
Design of Many Core Interrupt Controller
Based on ARMv8 Architecture

BING LI

School of Integrated Circuits
Southeast University

Sipailou No.2, Nanjing, Jiangsu Province, China
Southeast University Chengxian College

Dongda Road No.6, Nanjing, Jiangsu Province, China
CHINA
JUN LU

School of Integrated Circuits
Southeast University

Sipailou No.2, Nanjing, Jiangsu Province, China
CHINA

DEZHI WU
School of Integrated Circuits

Southeast University
Sipailou No.2, Nanjing, Jiangsu Province, China

CHINA
GUANYU LIU

School of Integrated Circuits
Southeast University

Sipailou No.2, Nanjing, Jiangsu Province, China
CHINA

lj2012_happy89@163.com

Abstract: - This paper presents a design of many core interrupt controller based on ARMv8 architecture, which
is known as Generic Interrupt Controller (GIC). Interrupt controller is one of the most important peripheral
modules, which affects the performance of microprocessor directly. GIC deals with all the interrupt requests
and sends interrupt requests to the each processor, which is connected to the GIC. This design of GIC adopts
the principle of hierarchical coding to choice the interrupt which has the highest priority. supports 64 cores, 16
priority levels, level 7 interrupt preemption. After analyze of GIC signature, this paper presents a realization of
GIC. Proposed GIC has been verified under Modelsim software and FPGA development board, and the
simulation result is consistent with the expectations. Use DC to synthesis GIC with the condition of 40nm
process library, 1 GHz, and the timing meet the requirement and the total area is 111490 μm2.

Key-Words: - ARMv8 architecture; GIC; interrupt controller; many core; AXI; interrupt

1 Introduction
With the development of the integrated circuits, the
application of the microprocessor has been
permeated all the fields of human life. The
microprocessor is the most critical part of the
computer systems, the design and manufacturing are
the heart of the computer technology. The processor
is the core of the computer operation. The
performance of processor affects the computer
system directly. ARM release new processor

architecture (ARMv8), which is the ARM first
support 64-bit instruction. ARMv8 is based on 32-
bit ARM architecture. Therefore, ARMv8
architecture is regarded as the core technology of
next generation processor architecture.

With the improvement of the microprocessor,
more and more external devices need to send
interrupt requests to the processor, how to manage
these external interrupts effectively has become one
of the problems in the design of processor. Chip
Multi-Processor(CMP) has more than two

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Jun Lu, Dezhi Wu, Guanyu Liu

E-ISSN: 2224-266X 468 Volume 14, 2015

processors that integrated on a silicon wafer,
processors share L2 Cache or L3 Cache, and use
high-speed bus interconnect between the processors
[1-3]. This paper presents a design of many core
interrupt controller based on ARMv8 architecture,
which is known as GIC. GIC deals with all the
interrupt requests, and sends interrupt request to the
each processor core that connect on the GIC. GIC
provides the programmable interface for processor
visiting the GIC. We use Modelsim to simulate, and
further validate on the Xilinx Virtex-7. Results show
that GIC can judge interrupt correctly, and sends
interrupt request to the processor.

2 Many Core Processor
Chip Multi-Processor(CMP) has more than two
processors that integrated on a silicon wafer,
processors share L2 Cache or L3 Cache, and use
high-speed bus interconnect between the processors.
The many core processor system can realize parallel
computing, many core processor architecture
depicted in Fig.1.

Fig.1 many core processor architecture

Fig.1 shows that many core processor is
consisted of Cluster, Memory Controller, PCIE,
GIC. The cluster is consisted of four cores, L2 cache
and router. Every core uses Simultaneous multi-
threading(SMT), so every core supports four threads
[6]. The architecture of the Cluster depicted in
Fig.2.

Fig.2 the architecture of the Cluster

This paper is design a GIC that supports 16
clusters, 64 cores, 256 threads, 8244 interrupt
requests and Level 7 interrupt preemption.

3 Function of the GIC
Interrupt controller is one of the most important
peripheral modules, it affects the whole
performance of microprocessors directly. GIC
supports 256 threads, GIC deals with all the
interrupt requests, and sends interrupt requests to the
each processor, which is connected to the GIC.

3.1 Interrupt Type
GIC has three interrupt types, Software Generated
Interrupts(SGI), Private Peripheral Interrupts(PPI),
Shared Peripheral Interrupts(SPI). Every thread of
GIC supports 64 interrupts. SGI is generated only
by write GICD_SGIR register, indicate the target
processor and interrupt number. PPI and SPI are
generated by the external interrupt signal or
software to write GICD_ISPENDRn register,
indicate the interrupt number.

3.2 Interrupt Register
GIC provides the programmable interface for
processor visiting the GIC. GIC has some register.
we can see Table 1.

Table 1 GIC register
Name Purpose

GICD_CTLR All interrupts are enabled to CPU
interface

GICD_TYPER Provide the interrupt controller
configuration information, such as
number of interrupts, number of
CPU interfaces, whether to support
the Security Extension and so on

GICD_IIDR Provide the version of interrupt
controller

GICD_ISENABLERn Enable each interrupt to CPU
interface

GICD_ICENABLERn Disenable each interrupt to CPU
interface

GICD_ISPENDRn Each interrupt is pending state

GICD_ICPENDRn Remove each interrupt pending
state

GICD_ISACTIVERn Each interrupt is active state

GICD_IPRIORITYRn Priority of interrupt

GICD_ITARGETSRn Target of interrupt

GICD_ICFGRn Trigger type of interrupt

GICD_SGIR Control SGI interrupts

GICC_CTLR Enable interrupt to the processor

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Jun Lu, Dezhi Wu, Guanyu Liu

E-ISSN: 2224-266X 469 Volume 14, 2015

GICC_PMR Mask interrupt priority

GICC_IAR Interrupt acknowledge

GICC_RPR Running priority

GICC_EOIR End of interrupt

GICC_HPPIR Interrupt with highest priority
which in pending state

3.3 Interrupt State
GIC has four states, which is inactive, pending,
active, active and pending. Inactive state is that
interrupt is not in active or pending state.
Pending state is that interrupt is generated by
external signal or software, and wait for the
target processor acknowledge. Active state is
that the interrupt has been acknowledged by the
target processor and the interrupt is being
handled. Active and pending state is that
processor has been responded to the interrupt
request, the interrupt is being handled and also
have the same interrupt gives interrupt request
at the same time. State machine of interrupt
processing depicted in Fig.3 and the condition
of State machine depicted in Table 2.

Inactive

Active

Active and
pending

Pending

A1

B1

E1

C

D

E2

A2 B2

Fig.3 state machine of interrupt processing

Table 2 the condition of State machine
Condition of State Depicted
A1, A2 SGI is generated by software, PPI or

SPI is generated by external request
signal or software.

B1, B2 SGI can’t remove pending state. PPI or
SPI, for level trigger can remove the
pending state by remove external
request signal or by software, for edge
trigger remove the pending state only by
software.

C The target processor responses the
interrupt request

D The target processor responses the
interrupt request and add the external
request signl at the same time.

E1, E2 End of interrupt.

3.4 GIC Procedure

GIC working procedure is mainly divided into
two steps. The first is software initial GIC, then
GIC handle interrupt, until handle all the
interrupts. Software initialization first is that
write “0” to the GICD_CTLR register to mask
all interrupts to the CPU interface. Then
initialize the register, such as
GICD_ISENABLERn, GICD_ITARGETSR,
GICD_ICFGRn, GICD_IPRIORITYRn,
GICC_CTLR, GICC_PMR, GICC_BPR. After
the software configure, write “1” to
GICD_CTLR register, enable interrupt to the
CPU interface. GIC interrupt handle is to judge
all interrupts, and pick the highest priority
interrupt which is in the pending state, and then
determine whether to send the interrupt request
to the target processor, then the target processor
responses interrupt request, when finish the
interrupt subroutine, software write GICC_EOI
register, it shows that processor responses the
interrupt request and finish handling the
interrupt. GIC working procedure depicted in
Fig.4.

Reset

Read GICD_TYPER register

Initial Distributor and CPU interface register
GICD_ISENABLERn/GICD_IGROUPRn/GICD_ITARGETSRn/GICD_ICF

GRn/GICD_IPRIORITYRn,GICC_CTLR/GICC_PMR/GICC_BPR

 Write “1” to GICD_CTLR register,
enable interrupt to the CPU interface

Distributor judge all interrupts

Pick the highest priority interrupt
which is in the pending state

Determine whether to send the
interrupt request to the target

processor

the target processor responses interrupt
request

software write GICC_EOI
register

Software
initial

interruot
handle

Write “0” to the GICD_CTLR register to mask
all interrupts to the CPU interface

Fig.4 GIC working procedure

4 Design of GIC system

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Jun Lu, Dezhi Wu, Guanyu Liu

E-ISSN: 2224-266X 470 Volume 14, 2015

The introduction of the interrupt is to improve
the utilization of computer resources, solve the
problem of speed mismatch between computer
system and various modules. Interrupt is
generated by the signal from hardware or
software, we call this kind of request signal as
interrupt request. system structure of GIC
depicted in Fig.5.

Thread0
Distributor

Thread255
Distributor

Thread254
Distributor

Thread1
Distributor

Interface0

Interface2
54

Interface1

IRQ 0

IRQ 1

IRQ 255

IRQ 254

GIC

Processor

AXI

Distributor

32

SPI

16
SGIs

16

SPI

16
SGIs

16

SPI

16
SGIs

16

PPI

PPI

PPI

SPI

Interface2
55

AXI Interface

SPI

16
SGIs

16PPI

.

.

.

.

.

.

.

.

.

Fig.5 structure of GIC

From Fig.5 we can see that GIC has 3 modules.
They are AXI interface, Distributor and Interface.
Because of GIC has 256 threads, so width of CPUID
is eight.

4.1 AXI Interface
GIC provides the programmable interface that for
processor to configure and visit. Through the
AXI(Advanced eXtensible Interface) bus protocol,
the processor can configure and visit the GIC.
Address/Control and data of AXI bus protocol is
separated [4-5]. AXI supports the asymmetric data
transmission, only need to give the first address in
the burst transmission. AXI supports a significant
transmission and out-of-order access. AXI protocol
is based on burst transmission. Each channel has
address and control information. AXI has five
channel, they are raddr, rdata, waddr, wdata, wresp.
Each channel consists of a set of signals.

4.2 Distributor
Distributor module judges all interrupts. Distributor
sends the interrupt which is pending state to the

target processor. GIC gets priority of the interrupt
according to the GICD_IPRIORITYRn register, and
sends the interrupt id and corresponding priority to
the target Thread Distributor. Thread Distributor
adopts the principle of hierarchy coding to choice
the interrupt which has the highest priority and
sends the interrupt to the target CPU interface. The
principle of hierarchy coding depicted in Fig.6.

0

0

0

0

0

0

Priority[3:0]

pick_in[0]

ID_num[5:0]

.

.

.

Priority=15
ID_num:0-64

Priority=1
ID_num:0-64

Priority=0
ID_num:0-64

Decode

Priority=14
ID_num:0-64

Case

Fig.6 principle of classification coding

 Priority and interrupt ID is regarded as the
address, which is 16(priority) * 64(interrupt ID) =
1024 bits. For example, a interrupt ID is 2, and it’s
priority is 3. This interrupt is in pending state. So
it’s address is 10’b0011_000010, so the value of the
10’b0011_000010 address is “1”, other is “0”. Then
find out the address of the lowest non-zero from
1024 bits register. This 10bits address is the highest
pending interrupt’s priority and interrupt ID.

It uses the principle of hierarchy coding to
1024 mux 1. It uses three level 8 mux 1 and one 2
mux 1 pipeline. 1024 mux 1 is depicted in Fig.7.

.

.

.

.

.

.

OR

OR

.

.

.

OR

OR

.

.

.

OR

OR

.

.

.

.

.

.

OR

OR

1024bits
128个

128bits

16个

16bits

.

.

.

.

.

.

one
hot

one
hot

one
hot

one
hot

one
hot

one
hot

one
hot

one
hot

低→高

9 8 7 6 5 4 3 2 1 0

Fig.7 1024 mux 1

4.3 Interface
Interface module masks some interrupts, GIC can
only send the interrupt request that priority is higher
than mask priority, GIC can only send the interrupt
request which interrupt priority higher than the
current interrupt priority. GIC sends IRQ to the
target processor, the processor responses the
interrupt and then end of the interrupt [7-8]. GIC
supports Level 7 interrupt preemption, so GIC has
interrupt preemptive handling. The design adds
some register to protect the field of preemptive,

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Jun Lu, Dezhi Wu, Guanyu Liu

E-ISSN: 2224-266X 471 Volume 14, 2015

when finish preempting, GIC restores the current
state.

5 Example Result
This design uses verilog language to design the
GIC. Use the Modelsim to simulate the each
module, and then integrate all modules to debug. In
Xilinx ISE14.5 programming environment,
synthesis and optimizes the circuit, generate bit files
to download to the Virtex-7 development board [9].
Use ChipScope to observe the waveform, compare
the Modelsim simlution wave with ChipScope
wave, whether meet the requirements of design.
With the condition of 40nm process library, 1GHz,
we use DC to synthesis GIC. Verify the timing
whether meet the requirements and estimate the area
of GIC.

5.1 Simulation Result
We use 4 threads for example, simulation result
depicted in Fig.8. We can see from Fig.7 that GIC
can handle the interrupt and end of the interrupt
normally. And we also can see that it has
preemption, interrupt ID 17 takes over the interrupt
ID 18.

Fig.8 simulation result

5.2 FPGA Verification
In Xilinx ISE14.5 programming environment, the
design uses 50 MHz to synthesis and optimize the
circuit, and then generates bit files to download to
the Virtex-7 development board, using ChipScope
to observate the waveform, compare the Modelsim
simlution wave with ChipScope wave, and the
simulation result is consistent with the expectations.
ChipScope result depicted in Fig.9. Rats of resource
utilization listed in Table 3.

Fig.9 ChipScope result

Table 3 resource utilization
Name Used number Total nubmer Ratio
Register 45960 607200 7%
Look-up-table 54428 303600 18%
IOBs 201 700 28%
BUFGs 2 32 6%

5.3 DC synthesis
Use DC to synthesis GIC with the condition of
40nm process library, 1GHz. Synthesis report is
depicted in Fig.10. Area report is depicted in Fig.11.
From Fig.10, we can see that GIC meets the timing
requirement. From Fig.11, we can see that the area
of GIC is 111490μm2.

Fig.10 Synthesis report

Fig.11 Area report

5.4 Performance Comparison
Interrupt of reference 2 supports 8 processors and 2
Clusters. Compared with reference 2, GIC supports
256 processors and 16 Clusters.

Interrupt of reference 6 supports 60 inputs and
12 outputs. Compared with reference 6, GIC
supports 8224 inputs and 8224 outputs.

6 Conclusion
In this paper, we show that how to design of many
core interrupt controller based on ARMv8
architecture. The result shows that, GIC supports 16
clusters, 64 cores, 256 threads, 8224 interrupt
requests, Level 7 interrupt preemption. GIC deals
with all interrupt requests, and sends interrupt
request to each processor, which is connected to
each GIC. The whole design is implemented in
Verilog HDL. Functional simulation and FPGA

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Jun Lu, Dezhi Wu, Guanyu Liu

E-ISSN: 2224-266X 472 Volume 14, 2015

validation shown from Fig.8 to Fig.9 demonstrate
that the system can work as expected. The design
uses Design Compiler to synthesize, the report of
timing and area meets the design requirements.

The design can be improved in the future. For
example, some modules can be reused in the design
to reduce area cost. The Interrupt Controller can be
extended to 128 cores to improve the performance.
And according to the AXI bus interface, building a
SOC prototype verification system to fully verify
the design should be considered.

References:
[1] Sugako Otani, Hiroyuki Kondo, Itaru

Nonomura, An 80 Gbps dependable multicore
communication SoC with PCI express I/F and
intelligent interrupt controller. IEEE COOL
Chips XIV, 2011.

[2] Huong Thien Hoang, Phong The Vo, Y Thien
Vo, Design and Performance Evaluation of an
8-processor 8,640 MIPS SoC with Overhead
Reduction of Interrupt Handling in a Multi-core
System. IEEE Asian Solid-State Circuits
Conference, 2008, pp. 193-196.

[3] K.S.Vijula Grace, Dr.K.Baskaran, Optimized
speed multicore based open loop PMDC motor
controller embedded system. International
Conference on Computing, Electronics and
Electrical Technologies, 2012, pp. 26-31.

[4] AXI Reference Guide[Z]. UG761 (v13.1)
March 7, 2011.

[5] AMBA AXI and ACE Protocol
Specification[Z]. ARM
IHI0022D(ID102711),2011.

[6] Wei Chipin, Li zhaolin, Zheng Qingwei, Ye
Jianfei, Li Shenglong, Design of a configurable
multichannel interrupt controller. 2nd Pacific-
Asia Conference on Circuits, Communications
and System, v1, 2010, pp. 327-330.

[7] GaiNing Han, YongFeng Li, VxWorks system
of touch screen interrupt handling mechanism
design based on the ARM9. Communications
in Computer and Information Science, v236
CCIS, nPART 6, 2011, pp. 39-44.

[8] HaiBing Guan, YaoZu Dong, Kun Tian, Jian Li,
SR-IOV Based Network Interrupt-Free
Virtualization with Event Based Polling. IEEE
JOURNALON SELECTED AREAS IN
COMMUNICATIONS, VOL.31, NO.12, 2013,
pp. 2596-2609.

[9] Wojciech Kabacinski, Marek Michalski, The
control algorithm and the FPGA controller for
non-interruptive rearrangeable Log2(N, 0, p)

switching networks. IEEE International
Conference on Communications, 2013, pp.
3840-3845.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Jun Lu, Dezhi Wu, Guanyu Liu

E-ISSN: 2224-266X 473 Volume 14, 2015

