Predictions of thermomagnetic properties of HoAl$_2$ and ErAl$_2$ performed with ATOMIC MATTERS MFA Computation System.

RAFAŁ MICHALSKI, JAKUB ZYGADŁO
INDUFORCE
M.Pszona 41/29 31-462 Cracow
POLAND
JAGIELLONIAN UNIVERSITY,
Faculty of Mathematics and Computer Science,
Łojasiewicza 6 30-348 Cracow,
POLAND
r.michalski@induforce.eu http://www.atomicmatters.eu

Abstract: We present the results of non-free parameter calculations of properties of HoAl$_2$ and ErAl$_2$ single crystals, performed with our new computation system called ATOMIC MATTERS MFA [1, 2]. A localized electron approach was applied to describe the electronic structure evolution of Ho and Er ions over a wide temperature range and estimate Magnetocaloric Effect (MCE). Thermomagnetic properties of HoAl$_2$ and ErAl$_2$ were calculated based on the fine electronic structure of the $4f^{10}$ and $4f^{11}$ electronic configuration of the Ho and Er ions, respectively. Our calculations yielded: magnetic moment value and direction; single-crystalline magnetization curves in zero field and in external magnetic field applied in various directions $m(T,B_{ext})$; the $4f$-electronic components of specific heat $c_{4f}(T,B_{ext})$; and temperature dependence of the magnetic entropy and isothermal entropy change with external magnetic field $\Delta S(T,B_{ext})$. The cubic universal CEF parameters values used for all CEF calculations was taken from [3] and recalculated for universal cubic parameters set for the RAl$_2$ series: $A_4=+7.164K_{A0}$ and $A_6=-1.038K_{A0}$. Magnetic properties were found to be anisotropic due to cubic Laves phase C15 crystal structure symmetry. These studies reveal the importance of multipolar charge interactions when describing thermomagnetic properties of real $4f$ electronic systems and the effectiveness of an applied self-consistent molecular field in calculations for magnetic phase transition simulation.

Key-Words: - HoAl$_2$, ErAl$_2$, RAl$_2$, Laves Phase, CEF, MFA, MCE, Atomic Matters.

1 Introduction
Understanding and controlling the microscopic quantum mechanisms responsible for storing and releasing material entropy through controlled external magnetic field change processes is one of the biggest challenges in materials science. Our calculation methodology makes it possible to describe the thermomagnetic properties of magnetic materials, we decided to test our approach for HoAl$_2$ and ErAl$_2$ compounds. The material series RAl$_2$ compounds (R=Rare Earth) are intermetallic materials with interesting thermomagnetic properties [3]. In other words, the RAl$_2$ series of compounds are fascinating due to their large magnetocaloric entropy changes under external magnetic fields. This large change in MCE (Magnetocaloric Effect) is especially attractive in magnetic refrigeration due to its potential environmental friendliness compared to traditional gas refrigeration. We present the results of simulations of thermomagnetic properties of some RAl$_2$ compounds performed with our new computation system called ATOMIC MATTERS MFA [1,2]. A few calculation results for HoAl$_2$ compound are compared with experimental data taken from the literature [4-6] and for ErAl$_2$ from papers [7,8]. All the lanthanides combine with aluminum to form RAl$_2$ compounds with the same crystalline structure [3]. All RAl$_2$ compounds are ferromagnetic at low temperatures [3]. RAl$_2$ crystals have the so-called cubic Laves phase C15 structure, while the point symmetry for rare earth ions is $4\overline{3}m$. The elementary cell of the crystal structure of Laves phase is presented in fig. 1. The CEF (Crystal Electric Field) parameters describing the multipolar charge interaction of R ions in the crystal surrounding in this structure was agreed for all compounds and established according to study of the DyAl$_2$ compound [3] for: $A_4=+7.164K_{A0}$ and $A_6=-1.038K_{A0}$. We decided to predict the properties of HoAl$_2$ and ErAl$_2$ completely without free parameters; therefore, we used the established cubic CEF and molecular field factor n_{mol} that is recalculated from DyAl$_2$.
2 Computation system

All calculations for HoAl$_2$ and ErAl$_2$ were performed with ATOMIC MATTERS MFA computation system. This is an extension of the ATOMIC MATTERS application [1] that describes fine electronic structure and predicts basic magnetic and spectral properties of materials in a paramagnetic state. ATOMIC MATTERS MFA computation system [2] provides magnetic, calorimetric and spectroscopic properties of atomic-like localized electron systems under the influence of Crystal Electric Field (CEF), spin-orbit coupling, and magnetic interactions, taken both as dynamic Mean Field Approximation (MFA), calculations and the influence of established external magnetic field B_{ext} [2]. ATOMIC MATTERS MFA provides macroscopic properties of materials in defined temperature regions, especially around the phase transition temperature: magnetic moment $m(T,B_{\text{ext}})$ (spin and orbital, directional components), localized electron specific heat $c_v(T,B_{\text{ext}})$, localized electron entropy with a useful tool set for MCE, isothermal entropy change $-\Delta S(T,B_{\text{ext}})$ calculations, evolution of energy level positions, total free energy, and more.

To enhance their ease of use and efficacy, both calculation systems implement an advanced Graphic User Interface (GUI) with a system of hierarchical tabs for managing calculation results, 3D interactive visualizations of potentials and fields based on Open Graphics Library (OpenGL), intuitive tools, and databases. More up-to-date information about Atomic Matters computation systems are available on our web page [9].

3 Theoretical background

ATOMIC MATTERS MFA computation system calculation methodology is deeply rooted in atomic physics. Taking into consideration the individual population of states of fine electronic structure of ions/atoms at different temperatures according L. Boltzmann statistics makes it possible to define the temperature dependencies of single ionic properties. ATOMIC MATTERS MFA can simulate phase transitions of ionic/atomic systems according to dynamic calculations of the molecular field B_{mol}, simply defined as:

$$ B_{\text{mol}}(T) = n_{\text{mol}} m(T) $$

that interacts with ions to induce their magnetic moments. Such self-consistent calculations can only be performed after establishing the molecular field factor n_{mol} that is closely related to the temperature of phase transitions, T_C.

For rapid calculations in a thermodynamically stable temperature region, ATOMIC MATTERS offers the following CEF+Spin-Orbit+Zeeman Hamiltonian according to the chosen calculation space of ground multiplet $|J,J_z>$ or ground atomic term $|LS,L_z>$ respectively [1]:

$$ H = H_{\text{CEF}} + H_{\text{Zeeman}} = \sum_{m} \sum_{m'} B_{n}^{m} \hat{O}_{n}^{m}(j,j') + g_L \mu_B J \cdot B_{\text{ext}} $$

or

$$ H = H_{\text{CEF}} + H_{\text{SO}} + H_{\text{Zeeman}} = \sum_{m} \sum_{m'} B_{n}^{m} \hat{O}_{n}^{m}(L,L_z) + \lambda L \cdot S + \mu_B (L + g_L S) \cdot B_{\text{ext}} $$

For all Hamiltonians: B_{n}^{m} denotes CEF parameters, O_{n}^{m} are Stevens operators, λ is the spin-orbit constant, and g_L and $g_L = 2.002319$ are the gyromagnetic factors of a whole ion or single electron respectively. For a whole ion or electron respectively, μ_B is the Bohr magneton and B_{ext} is the external magnetic field. In all cases, calculations in the $|LS,L_z>$ space are more physically appropriate due to their completeness, but traditional calculations with base $|J,J_z>$ can also be performed by our computation systems for comparisons and rapid estimations [2]. For calculating properties in temperatures around the magnetic phase transition point, a self-consistent methodology for molecular field calculation called Mean Field Approximations (MFA) is applied. The idea behind this method is to estimate the direction and value of the magnetic field (molecular field) generated by ions at a defined temperature, and to calculate the influence of this magnetic field for electronic state structures of ions. In a selected calculation space, according to eq.1 we define a molecular field as an expected value of the 4f electronic subshell multiplied...
by the molecular field, inter ionic exchange factor \(n_{\text{mol}}\):

\[
B_{\text{mol}} = -n_{\text{mol}} g_{\mu} \mu_{B} \langle J \rangle
\]

(4)

or

\[
B_{\text{mol}} = -n_{\text{mol}} \mu_{B} < L + g_{\mu} S >
\]

(5)

Where the gyromagnetic factors are \(g_{L}\) and \(g_{\mu}=2.002319\). On the basis of the calculated electronic level structure \(E_{i}(T)\), the directional components of magnetic moments are established for all identical ions. This means that Hamiltonian matrix diagonalization is performed for all defined temperature steps recurrently. This is in contrast to simple ATOMIC MATTERS calculations \[1\], which diagonalize matrices one time for a single run and deduce all thermodynamic properties from the stable discrete energy level structure obtained. This self-consistent procedure provides temperature-dependent energy level structure and has one only free parameter, \(n_{\text{mol}}\), called the molecular field parameter. The value of \(n_{\text{mol}}\) is closely related to the phase transition temperature \(T_{C}\) of the macroscopic structure of ions. The formal expression of the full Hamiltonian used by ATOMIC MATTERS MFA computation system, according to the chosen calculation space: \(|JJz\rangle\) or \(|LSLzSz\rangle\) respectively, has the form:

\[
H_{\text{mol}} = H_{J} + H_{\text{mol}} = \sum \sum \sum B_{n}^{\alpha} \hat{O}_{n}^{\alpha}(J, J_{z}) + \\
+ n_{\text{mol}} g_{L}^{2} \mu_{B}^{2} \left(-J < J > + \frac{1}{2} < J^{2} >^{2} \right) + g_{\mu} \mu_{B} J \cdot B_{\text{mol}}
\]

(6)

or

\[
H_{\text{LSmol}} = \sum \sum \sum B_{n}^{\alpha} \hat{O}_{n}^{\alpha}(L, L_{z}) + iL \cdot S + \\
+ n_{\text{mol}} \mu_{B}^{2} \left(-< L + g_{\mu} S > < L + g_{\mu} S > + \frac{1}{2} < L + g_{\mu} S^{2} >^{2} \right) + \\
+ \mu_{B} < L + g_{\mu} S > \cdot B_{\text{mol}}
\]

(7)

The eigenvectors of the Hamiltonian are described, according to the selected calculation base, by the total momentum quantum numbers \(|JJz\rangle\) or spin and orbit quantum numbers \(|LSLzSz\rangle\). Using the commutation relations of the angular momentum operators, we obtain information about expected values of the projections of magnetic momentum of all electronic states at a chosen temperature \[2\]:

\[
\langle J_{i} | \hat{J}_{i} \rangle = \frac{g_{\mu} \mu_{B}}{Z(T)} \sum \langle J_{i}^{\prime} | > \exp \left(-\frac{E_{i}(T)}{k_{B} T} \right)
\]

(8)

\[
\langle S_{i} | \hat{S}_{i} \rangle = \frac{\mu_{B}}{Z(T)} \sum \langle S_{i}^{\prime} | > \exp \left(-\frac{E_{i}(T)}{k_{B} T} \right)
\]

(9)

All property calculations can be done for 3D (x,y,z) real space by using complex Hamiltonian matrix elements defined by full expressions of extended Stevens \(O_{\alpha}^{\mu}\) operators\[10\]. Mostly for comparison with traditional calculation results, ATOMIC MATTERS also offers a 2D (x,z) calculation methodology of a simplified model of CEF interactions defined by Stevens \(O_{\alpha}^{\mu}\) operators with real number matrix elements only \[12\].

Taking into consideration the possibility of the thermal population of states, we automatically obtain the thermal evolution of single ion properties of the whole compound \[11,12\].

Under the thermodynamic principle at temperature \(T=0K\), only the ground state is occupied. In this situation, the magnetic moment of the ion is exactly equal to the momentum of the ground state. If the temperature rises, the probability of occupying higher states increases according to Boltzmann statistics. The number of ions with energy \(E_{i}\) within a system at temperature \(T\) is:

\[
N_{i}(T) = N_{0} \exp \left(-\frac{E_{i}(T)}{k_{B} T} \right)
\]

(12)

where \(N_{0}=6.022.1023\) mol\(^{-1}\) (Avogadro constant) and \(Z(T)\) is the sum of states. Knowing the sum of the states, we can determine the Helmholtz free energy \(F(T)\):

\[
F(T) = -k_{B} T \ln Z(T)
\]

(13)

According to thermodynamic principles, the contribution of localized electrons to the total specific heat of materials can be calculated by numerical derivation of Helmholtz free energy:

\[
c_{\text{mol}}(T) = -T \frac{\partial^{2} F(T)}{\partial T^{2}}
\]

(14)

This makes it possible to calculate entropy according to the well-known definition:

\[
S(T) = S(0) + \int_{0}^{T} \frac{C(T)}{T} dT
\]

(15)

The value of electronic entropy for a defined temperature is difficult to compare, but the isothermal change of the entropy of the system at a given temperature is a very important material parameter that describes its thermomagnetic properties. Isothermal Entropy change \(-\Delta S(T, B_{\text{ext}})\), captured for different temperatures under the
influence of different magnetic fields, is one the most important properties of a material that describes its usefulness as a magnetocaloric material. The value $\Delta S(T, B_{\text{ext}})$, extracted from experimental specific heat measurements, is often presented as a basic description of the Magnetocaloric Effect (MCE) of a material [3-7]. In our approach, isothermal entropy change can be directly calculated from eq. 15 according to De Gennes scaling [11]:

$$\Delta S(T, B_{\text{ext}}) = S(T, B_{\text{ext}}) - S(T, 0)$$ (16)

ATOMIC MATTERS MFA also provides single-ionic magnetocrystalline anisotropy calculations that include full calculations (without Brillouin function approximation) of $K(T)$ magnetocrystalline constants for defined temperature ranges according to the relations [15]:

$$K_1(T) = \frac{3}{2} B_6^0 \left(\langle \hat{O}_2^+ \rangle - \langle \hat{O}_2^- \rangle - 5 B_6^0 \left(\langle \hat{O}_4^+ \rangle - 3 \langle \hat{O}_4^- \rangle \right) - \frac{21}{2} B_6^0 \left(\langle \hat{O}_6^+ \rangle - 5 \langle \hat{O}_6^- \rangle \right) \right)$$

$$K_2(T) = \frac{35}{8} B_6^4 \left(\langle \hat{O}_2^+ \rangle - 4 \langle \hat{O}_2^- \rangle + \langle \hat{O}_4^- \rangle \right) + \frac{63}{8} B_6^6 \left(\langle \hat{O}_4^+ \rangle - 20 \langle \hat{O}_4^- \rangle + 5 \langle \hat{O}_6^- \rangle \right)$$

$$K_3(T) = \frac{1}{8} B_6^0 \langle \hat{O}_2^+ \rangle + 5 B_6^6 \langle \hat{O}_6^+ \rangle$$

$$K_4(T) = -\frac{231}{16} B_6^0 \langle \hat{O}_2^+ \rangle, \quad K_5(T) = -\frac{11}{16} B_6^4 \langle \hat{O}_4^+ \rangle$$ (17)

Where: $\langle \hat{O}_q \rangle$ denotes thermal expected values of Stevens operators we defined according to C. Rudowicz [10]. The exchange interactions simulated according to De Gennes scaling is also a useful tool for n_{mol} estimation, as charge surroundings can be transferred between ions in series. The CEF part of Hamiltonian contains Stevens CEF parameters B_n^m.

The values of these parameters are only appropriate for the defined ion. The recalculation of B_n^m parameters defined for an ion A in the crystal lattice surrounding of ion B in the same crystalline position follows the simple scheme:

$$B_n^m \text{ (ion A)} \rightarrow A_n^m \rightarrow B_n^m \text{ (ion B)}$$ (19)

Stevens B_n^m parameters can be expressed by universal A_n^m parameters, according to the calculation space used, as follows:

$$B_n^m(J, J_z) = \theta_1 n(J) < r_{4f}^m > A_n^m$$

$$L, S, S_z, L_z) \rightarrow B_n^m(L, L_z) = \theta_0 n(L) < r_{4f}^m > A_n^m \text{ (20)}$$

Where values of the 2nd, 4th and 6th power of average radius of the 4f shell $<r^m>$ have been calculated by many authors using Hartree-Fock-type methodology, and the results can be easily found in the literature. The θ_0 are parameters dependent Clebsh-Gordan-type factors, sometimes called α, β, γ Stevens factors $\theta_2=\alpha, \theta_4=\beta, \theta_6=\gamma$, which can be expressed by finite equations available in [12-14]. The values of $<r_{4f}^m>$ are collected in the system’s open database together with a reference. In all presented calculations for R ions, we used the $<r_{4f}^m>$ values tabulated in [14]. The ability to recalculate CEF parameters between ions and calculation spaces offers a unique chance to establish an acceptable simplification of methodology. The recalculation of CEF parameters in Atomic Matters systems is fully automated, but an explicit Stevens Factors Calculator is also available.

4 Calculation results

In this section, we present the results of an investigation of the magnetic and magnetocaloric properties of a HoAl$_2$ and ErAl$_2$ single crystal. The predictions of properties are completely achieved without free parameters. We use established cubic CEF for DyAl$_2$ [parallel paper] parameters in Stevens notation [3] $B_{\text{J}}=(5.5 \pm 1.2) \times 10^{-3} \text{ meV}$ and $B_{\text{J}}=(5.6 \pm 0.8) \times 10^{-3} \text{ meV}$. We recalculated values of Stevens parameters to universal, ion-independent CEF notation A_n^m according to eq. 19 and eq. 20. We assume that the parameters $A_4^+=7.164 K a_0$ and $A_4^+=-1.038 K a_0$ that are obtained in this way define the charge surroundings of an R ion in a crystal lattice of RA$_2$. The visualization of such defined potential is shown in fig. 2. The triangular shapes, which related with the location of the coordinating Al ions, are located symmetrically in cubic surroundings and reflect the atom position visible in the elementary cell of Laves phase shown in fig. 2.
Fig. 2. Crystal Field potential visualization of cubic surrounding of R-ions in RAl₂, defined by CEF parameters: \(A_4 = +7.164 K_a_0 \) and \(A_6 = -1.038 K_a_0 \). The visualization of positive sign potential is externally cut off by the cube.

We attributed the magnetism of HoAl₂ and ErAl₂ and the magnetism of HoAl₂ to the Ho ions and performed calculations of the fine electronic structure of the \(4f^{10} \) and \(4f^{11} \) electronic systems, respectively. All calculations was performed for cubic symmetry, taking into account the crystal field and inter-site, spin-dependent exchange interactions. The energy level scheme derived is associated with the reduction of the degeneracy of the lowest atomic term \(5I \) and \(4I \) for Ho and Er ions, respectively) given by Hund’s first two rules. The value of molecular field factor \(n_{mol} \) for HoAl₂ and ErAl₂ was established according to \(n_{mol}^{Dy} = 3.6T/\mu_B \) and for DyAl₂ \(n_{mol}^{Er} = 0.95T/\mu_B \).

4.1 Calculated properties of HoAl₂ single crystals.

The electronic configuration of \(67 \) Ho atoms consists of a closed shell inactive atomic core \([54Xe]\), electronic system \(4f^{10} \) and ‘outer electrons \(5d^1s^2 \). We attributed the magnetic properties of HoAl₂ compound as an effect of properties of \(4f^{10} \) electronic system under influence of electromagnetic interactions defined according to the description in the theory section. The starting point of our analysis is the ground atomic term \(5I \) with quantum number of orbital angular momentum \(L = 6 \) and total spin \(S = 2 \). The full calculated energy level structure in \(|L,S,Lz,Sz> \) calculation space is shown in fig. 4. The obtained overall splitting is strongly dependent on the strength of spin–orbit intra-atomic interactions. We used free-ion value of spin orbit constant of \(Ho^{3+} \) ions \(\lambda = 780K \) [13] and obtained overall splitting of \(2F \) atomic term at about 20350K = 1.753 eV.

Details of ground states structure are shown in fig. 4.
At Curie temperature $T_C = 36K$ structure splits under the influence of molecular field.

In the absence of an external magnetic field, the induced molecular field splits and moves into degenerated states. The value of the molecular field factor established for HoAl$_2$ which reproduce T_C well at about 36K is $n_{mol}=2.1T/\mu_B$.

Above T_C, in a paramagnetic state, the ground state is degenerated and consist of 3 states. The ground triplet wave functions of ground state of Ho ions (4f10 electronic system) in HoAl$_2$ in a paramagnetic state can be expressed in $|Jz>$ notation as:

$\Gamma_1 = +0.4|-6> + 0.583|-2> - 0.583|+2> - 0.4|+6>$

$\Gamma_2 = -0.086|-5> - 0.367|+1> + 0.5807|+3> + 0.72|+7>$

$\Gamma_3 = -0.086|+5> - 0.367|-1> + 0.581|-3> + 0.722|-7>$

A molecular field split these states at $T<T_C$. The value of the molecular field changes, and at $T=0$ (absolute zero) $B_{mol}=13T$ and its direction is along crystal direction [110]. In this condition, the wave function of a ground singlet gets the form:

$\Gamma_0 = -0.291|-8> + 0.588|-7> - 0.410|-6> + 0.223|-5> - 0.257|4> + 0.38|-3> - 0.312|-2> + 0.151|-1> - 0.014|0> - 0.081|+1> + 0.09|+2> - 0.040|+3> + 0.010|+4> - 0.011|+5> + 0.018|+6> - 0.012|+7> + 0.002|+8>$

The electronic structure obtained in the absence of an external magnetic field is fragile; even a small magnetic field applied along direction [100] or [111] forces the structure to change the order of states and creates an anomaly at low temperatures. The influence of a small external magnetic field applied along direction [111] for the structure of the lowest electronic states is shown in fig. 6. The position of this anomaly corresponds with peaks on specific heat curves. The calculated specific heat for a HoAl$_2$ single crystal under the influence of an external magnetic field applied along various crystal directions is presented in fig. 7, fig. 8 and fig. 9.
Fig. 8. Calculated molar specific heat \(c(T, B_{ext}) \) vs. temperature for Ho ions in HoAl\(_2\), under the influence of an external magnetic field applied along \([100]\) direction. Inset: experimental data from ref.[4].

The closer look at the unusual behaviour of the 4\(f\)-electron component of specific heat simulated under the influence of an external magnetic field along ‘diagonal’ direction \([111]\) is shown in fig.10.

Fig. 9. Calculated molar specific heat \(c(T, B_{ext}) \) vs. temperature for Ho ions in HoAl\(_2\), under the influence of an external magnetic field applied along easy magnetization axis, \([100]\) direction. Inset: experimental data from ref.[4].

We have not found comparative experimental data for specific heat measurements, but F. W. Wang [5] provides data of measured specific heat change \(\Delta c(T, B_{ext}) \) defined as:

\[
\Delta c(T, B_{ext}) = c(T, B_{ext}) - c(T,0) \tag{21}
\]

for measurements for \(\Delta B_{ext}=5T \). Comparison between data from [5] and our simulations of \(\Delta c(T, B_{ext}) \) is shown in fig.11. The simulation for \(\Delta B_{ext}=5T \) in this figure is represented by a solid line.

Collected data of specific heat makes it possible to calculate isothermal entropy change \(-\Delta S(T, B_{ext}) \) according to eq.16, the same methodology as used by experimentalist [3-7]. Isothermal entropy changes calculated with various external magnetic fields applied along all main directions of the/a cubic structure are presented in fig. 10, fig.11 and fig.12.

Fig. 10. Calculated isothermal entropy change of 4\(f^{10}\)-electronic system vs. temperature (eq.16) of Ho ions in HoAl\(_2\), under the influence of various external magnetic field values from 0 to 0.2T, with step 0.05 T and from 0 to 0.2 to 5.0T, with step 0.2T applied along direction \([111]\).

Fig. 11. Calculated isothermal entropy change of 4\(f^{10}\)-electronic system vs. temperature (eq.16) of Ho ions in HoAl\(_2\), under the influence of various external magnetic field values from 0.05 to 0.5T, with step 0.05T and from 0 to 0.2 to 5.0T, with step 0.2T applied along direction \([111]\).
magnetic field values from 0 to 0.5T, with step 0.05T and from 0 to 0.5 to 7.0T, with step 0.5T applied along direction [100]. Inset: experimental data from ref.[5].

Fig. 12. Calculated isothermal entropy change of 4f10-electronic system vs. temperature (eq.16) of Ho ions in HoAl$_2$, under the influence of various external magnetic field values from 0 to 7.5T, with step 0.5T applied along direction [1 1 1]. Inset: experimental data from ref.[5].

The anisotropic behavior of calculated thermomagnetic properties is reflected in magnetocrystalline anisotropy constant calculations. The results of $K_i(T)$ calculations according to eq.17 in the absence of an external magnetic field are shown in fig. 14.

Fig. 13. Calculated according eq.17 magnetocrystalline anisotropy constants K_1, K_2 and K_3 vs. temperature, calculated for Ho ions in HoAl$_2$ in absence of external magnetic field.

The results of $K_i(T)$ calculations according to eq.17 under the influence of external magnetic field $B_{\text{ext}}=1$T applied along direction [100] are shown in fig. 14.

For completeness, magnetic moment calculations vs. temperature under various external magnetic field conditions were performed. The results of $\mathbf{m}(T, B_{\text{ext}})$ are presented in fig. 15, fig. 16 and fig. 17. The simulated thermal evolution of magnetic moment components under the influence of external magnetic field along direction [110] shown in fig. 16 clearly confirms direction [110] as an easy magnetization axis of HoAl$_2$ in the lowest temperatures. The applied external magnetic field along this direction confirms perfect parallel directions of magnetic vector and induced external magnetic field.

Fig. 14. Calculated according eq.17 magnetocrystalline anisotropy constants K_1, K_2 and K_3 vs. temperature, calculated for Ho ions in HoAl$_2$ under influence of CEF and molecular magnetic field.

For completeness, magnetic moment calculations vs. temperature under various external magnetic field conditions were performed. The results of $\mathbf{m}(T, B_{\text{ext}})$ are presented in fig. 15, fig. 16 and fig. 17. The simulated thermal evolution of magnetic moment components under the influence of external magnetic field along direction [110] shown in fig. 16 clearly confirms direction [110] as an easy magnetization axis of HoAl$_2$ in the lowest temperatures. The applied external magnetic field along this direction confirms perfect parallel directions of magnetic vector and induced external magnetic field.
and from 0.5 to 7.5T with step 0.5T applied along direction [100].

![Figure 16](image16)

Fig. 16. Calculated x - components (solid lines), z - components (dashed lines) of total magnetic moment \(m_{\text{total}} \) (doted lines) vs. temperature, calculated for Ho ions in HoAl\(_2\) under influence of CEF, molecular magnetic field and various values of external magnetic field from 0 to 3T with step 0.2T applied along direction [110].

Magnetic moment calculated in external magnetic field parallel to [111] and [100] direction reveals unusual behavior of the directional component of total moment. Similar behavior of magnetic moment directions was reported in ref. [4], but most of the presented results of calculations of properties of HoAl\(_2\) still await experimental verification.

We found only a few reports about measurements of thermomagnetic properties of HoAl\(_2\) single crystals. Some experimental comparative data of isothermal entropy change measured on HoAl\(_2\) single crystals is provided by L.A. Gil et al. [4], and interesting entropy change is provided by M. Patra at al. [5]. All experimental data from [4,5] confirms the correctness of our approach in thermomagnetic properties calculations of of HoAl\(_2\).

4.2 Calculation results for ErAl\(_2\) single crystals.

The electronic configuration of Er atoms consists of a closed shell inactive atomic core [\(54\)Xe], electronic system \(4f^{11}\) and ‘outer electrons’ \(5d^66s^2\). We attribute the magnetic properties of ErAl\(_2\) compound to be an effect of properties of \(4f^{11}\) electronic system under the influence of electromagnetic interactions defined according to the description in the theory section. The starting point of our analysis is the ground atomic term \(^{1}\) with quantum number of orbital angular momentum \(L=6 \) and total spin \(S=3/2 \).

The full calculated energy level structure in\(|L,S,Lz,Sz>\) calculation space reveals good separation of ground multiplet \(^{4}I_{15/2} \) states from the rest of eigenstates of the fine electronic structure. The overall energy levels splitting is strongly dependent on the strength of spin–orbit intra-atomic interactions. We used free-ion value of spin orbit constant of Er\(^{3+}\) ions \(\lambda=-1170K \) [13] and obtained overall splitting of \(^{4}I \) atomic term at about 22900K=1.97 eV. Details of ground multiplet \(^{4}I_{15/2} \) states structure are shown in fig.18.

In the absence of an external magnetic field, the induced molecular field at \(T<T_C \) splits degenerated states. The value of the molecular field factor established according to de Gennes scaling [10] for ErAl\(_2\) which reproduce \(T_C \) well at about 11K is \(n_{mol}=0.95T/\mu_0 \). Above \(T_C \), in a paramagnetic state, the ground state is degenerated. The ground quartet consists of two quasi doublets. The wave functions of ground state of Er \((4f^{11}) \) electronic system) ions in ErAl\(_2\) in a paramagnetic state can be expressed in \(|Jz>\) notation as:

\[
\Gamma_1=-0.44|+6.5>+0.72|+2.5>+0.458|+1.5>+0.29|+5.5>
\]

\[
\Gamma_2=-0.44|+6.5>+0.72|+2.5>+0.458|+1.5>-0.28|+5.5>
\]

\[
\Gamma_3=-0.51|+7.5>+0.78|+3.5>+0.143|+0.5>-0.04|+4.5>
\]

\[
\Gamma_4=-0.61|+7.5>+0.78|+3.5>+0.14|+0.5>-0.04|+4.5>
\]

A molecular field split these states at \(T=0 \) (absolute zero) \(B_{mol}=4.46T \) and its direction is along...
crystal direction [110]. In this condition, the wave function of a ground singlet gets the form:

\[
\Gamma_0 = -0.483|-7.5> + 0.32|-6.5> - 0.111|-5.5> + 0.577|-3.5> + 0.159|-1.5> + 0.017|+4.5> + 0.066|+5.5> + 0.015|+7.5>
\]

The structure of states is sensitive on external magnetic field influence. The effect of an external magnetic field \(B_{\text{ext}} = 1\text{T}\) applied along direction [111] for the structure of the lowest electronic states is shown in fig. 19.

The energy level structure makes it possible to calculate the 4f-electron component of specific heat.

The result of calculation of specific heat under the influence of an external magnetic field compared to experimental data from ref. [8] is shown in fig. 20, fig. 21 and fig. 22.

Fig. 18. The result of calculation of energy level positions vs. temperature of the fine electronic structure of 4f\(^{11}\) electronic configuration of Er ions in ErAl\(_2\).

Fig. 19. Calculated energy level structure of 4f\(^{11}\) electronic system of Er ions vs. temperature under the influence of external magnetic field \(B_{\text{ext}} = 1\text{T}\) applied along direction [111].

Fig. 20. Calculated 4f\(^{11}\)-electronic system component of molar specific heat (eq.14) with Debye crystal lattice component (\(\theta = 350\text{K}\)) vs. temperature of Er ions in ErAl\(_2\), under the influence of external magnetic field from 0 to 6T with step 0.2T. Inset: experimental data from ref. [8]. Congruent with experimental, calculated for \(B_{\text{ext}} = 0\), \(B_{\text{ext}} = 2.0\text{T}\) and \(B_{\text{ext}} = 6.0\text{T}\) lines are solid lines.

Fig. 21. Calculated 4f\(^{11}\)-electronic system component of molar specific heat (eq.14) with Debye crystal lattice component (\(\theta = 350\text{K}\)) vs. temperature of Er ions in ErAl\(_2\), under the influence of external magnetic field from 0 to 6T with step 0.2T.
Fig. 22. Calculated 4f^{11}-electronic system component of molar specific heat (eq. 14) with Debye crystal lattice component (Θ=350K) vs. temperature of Er ions in ErAl$_2$, under the influence of external magnetic field from 0 to 6T with step 0.2T. Inset: experimental data from ref. [8] Congruent with experimental, calculated for B_{ext}=0 B_{ext}=2.0T and B_{ext}=6.0T lines are solid lines.

Collected specific heat data makes it possible to calculate isothermal entropy change $-\Delta S(T, B_{ext})$ according to eq.16, the same methodology as used by experimentalist [3-8]. Isothermal entropy change calculated with various external magnetic fields is presented in fig. 23, fig. 24 and fig. 25.

Fig. 23. Calculated isothermal entropy change of 4f^{11}-electronic system vs. temperature (eq.16) of Er ions in ErAl$_2$, under influence of various values of external magnetic field from 0 to 6T, with step 0.2T applied along [100] direction.

Fig. 24. Calculated isothermal entropy change vs. temperature (eq.16) for various values of external magnetic field from 0 to 6.0T with step 0.5T, applied along [110] direction of ErAl$_2$ crystal lattice.

Fig. 25. Calculated isothermal entropy change of ErAl$_2$ vs. temperature (eq.16) for various values of external magnetic field from 0 to 6T with step 0.5T, applied along diagonal [111] direction.

The anisotropic behavior of calculated thermomagnetic properties reflects in magnetocrystalline anisotropy constant calculations.

The results of $K_i(T)$ calculations according to eq.17 in absence of external magnetic field are shown on fig.12.

The anisotropic behavior of calculated thermomagnetic properties reflects in magnetocrystalline anisotropy constant calculations. The results of $K_i(T)$ calculations according to eq.17 in absence of external magnetic field are shown on fig.12.
For completeness, magnetic moment calculations vs. temperature under various external magnetic field conditions was performed. The results of $m(T, B_{\text{ext}})$ are presented in fig. 27, fig. 28 and fig. 29.

Magnetic moment calculated in external magnetic field parallel to [111] and [110] direction reveals unusual behavior of the directional component of total moment. The electronic system seems to be easy switchable between those crystallographic directions. The low temperature easy magnetization axis along direction [110] easy transforms into [111]. The external magnetic field under $B_{\text{ext}}<0.01\text{T}$ changes directional components distribution of total magnetic moment in ErAl₂.
magnetic moment of Er ions (compare fig.28 and fig.29).

Similar behavior of magnetic moment directions was reported in ref. [7], but most of the presented results of calculations of properties of ErAl2 still await experimental verification.

5 Conclusions
We performed calculations for HoAl2 and ErAl2 thermomagnetic properties using the ATOMIC MATTERS MFA computation system. The local symmetry of the Ho and Er ions is cubic, which significantly simplifies the analyses. All the calculations were performed without free parameters. Very good agreement was obtained between thermomagnetic properties and experimental data. This confirms the effectiveness of our theoretical approach. Working with ATOMIC MATTERS MFA revealed its high usefulness. The visual form of calculation results, full 3D interactive CEF potential visualization, intuitive tools for convention and unit recalculation, and the ability to compare data results all allow the user to utilize the power of the application very effectively. In conclusion, we confirm that ATOMIC MATTERS MFA is a unique application that combines a package of tools for correctly describing the physical properties of atomic-like electron systems subjected to electromagnetic interactions in real materials. This is an accurate tool for calculating properties of ions under the influence of the electrostatic potential of definable symmetry and both external and inter-ionic magnetic fields taken as a mean field approximation in magnetically ordered state.

This paper is the third in a series devoted to the RA12 (R=rare earth) compounds family. The same set of parameters is used for heavy rare earth elements: Dy, Tb, Tm and Gd in this crystal structure in two parallel papers.

References:
[9] Software website: www.atomicmatters.eu