the bees is
different than ABC.

In order to improve the movement of the em-
ployee bee, we follow following search equation dur-
ing employee bee phase,

Vi,j = XN1,j + Θi,j(XN2,j −Xi,j) (4)

where, N1, N2 are mutually exclusive and differ-
ent from i with N1, N2 ∈ {1, 2, 3, ..., SN}. j ∈
{1, 2, 3, ..., D} and selected randomly. Θij is an uni-
formly distributed random number between −0.25
to 0.25. Employee bee gets the information about
two different food sources i.e. N1 and N2 and finds
new food source Vi around N1. The random number
Θi,j decides the search radius around N1. The large
value of this radius results into slower convergence
speed and larger value leads to poor exploration. In
ABC, employee bees carries search around its own
food source, while in EABC, the search is carried out
around other bee’s food source. This search strategy
improves the exploration. The greedy selection pro-
cess is applied between food sourceXi and new found
food source Vi.

In ABC, during onlooker bee phase, onlooker
bees try to improve selected food sources. In EABC,
the idea of selective improvement is dropped and like
employee bee phase, equal chance is given to each
food source to improve. However, the different search
strategy is used. The new search strategy during the
Onlooker phase is described by following equation,

Vij = Xbest,j + Φi,j(XN1,j −XN2,j) (5)

where, N1, N2 are mutually exclusive and differ-
ent from i with N1, N2 ∈ {1, 2, 3, ..., SN}. j ∈
{1, 2, 3, ..., D} and selected randomly. Φij is an uni-
formly distributed random number between −0.5 to
0.5. This search strategy improves the exploitation.
Thus, employee bee phase provides exploration and
onlooker bee phase provides exploitation.

The scout bee tries to improve the food sources
which cannot be improved after pre-determined trials
Tmax or whose fitness is very less (α times smaller)
in comparison with the best food source found so far.
To improve such food sources, scout bee follows the
mutation and recombination process. The scout bee
calculates the new food location Vi using Equ. 6 and
then follows recombination process according to Equ.
7.

Ui+1 = Xbest + Θi(XN1 −XN2) (6)

Xi+1,j =

{
Xi,j if Random[0, 1] > p

Ui+1,j if Random[0, 1] < p
(7)

with N1 and N2 are mutually exclusive with
N1, N2 ∈ 1, 2, 3, ..., SN and selected randomly. Θi

is a vector containing uniformly distributed random
numbers between −0.25 to 0.25. p is a constant num-
ber between 0 and 1.

Each algorithmic iteration in EABC contains two
employee bee phases, one onlooker bee phase and one
scout bee phase. The flow-chart of the algorithm is
shown in Fig. 1.

The proper choice of the p and boundary limits
of the random numbers Φ and Θ is necessary. Based
on the results of experiments conducted on the bench-
mark functions, values of these constants are sug-
gested. For p = 0.2 and p = 0.3, satisfactory results
are obtained, so these values of p are recommended.
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Set parameters

Initialize the population randomly

Employee bee phase - 1

Employee bee phase - 2

Onlooker bee phase

Scout bee phase

Termination
criteria

End
Yes

No

i = 1
while i ≤ SN do

Select N1, N2 different from i, with N1 6= N2 ;
Generate new food-source Vi using Equ. 4 ;
Apply greedy selection between Vi and Xi ;

end

Employee bee phase

i = 1
while i ≤ SN do

Select N1, N2 different from i ;
Generate new food-source Vi using Equ. 5 ;
Apply greedy selection between Vi and Xi ;

end

Onlooker bee phase

i = 1
while i ≤ SN do

if (Triali ≥ Tmax) or
(
fitness of Xi ≥ fitness of Xbest

α

)
then

Generate mutant vector Ui+1 using Equ. 6;
Generate new food source Xi using recombination process described by
Equ. 7 ;

end
end

Scout bee phase

Figure 1: Flow chart of EABC algorithm
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Table 2: Mean, best, worst and standard deviation values obtained by ABC and EABC through 30 independent
runs on function from f1 to f7.

Function D Mean Best Worst SD

Sphere

30 ABC 1.34e-09 2.45e-10 3.18e-09 7.52e-10
30 EABC 1.35e-34 5.98e-35 3.70e-34 7.15e-35
60 ABC 1.48e-10 4.19e-10 5.35e-09 1.30e-09
60 EABC 4.87e-33 2.02e-33 1.21e-32 2.46e-33
100 ABC 1.53e-09 2.28e-10 6.81e-09 1.32e-09
100 EABC 3.69e-32 1.64e-32 7.54e-32 1.54e-32

Griewank

30 ABC 4.07e-08 8.12e-11 3.04e-07 8.48e-08
30 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00
60 ABC 1.49e-09 1.01e-10 1.24e-08 2.43e-09
60 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00
100 ABC 1.18e-09 3.50e-11 7.18e-09 1.63e-09
100 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Rastrigin

30 ABC 1.04e-05 1.03e-10 2.05e-04 4.59e-05
30 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00
60 ABC 2.98e-01 8.03e-11 1.99e+00 5.83e-01
60 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00
100 ABC 1.66e+00 2.15e-10 4.98e+00 1.34e+00
100 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Rosenbroke

30 ABC 3.44e-01 2.18e-02 1.90e+00 4.12e-01
30 EABC 2.12e-01 2.36e-03 1.24e+00 2.74e-01
60 ABC 4.14e-01 3.34e-02 1.90e+00 4.12e-01
60 EABC 4.00e-01 3.33e-02 4.03e+00 7.47e-01
100 ABC 8.22e-01 2.09e-02 5.95e+00 1.07e+00
100 EABC 4.06e-01 3.18e-02 4.64e+00 8.27e-01

Schwefel

30 ABC 1.22e+02 4.28e-08 2.67e+02 1.00e+02
30 EABC -2.19e-12 -2.55e-12 -1.70e-12 2.34e-13
60 ABC 6.38e+02 1.25e+02 1.02e+02 2.25e+02
60 EABC -3.15e-12 -4.03e-12 -1.93e-12 5.43e-13
100 ABC 5.93e+02 2.36e+02 8.66e+02 1.56e+02
100 EABC -5.90e-12 -7.73e-12 -4.60e-12 8.15e-13

Schwefel’s 2.21

30 ABC 5.45e+01 4.49e+01 6.19e+01 4.72e+00
30 EABC 5.03e+00 3.86e+00 6.56e+00 6.11e-01
60 ABC 7.20e+01 6.08e+01 7.78e+01 3.66e+00
60 EABC 2.26e+01 2.03e+01 2.73e+01 1.55e+00
100 ABC 8.13e+01 7.59e+01 8.45e+01 2.34e+00
100 EABC 4.08e+01 3.74e+01 4.44e+01 1.84e+00

Alpine

30 ABC 1.54e-04 3.32e-05 3.69e-04 8.38e-05
30 EABC 7.81e-14 2.23e-16 9.44e-13 1.87e-13
60 ABC 2.51e-03 1.89e-04 1.23e-02 2.96e-03
60 EABC 2.89e-12 2.04e-13 1.07e-11 2.75e-12
100 ABC 1.58e-02 3.77e-04 3.59e-02 8.62e-03
100 EABC 1.56e-11 5.80e-12 3.51e-11 6.81e-12
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Table 3: Mean, best, worst and standard deviation values obtained by ABC and EABC through 30 independent
runs on function from f8 to f13.

Function D Mean Best Worst SD

Shifted Sphere

30 ABC 1.31e-09 1.18e-10 4.24e-09 1.03e-09
30 EABC 1.45e-33 3.08e-35 4.27e-34 8.73e-35
60 ABC 1.12e-09 2.47e-10 3.09e-09 7.07e-10
60 EABC 4.29e-33 1.58e-33 1.02e-32 1.98e-33
100 ABC 1.80e-09 3.56e-10 4.03e-09 1.09e-09
100 EABC 5.38e-33 1.09e-33 1.00e-32 2.28e-33

Shifted Griewank

30 ABC 1.49e-08 1.95e-10 2.80e-07 5.01e-08
30 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00
60 ABC 1.56e-09 1.33e-10 9.94e-09 2.37e-09
60 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00
100 ABC 8.03e-10 4.59e-11 8.90e-09 1.59e-09
100 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Shifted Rastrigin

30 ABC 1.58e-04 1.66e-10 4.75e-10 8.53e-04
30 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00
60 ABC 2.81e-01 3.09e-11 1.99e+00 5.05e-01
60 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00
100 ABC 9.3e-01 6.18e-10 3.11e+00 1.12e+00
100 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Non-continuous

30 ABC 2.38-e01 8.41e-08 3.00e+00 6.14e-01
30 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00
60 ABC 2.12e+00 2.26e-05 4.91e+00 1.39e+00

Rastrigin
60 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00
100 ABC 5.39e+00 1.23e-07 9.38e+00 2.17e+00
100 EABC 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Dixon-price

30 ABC 1.58e-01 2.38e-02 3.42e-01 8.68e-02
30 EABC 1.46e-02 3.69e-07 2.21e-01 4.27e-02
60 ABC 1.71e-01 3.80e-02 4.46e-01 9.58e-02
60 EABC 2.86e-02 4.22e-04 3.28e-01 6.93e-02
100 ABC 2.76e-01 8.25e-02 1.04e+00 2.43e-01
100 EABC 1.02e-01 4.85e-04 1.39e+00 2.59e-01

Sum Square

30 ABC 1.10e-07 7.71e-09 7.21e-07 1.32e-07
30 EABC 1.10e-33 3.14e-34 3.21e-33 6.19e-34
60 ABC 6.64e-08 1.20e-08 2.35e-07 5.60e-08
60 EABC 1.06e-31 4.06e-32 2.74e-31 4.86e-32
100 ABC 7.17e-08 1.14e-08 2.21e-07 5.44e-08
100 EABC 1.38e-30 6.50e-31 2.10e-30 4.68e-31
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Table 4: Mean, best, worst and standard deviation values obtained by ABC and EABC through 30 independent
runs on function from f14 to f15.

Function D Mean Best Worst SD

Zakhorav

30 ABC 2.45e+02 2.01e+02 3.10e+02 2.60e+01
30 EABC 7.50e+01 2.71e+01 1.24e+02 2.10e+01
60 ABC 6.54e+02 5.75e+02 7.12e+02 3.72e+01
60 EABC 3.55e+02 2.41e+02 5.38e+02 6.38e+01
100 ABC 1.25e+03 1.05e+03 1.36e+03 6.92e+01
100 EABC 8.25e+02 6.43e+02 1.07e+03 9.35e+01

Ackley

30 ABC 8.31e-06 2.68e-06 1.55e-05 2.94e-06
30 EABC 2.68e-23 2.44e-26 1.19e-22 3.41e-23
60 ABC 1.40e-05 7.83e-06 2.25e-05 3.51e-06
60 EABC 3.74e-24 1.65e-27 4.49e-23 9.28e-24
100 ABC 2.80e-05 1.29e-05 5.89e-05 1.00e-05
100 EABC 3.11e-25 8.86e-29 7.54e-24 1.35e-24

4 Experiments
4.1 Benchmark functions and parameter set-

ting

To test the performance of the EABC on numerical
benchmark functions, experiments are conducted to
minimize 15 well-known scalable benchmark func-
tions. The Sphere and Sum-Square functions are bowl
shape functions. Rosenbrock and Dixon-price func-
tions are multi-modal and inseparable valley shape
functions. Griewank, Rastrigin and Schwefel are
multi-modal, inseparable functions with multiple lo-
cal minima. Alpine and Ackley are also multi-modal
problems. Zakhorav function is plate shape function.
In shifted functions, shift vector O is selected ran-
domly from search space.

To compare the performances of EABC and ABC,
the experiments on each benchmark function are con-
ducted for dimensionsD = 30,D = 60 andD = 100
with maximum number of the function evaluations
150000, 300000 and 500000 respectively. The pop-
ulation size is set to 150 (SN = 75). The value of
parameter limit for ABC and EABC is set to 2 × D
i.e. 60 for D = 30, 120 for D = 60 and 200 for
D = 100. For EABC, value of p is set to 0.2 and
value of α is set to 100. All the results discussed are
based on 30 independent runs.

4.2 Experimental results
The result of experiments are illustrated in Tables 2,
3 and 4 in terms of mean, best, worst and standard

deviation over 30 independent runs. The obtained re-
sults indicates that EABC perform significantly better
than ABC for all benchmark functions except Rosen-
brock function with faster convergence speed. In case
of Rosenbrock function the performance of EABC
does not improve significantly compared to ABC. The
worst result obtained forD = 60 with EABC is larger
compared to that obtained with ABC. However, the
mean error is less for EABC. The graphs shown in
Fig. 2 illustrate the convergence performance of ABC
and EABC algorithms.

4.3 Comparison with GABC and MABC
The Gbest-guided artificial bee colony algorithm
(GABC)[17] and Modified artificial bee colony algo-
rithm (MABC) [18] algorithms are the enhanced ver-
sions of the ABC algorithm. In GABC, the search
of the better food source is inspired by the PSO al-
gorithm. The MABC is inspired by DE algorithm and
uses chaotic iterator and opposition learning based ini-
tialization. The comparison of EABC with these two
algorithms are based on the number of function evalu-
ations and mean error found over 30 independent runs.
The population size is taken 150. The maximum num-
ber of function evaluations are 150000, 300000 and
500000 for D = 30, D = 60 and D = 100, respec-
tively. The parameter C is set to 1.5 for GABC algo-
rithm as suggested by [17]. Table 5 shows the compar-
ison between EABC, GABC and MABC algorithms.
The result illustrated for MABC is directly taken from
its corresponding reference [18].

From the comparison of results, it is very clear the
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Figure 2: Convergence performances of ABC and EABC algorithms
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performance of the EABC is better than GABC. The
performance of EABC is better or comparable with
MABC for the all taken cases except the Alpine func-
tion. For Alpine function MABC is found better.

5 Automatic analog circuit design
The task of the automatic circuit design is carried out
by optimizer, a design framework. The optimization
algorithm is a heart of the optimizer. The optimizer
generates the circuit based on parameters provided by
algorithm, initiate circuit simulator, analyze the sim-
ulator output and provides necessary feedback to op-
timization algorithm. Based on this feedback, opti-
mization algorithm generates new parameters. The
conceptual block diagram of the optimizer is illus-
trated in Fig. 3. For the CMOS circuits, design pa-

rameters include size of various transistors. Initially,
upper and lower values of the various circuit parame-
ter are decided broadly without involving any circuit
related calculations. This creates search space for the
circuit design problem. With this information, the op-
timization algorithm generates the set of circuit pa-
rameter. The optimizer generates a circuit for simu-
lator according to these parameters and circuit is sim-
ulated against pre-defined test cases. The output of
simulator is utilized by cost function to calculate the
design error. The optimization algorithm uses this er-
ror to generate new parameter set. The aim of the op-
timization process is reduce design error to null.

5.1 Formulation of cost function

For the formulation of the cost function, we have used
normalized root mean square error method. Let’s con-
sider a circuit design problem with M specifications.
The set of the desired specifications is represented
by vector DS. During the optimization process, af-
ter each circuit simulation, obtained specifications are
collected in vector OS. The cost function can be de-
scribed by following equation,

fe(%) =

√√√√ 1

M

M∑
i=1

Ei × 100 (8)
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Table 5: Comparison of EABC and GABC algorithms
: Mean value of error over 30 independent runs

Function D GABC MABC EABC

Sphere
30 6.74e-20 9.43e-32 1.35e-34
60 4.40e-19 6.03e-29 4.87e-33
100 1.15e-18 1.43e-27 3.69e-32

Griewank
30 4.55e-09 0.00e+00 0.00e+00
60 1.81e-13 0.00e+00 0.00e+00
100 1.44e-15 0.00e+00 0.00e+00

Rastrigin
30 2.36e-16 0.00e+00 0.00e+00
60 5.98e-15 0.00e+00 0.00e+00
100 3.86e-14 0.00e+00 0.00e+00

Rosenbroke
30 1.76e+00 6.11e-01 2.12e-01
60 8.19e+00 1.51e+00 4.00e-01
100 2.57e+01 1.98e+00 4.06e-01

Alpine
30 9.99e-06 1.58e-16 7.81e-14
60 8.46e-05 8.20e-16 2.89e-12
100 2.66e-04 5.83e-15 1.56e-11

Schwefel
30 6.36e-04 -1.21e-13 -2.19e-12
60 2.59e-02 3.56e-11 -3.15e-12
100 4.26e+01 1.19e-10 -5.90e-12

Ei =

0 if ith is satisfied(
OSi−DSi
DSi

)2
Otherwise

(9)

5.2 Setting of algorithm parameters for cir-
cuit design

To compare the performance of EABC with ABC and
its variants, we have designed two stage CMOS opera-
tional amplifier and bulk driven operational transcon-
ductance amplifier (OTA) in 130nm technology. The
population size is set to 30 (N = 15), maximum num-
ber of the circuit evaluations is set to 5000 and value
of Tmax is set to twice the problem dimension for all
the algorithms i.e. Tmax = 2D. For EABC algorithm
value of p and α are set to 0.2 and 10, respectively.
The C parameter for GABC is set to 1.5. Selective
probability p is set to 0.7 for MABC algorithm as sug-
gested by [18]. The optimizer and optimization algo-
rithms are implemented using C++ and experiments
are conducted on computer with 4GB of RAM and
FX-8350 processor. Each circuit is designed 25 times

Io
Vout

C L

7 5W /L

8 5W /L

9 3W /L

6 3W /L
9 3W /L

W /L1 1 W /L1 1

2 2W /L 2 2W /L

5W /L 4

2W /L3

4 3W /L

Vin− Vin+

Cc

VDD

GND

Figure 4: Two-stage operational amplifier: circuit di-
agram.

Table 6: Two stage operational amplifier: Search
space for design variables.

Parameter Search space

W1 to W9 0.2 µm to 10 µm
L1 to L5 0.2 µm to 1 µm

I0 0.5 µA to 10 µA
CC 0.001 pF to 1 pF

independently using EABC, ABC, GABC and MABC
algorithms.

5.3 Two-Stage CMOS operational amplifier
The two stage operational amplifier is very versa-
tile analog circuit and found in many circuits such
as mixer, amplifiers, DAC and ADC as a building
block. The circuit of op-amp is illustrated in Fig
4[19]. The major specifications of two stage op-amp
considered for the design are gain, unity gain band-
width (UGB), phase margin (PM), power consump-
tion (PC), rise slew rate (RSR), fall slew rate (FSR),
common mode rejection ration (CMRR) and power
supply rejection ration (PSRR). The desired specifica-
tions are described in Table 7. The design parameters
are width and length of the transistors, value of the
current source I0 and capacitor CC . The circuit is de-
signed in 130nm technology to drive load of 0.05pF
with 1.2V supply voltage. The search space i.e. upper
and lower bounds on width and length of transistor,
value of I0 and value on CC , is illustrated in Table 6.
The mean of design error in % over 25 independent
design runs, % error for Worst and Best design cal-
culated using Eq. 8 after 5000 circuit evaluations are
illustrated in Table 8. The worst, best and mean speci-
fications found during 25 independent design runs are
indicated in Table 9. The number of times the op-
amp is design successfully i.e. with all the specifica-
tions are satisfied and hence zero error, using EABC,
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Table 7: Two stage operational amplifier: Search
space for design variables.

Specification Desired value

Gain (dB) ≥ 80

UGB (MHz) ≥ 100

PM (degree) ≥ 62

PC (µW) ≤ 20

RSR (V/µS) ≥ 60

FSR (V/µS) ≥ 60

|PSRR| (dB) ≥ 80

CMRR (dB) ≥ 75

Table 8: Two stage operational amplifier: Mean de-
sign error in % over 25 independent design runs, %
error for best and worst design cases.

Algorithm Mean
design error

Error for
best design

Error for
worst
design

EABC 0.40 0 1.58
ABC 2.10 0 6.33
GABC 0.74 0 6.18
MABC 1.45 0 2.55

ABC, GABC and MABC algorithms is illustrated in
Fig. 5. Fig 6 describes the variations in cost function
value with the circuit evaluations and thus compares
the convergence speed of EABC with ABC, GABC
and MABC algorithm.
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Figure 5: Two stage operational amplifier: Number of
times all specifications are obtained during 25 design
runs.

From obtained results following observations can
be made.

• The mean of cost function value over 25 indepen-
dent two stage op-amp design runs is only 0.4%
with EABC, while that is 2.1% for ABC, 0.74%
for GABC and 1.45% for MABC. The average
design time is 19.88 minutes with EABC, 22
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Figure 6: Two stage operational amplifier: variations
in mean error with circuit evaluations.

minutes with ABC, 21.21 minutes with GABC
and 22.3 minutes with MABC. This clearly indi-
cates that for two-stage op-amp design problem,
the performance of EABC is better than ABC,
MABC and GABC algorithms.

• In case of numerical benchmark functions exper-
iment, MABC algorithm outperforms the GABC
algorithm, however for two stage op-amp design
problem, GABC algorithm performs better than
MABC.

• With EABC algorithm, from 25 independent de-
sign runs, op-amp is designed 10 times with
no error i.e. all design constrains are satisfied.
While for ABC algorithm this is 3 times, for
GABC algoirhtm 7 times and for MABC algo-
rithm it is only once. Moreover, the worst design
obtained during design runs has error of 1.58%
with EABC. It is 6.33% for ABC, 6.18% for
GABC and 2.55% for MABC.

5.4 Bulk-driven OTA
In the bulk-driven circuit technique, the voltage signal
is applied at the bulk terminal of the MOSFET. In low
voltage application, i.e. supply voltage is less than 1V,
this technique enhances the performance of the circuit
by overcoming the limitations imposed by the thresh-
old voltage. Another advantage of bulk-driven tech-
nique for low voltage application is that, it does not
require any modification in the structure of MOSFET
[20, 21, 22].

The operational transconductance amplifier
(OTA) is used widely to drive large capacitive load.
The circuit diagram of the bulk driven OTA is shown
in Fig.7. This circuit is proposed by [23]. In this
work, we design the same OTA circuit with 130nm
technology to drive the load of 15pF . The desired
specifications are shown in in Table 10. The design
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Table 9: Two stage operational amplifier: Mean of obtained specifications (MOS), Specifications of best obtained
design (BOS), Specifications of worst obtained design (WOS) over 25 independent design runs

Specifications
EABC ABC GABC MABC

MOS BOS WOS MOS BOS WOS MOS BOS WOS MOS BOS WOS

Gain (dB) 79.7 82.5 77.2 78.9 82.8 79.6 79.5 80.2 80.8 79.7 80.0 83.1

UGB (MHz) 101.4 101.1 97.9 98.9 102.0 86.7 102.3 107.0 100.3 100.5 107.6 110.9

PM (degree) 62.8 64.8 61.1 61.8 62.6 58.9 63.0 65.2 57.8 63.3 63.8 57.7

PC (µW) 19.1 19.7 19.3 19.5 19.7 22.2 19.0 17.8 15.2 19.6 19.7 23.2

RSR (V/µS) 71.3 65.5 82.9 72.4 62.1 67.4 72.7 86.2 80.1 69.8 71.9 66.7

FSR (V/µS) 65.3 61.0 77.4 66.4 63.7 67.7 67.5 60.2 60.2 65.5 74.5 73.7

|PSRR| (dB) 92.1 80.1 94.0 85.1 81.0 84.6 87.6 80.3 83.0 85.0 92.2 88.6

CMRR (dB) 76.0 79.9 74.1 76.0 75.3 79.6 76.9 77.2 73.1 76.8 75.6 75.7

Design Time (min) 19.88 7.02 22.57 22.00 16.52 22.57 21.21 13.41 22.57 22.3 15.78 22.57

I
BM
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I
BM

MI MI

MSE
MSE

MO MOMLN

MLNC MLNC

MLNMLP MLP

Vo
Vi+Vi−

VDD

Figure 7: Bulk-driven OTA: circuit diagram.

parameters with their upper and lower bounds are
illustrated in Table 11.

Table 10: Bulk driven OTA: Desired specifications.
Specifications Desired value

Gain (dB) ≥ 42

UGB (MHz) ≥ 10

PM (degree) ≥ 60

Power Consumption (µW ) ≤ 100

Rise slew rate (V/µS) ≥ 10

Fall slew rate (V/µS) ≥ 10

The mean design error over 25 independent bulk
driven OTA design runs, the best design and worst de-
sign errors are illustrated in Table 12. The worst, best
and mean specifications found during 25 independent
design runs are indicated in Table 13. Fig. 9 shows

Table 11: Bulk-driven OTA: search space for design
variables.

Parameter Search space

Width of all transistors (µm) 1 to 100
Length of all transistors (µm) 0.2 to 5

IB (µA) 3 to 50
IBM (µA) 3 to 50
VDD (V) 0.6

Table 12: Bulk-driven OTA: Mean design error in %
over 25 independent design runs, % error for best and
worst design cases.

Algorithm Mean
design error

Error for
best design

Error for
worst
design

EABC 0 0 0
ABC 1.26 0 9.6
GABC 1.41 0 8.0
MABC 0.14 0 2.0

how the cost function value reduces with the circuit
evaluations.From the obtained results following ob-
servations can be made.

• From 25 design runs, EABC algorithm has suc-
cessfully designed OTA all 25 times. ABC al-
gorithm is successful for 13 times, GABC and
MABC algorithms are successful for 11 and 22
times respectively. Thus EABC algorithm pro-
vides better accuracy of result.

• The average bulk driven OTA design time is 4.62
minutes with EABC, 9.07 minutes with ABC,
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Table 13: Bulk-driven OTA: Mean of obtained specifications (MOS), Specifications of best obtained design (BOS),
Specifications of worst obtained design (WOS) over 25 independent design runs

Specifications
EABC ABC GABC MABC

MOS BOS WOS MOS BOS WOS MOS BOS WOS MOS BOS WOS

Gain (dB) 43.4 46.7 42.1 41.9 42.7 37.9 42.0 43.0 38.6 42.8 43.0 42.5

UGB (MHz) 11.0 13.6 10.1 11.0 10.1 10.2 11.4 10.7 10.5 11.0 12.3 10.6

PM (degree) 62.6 61.7 60.4 62.3 63.9 60.4 62.8 62.5 60.3 64.0 61.3 58.8

PC (µW) 90.1 71.1 99.6 92.2 94.1 90.3 92.6 99.6 70.5 89.5 83.6 82.9

RSR (V/µS) 15.5 14.9 11.8 14.5 20.2 11.1 14.9 10.6 19.3 14.5 20.6 15.4

FSR (V/µS) 23.5 23.7 12.8 18.0 20.5 12.1 16.8 13.4 15.8 27.8 71.1 21.3

Design Time (min) 4.62 2.63 7.61 9.07 1.88 11.65 9.59 4.96 11.65 8.25 4.17 11.65
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Figure 8: Bulk driven OTA: number of times all spec-
ifications are obtained during 25 design runs.
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Figure 9: Bulk driven OTA: variations in mean error
with circuit evaluations.

9.59 minutes with GABC and 8.25 minutes with
MABC. It is clear that for OTA design problem,
the convergence speed of EABC is better than
ABC, GABC and MABC algorithm. The worst
design OTA by ABC has error 9.69% while that
for GABC and MABC is 8.07% and 2.00%, re-
spectively.

• EABC algorithm can design blulk driven OTA
faster and with better accuracy compared to
ABC, GABC and MABC algorithms.

6 Conclusion
In this paper, we suggest modifications in ABC algo-
rithm and based on that present new algorithm named
EABC algorithm. EABC algorithm has proper bal-
ance between exploitation and exploration. The ex-
periment conducted on 15 benchmark functions shows
that EABC outperforms the ABC algorithm. EABC
algorithm is also compared with other variants of the
ABC algorithms such as GABC and MABC. The
comparison shows that performance of EABC is bet-
ter than GABC and MABC. We also present applica-
tion of ABC based optimization algorithms for opti-
mum design of CMOS circuits. With this design tech-
nique, even less experienced circuit designer can de-
sign the optimum circuit. We designed two circuits
namely two-stage CMOS op-amp and bulk driven
OTA using EABC, ABC, GABC and MABC algo-
rithms. For the circuit design application, the EABC
exhibits faster convergence speed with better accuracy
of results compared to ABC, GABC and MABC al-
gorithms. For two-stage op-amp, average design error
is only 0.4% with EABC in contrast with 2.1% for
ABC, 0.74% for GABC and 1.45% for MABC. The
average design time of Two stage op-amp found for
EABC is 19.88 minutes, while that is for 22 minutes
for ABC, 21.21 minutes for GABC and 22.3 minutes
for MABC. In case of bulk driven OTA, average de-
sign error is zero with EABC in contrast with 1.26%
for ABC, 1.41% for GABC and 0.14% for MABC.
The average time for designing bulk driven OTA us-
ing EABC is 4.62 minutes in comparison with 9.07
minutes for ABC, 9.59 minutes for GABC and 8.25
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minutes for MABC. Thus, EABC algorithm is more
promising algorithm compared to ABC algorithm.
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