
FPGA-based Hardware Implementation of Compact AES

Encryption Hardware Core

ATEF IBRAHIM

Department of Computer Engineering & Department of Microelectronics

Prince Sattam Bin Abdul-Aziz University & Microelectronics Research Institute

Kharj & Cairo

SAUDI ARABIA & EGYPT

attif_ali2002@yahoo.com

Abstract: - Most of current embedded applications need AES algorithm implementations of small size and low

power consumption to assure safe information conveyance. In this article, we present the implementation of a

compact ASE hardware encryption core that is suitable for resource-limited applications based on FPGA

technology. The core has 8-bit data path structure and supports encryption with 128-bit keys. The core has been

described using VHDL language. The simulation and synthesis results are obtained using ModelSim and Xilinx

ISE software tools, respectively. This implementation is compared to the previously reported compact

implementations in terms of speed, area, and consumed energy. The implementation results showed that the

adopted design achieves significant reduction in area (up to 32.4%) and consumed energy (up to 66.7%). Also,

it has a significant increase in speed by ratios ranging from 28.6%to 44.5%. This makes the adopted design

more suitable for resource-limited embedded applications.

Key-Words: - Compact AES hardware implementation, Embedded systems, FPGA, VHDL, Low power

hardware design, Hardware security.

1 Introduction
The use of cryptographic algorithms with the

purpose of security is mostly linked to applications

that require economization power preservation, such

as Wireless LAN (WLAN), Wireless Sensor

Networks (WSN), Personal Area Networks (PAN),

and smartcards. In order for such algorithms to run

with optimum performance and power consumption,

hardware is preferred to software. Having been

standardized and regarded as secure, Advanced

Encryption Standard (AES) ended up being the

prime choice in a multitude of applications, among

which are the wireless standard technologies WPA2

(IEEE 802.11i) [1], IEEE802.15.4 [2], and ZigBee

[3]. The implementation of FPGA-based AES

encryption core that we adopt in this paper will meet

the requirements of cheap and low-power

applications.

It is established that hardware architectures with

pipelines and unwound loops make it possible to

realize very high-speed AES designs. However, they

entail high space occupancy and high power

consumption. Moreover, such architectures are not

fully exploitable in modes of operation that use

feedbacks [4, 5], which are most often used with the

purpose of encryption and/or generation of MAC

(Message Authentication Code); for example, as

with the security plans described in [1-3]. Loop-

back designs rather enable less-resource-consuming

implementations usable at full-speed also in

feedback modes (because they comprise a single

processor that is fed with its own output over and

over [5, 6]). Data path width can also be reduced so

that logic area and power are minimized [4-11].

The presented AES core [12] has a byte of data

path (8-bit) and it has the potential to perform

encryption with keys of 128 bits length. For

instance, the operation modes described in [1-3]

demand only the AES key of 128 bits. That

preserves hardware resources as the inverse and

direct AES transformations are in part different.

Compared to the previous 8-bit FPGA

implementations of [4, 8, 20], the adopted core

implementation achieves considerable reduction in

area occupancy and energy consumption. Also, it

increases speed significantly. This makes the

adopted design more suitable for resource

constrained embedded applications.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim

E-ISSN: 2224-266X 364 Volume 14, 2015

 Here is the scope of work of this paper. Section

2 gives a short description of the algorithm of AES.

Section 3 displays the compact AES

implementations reported previously in the

literature. Section 4 depicts the hardware structure

of the AES core adopted here. Section 5 compares

the implementation results of the adopted encryption

core and preceding implementations. With section 6,

we conclude this article.

2 Spotlights on AES
AES is considered a private-key algorithm [13]. It

has three Rijndael cipher family members, each has

128-bits data block size, but three various lengths of

key: 128, 192 and 256 bits, which be composed of

10, 12, or 14 repetition (iterations) cycles,

respectively. Each iteration cycle scrambles plain

data with a round key, which is derived from the

cipher key. Decryption inverts the cycles of

repetition bringing about, in part, a different data

path.

Fig. 1 depicts the iterative operations of

encryption. The cipher internally saves a 4-bytes ×

4-bytes matrix, called State, by whose aid

encryption processes are carried out. On the initial

round, State is loaded with a block of input data and

joined with the encryption key using a bitwise XOR

operation. The rest of the rounds, except the last,

comprise operations called Byte-Sub, Shift-Rows,

Mix-Columns, and Add-Round-Keys. The final

round is free of Mix-Columns. The encryption key

length is what determines the number of iterations

(rounds).

The Byte-Sub operation is a non-linear

substitution where each byte of the State is

separately substituted by another byte using a

substitution table called S-box. The S-box is derived

by computing modular multiplicative inverses over

GF (2
8
). Shift-Rows is an operation applied to each

row of the matrix "State", where the first row

remains unchanged, and the second, third and fourth

rows are cycle-lift-shifted on an (k-1) basis, where k

represents the order of a row. Mix-Columns carry

out a modular multiplication over GF (2
8
) for each

column. Within each round, Add-Round-Keys

carry out XOR operation between State and the

round key. The key expansion process (the process

of generation of round key) incorporates word

rotations, S-box substitutions, and XOR operations

carried out on the encryption key. For more details

regarding the AES algorithm we refer to [13].

Fig. 1 AES Encryption Process

 A 32-bit design of AES, with a pre-calculated

key expansion, that is tailored for FPGAs is

described in [7]. In this design, S-box is

implemented as a LUT, using to its favour the

devoted memory pools of FPGAs. The paper

suggests an arrangement of the bytes of the matrix

"State" so that memory units (shift registers) can

hold them efficiently. Such an arrangement enables

executing Shift-Rows with addressing logic. A

similar technique is suggested in [11] once more.

The authors of [14] came up with an idea to

decrease the storage space needed and to support

many different data path widths. In [5], the

decrypting function in [7] was taken off and the

hardware core was to run the security procedure

described in [2] on FPGA. In [15], there is an

enhancement to the FPGA resource consumption of

[7] making a good use of the T-box method.

 Ref. [8] proposes FPGA implementation of the

8-bit AES algorithm of which the keys are 256-bit,

round keys are previously calculated, and "State" is

saved in a memory. This allows performing Shift-

Rows with logical addressing. Yet, this design uses

two pieces of the memory in turns, which consumes

resources that could have been saved [14]. In

comparison with [9, 10], the method of

implementing Mix-Columns is by far more efficient

as an input needs to be read one time only from its

memory storage, while in [9, 10] the leading 3 bytes

in each column have to read twice from memory

pending every one of Mix-Columns operations. The

sum of all cycles of the AES core described in [8] is

less than that of [9, 10]. In our work, we adopt a

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim

E-ISSN: 2224-266X 365 Volume 14, 2015

suchlike method for Mix-Columns operations as in

[8].

 Paper [4] proposes an 8-bit AES hardware core

based on FPGAs, with a capability of encryption

and decryption using 128-bit keys. The data path

part of this core consists of an S-box, modular

multiplier, and accumulator. The procedure is run

by an algorithm saved in the ROM, while RAM acts

as a memory for data. The number of cycles in this

design far exceeds that of [8, 9]. In our work, FPGA

resources are better preserved those of [8].

4. Hardware Architecture of the AES

Encryption Core
The AES design solutions with the smallest size

with respect to both ASICs [9, 10] and FPGAs [4]

have been achieved with loop-back designs utilizing

data paths of 8 bits. In this paper, we also use a data

path of 8-bit width, but embrace the design

approach of [12]. In papers [4, 9, 10], the operations

of both AES loop-back and the key expansion are

performed in a sequential manner. In the design

approach of [12] that is embraced here, the

operations are performed in a parallel manner,

which to a far extent decreases the total number of

cycles and increases the payload. We, still, managed

to keep the hardware space occupancy and the

power dissipation at a minimum. The top-level

structure of the adopted AES encryption hardware

core is shown in Fig. 2. The core admits keys of

128-bit length and performs in 16 clock cycles a

round at a time. It breaks down into five main

building blocks: parallel-in/serial-out converter,

byte permutation unit, S-box, Mix-Columns, and

key expansion unit. There are two S-box units in

this design, and all registers and connections have

width of 8-bits.

4.1 The unit of Byte Permutation.
The byte permutation unit (BPU) combines the

Shift-Rows processes and storing the matrix "State"

partially (Fig. 3). Shift-Rows operation is performed

by left-shifting the bytes of "State" in the way

described above. The remaining four bytes (the first

row) of State matrix are manipulated and kept in the

registers of the other AES core data path. The BPU

functioning is described in paper [14] in detail. In

this unit, data is arranged by cyclically shifting the

bytes of the last register inversely with the help of

multiplexers. Such inversely allocation is feasible

since particular bytes are readout previously, i.e.,

bypassed with the output multiplexers. There will be

no deadlocks because the inversely allocation and

bypassing are at equilibrium, and there is an empty

slot available every time a byte wants to be

inversely allocated.

Fig. 2 Top-level structure of AES encryption

module.

 This BPU unit has the ability to make both right

and left shift byte replacements with the help of

control signals ci. When the ci value is zero, the

most significant byte in the input is moved toward

the output. The BPU logic circuit latency is 12 clock

cycles; this is long enough for a byte to be moved

through the permutation. Therefore, a minimum of

twelve registers is required and this is the lowest

limit for the complexity of registers. The operation

of the BPU logic circuit is thus continuous without

any break that there is no need for void cycles, and

the following 128-bit pattern can be supplied

through the time interval following the last byte of

the preceding 128-bit pattern. The control signals

shown in figure below are given for the permutation

of only one 128-bit pattern, where the first clock

interval (i.e, t = 0) is the time instant at which the

headmost byte is at the input of BPU unit.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim

E-ISSN: 2224-266X 366 Volume 14, 2015

 Fig. 3 Structure of Byte permutation unit.

Fig. 4 Mix-Columns Multiplier. (a) Logic diagram and (b) (Ri) registers’ contents through the four cycles (t).

Multiplying coefficients {03} and {02} point out to the field multiplications of AES with x+1 and x,

respectively.

4.2 The Multiplier of MixColumns
 Fig. 4(a) shows the Mix-Columns modular

multiplier that carries out the modular multiplication

process of Mix-Columns. A single "State" column is

processed at the same time in four clock cycles as

illustrated in Fig. 4(b). Data are fed to the input of

unit byte by byte, and the intermediate results are

kept in four registers. The coefficients of

multiplication remain the same for any element of a

column [13], only with a cyclic shift; therefore, a

32-bit parcel of the Mix-Columns function can be

carried out by XORing and circular shifting of the

intermediate results in the multiplication unit [8].

The registers are zero-masked by means of the

signal "en" when the first byte of a column is being

input. The 32-bit output is input to the PISO

(parallel-in/serial-out) register as soon as the byte is

completely loaded. A complete Mix-Columns

operation is formed in 16 cycles by the Mix-

Columns multiplier. This is done in parallel with the

other operations of the AES core.

4.3 Implementation of S-box
Recent FPGAs have dictated on-chip memories that

can be used efficiently to implement the S-box.

There is a multitude of publications that adopt this

approach in implementing the S-box [5, 7, 8, 11, 16,

17, 18, 19]. Here, we adopted the S-box

implementation of [7]. Fig. 5 exhibits the S-box

with a block diagram. The high-level data path

consists of a head S-box unit to perform Byte-Sub

operations byte by byte. For key expansion, a

similar S-box is used.

4.4 Implementation of the Key Expansion

Unit
We used the method of [13] to implement the key

expansion unit. Fig. 5 (a) describes one round of the

Key Expansion transformation [13]. The

transformation processes round keys as words of 4

bytes. The words of the new round key are

constituted by adding the corresponding word of the

old round key to the preceding word. As to the last

word, it is cyclically shifted, processed by S-boxes,

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim

E-ISSN: 2224-266X 367 Volume 14, 2015

and then added to a constant called "Rcon". This

constant depends on the current round of the key

expansion unit.

Fig. 4 Block diagram of S-box

The storage for both the round key and the Key

Expansion function are enclosed into the data path

of the key expansion unit as shown in Fig. 5(b).

Through the last iteration, the "rk_last_out" output

signal is utilized for Add-Round-Key. Inasmuch as a

Mix-Columns operation of 32 bits needs 4 clock

cycles, the key expansion unit should have another

output called "rk_delayed_out", which is restrained

for 4 clock cycles from "rk_last_out". Add-Round-

Key needs the output through the systematic rounds

and the addition of first (initial) encryption key.

That Add-round-Key is carried out by the XOR gate

that is available at the entrance of the BPU unit as

shown by Fig. 2. The final Add-Round-Key is

performed by means of the other XOR gate. The

round-dependant constant (Rcon) is constructed by

means of the round counter by employing time-

independent logic circuitry and zero-masked when

not in use. Table 1 illustrates how the key expansion

unit works.

Shown in this table is a single round of

expansion which needs the time (t) of 16 clock

cycles. The contents of columns R15 through R0

indicate the contents of the particular registers

illustrated in Fig. 5(b). a15 through a0 symbolize the

bytes of the previous round key, while b15 through b0

symbolize the bytes of the current round key. S(ai)

means the S-box replacement of the byte ai. The

symbols in bold text represent the bytes that are

continuously updated by the processes of the

preceding cycle. Amidst the final round, the "bt"

byte of the latest round key is output by

"rk_last_out" at the "t" cycle. Through regular

rounds, the output is held back by 4 clock cycles

and produced by control signal "rk_delayed_out".

4.5. Structure of the AES Encryption Core

Data path.
 Fig. 6 illustrates the data path of the implemented

AES encryption core. A plain text (data block)

along with the encryption key are concurrently get

in to the data path byte by byte via input ports

"data_in" and "key_in", respectively. Initially, an

Add-Round-Key is carried out between the data

block and the key throughout the loading. This is

done with the XOR gate available at the input of the

BPU unit. After 10 iterations, encryption is

complete and the cipher text can be serially

unloaded from "data_out" output port. The

encryption key must be re-entered to the data path

accompanying each new data block; this is

attributed to that the round keys overwrite the

encryption key.

 The last iteration, which consists of: Byte-Subs;

Shift-Rows; and Add-Round-Keys (no Mix-

Columns), is executed while data is being unloaded.

As round key is held by the key expansion unit and

the State by that of the BPU series of registers, a

brand-new data block of plain text and an

encryption key are permitted to be fed in to the data

path concurrent to the data block of the cipher text.

This enhances the performance of the AES core

since there are no wasted cycles between

successively processed blocks of data. Such a

feature is handy; for example, in the CBC-MAC

mode, within which a block of cipher text is added

to the next block of plain text prior to being

processed. The processing one single block of data

in our design lasts for 176 clock pulses counting in

the loading and the unloading phases. As load and

unload are synchronously performable, the effective

number of cycles is 160, also with loop-backs.

5. Comparison of Results
The adopted AES core is described in VHDL at the

RTL level and synthesized to extract the gate level

using Xilinx ISE tools and Xilinx Sparatn-3 FPGA

device. Table 2 shows the estimated area in terms of

the number of CLBs slices and BRAMs, the power

dissipation and the maximum frequency results are

obtained at ordinary conditions (. C) of

operation. Power analysis at gate level was carried

out for power estimations. We based the

assessments and the synthesis of power optimization

on switching activities, which have been observed

with simulation at gate level using stimuli (random

test vectors). Simulations were carried out by

ModelSim SE 6.0a simulation tools from Mentor

Graphics Corporation.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim

E-ISSN: 2224-266X 368 Volume 14, 2015

Table 1. Operation of the key expansion unit.

Fig. 5 Structure of key expansion unit: (a) Schematic diagram of the key expansion round. (b) The key

expansion unit logic diagram. The organization of bytes shown in (a) synchronized with the registers shown in

(b), when the entire round key is produced.

Fig. 6 Structure of the AES encryption core data path.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim

E-ISSN: 2224-266X 369 Volume 14, 2015

Table 2 Results of this Implementation in comparison with others.

 This table shows a comparison among the FPGA

implementation results of the adopted 8-bit design

to the earlier 8-bit AES implementations [4, 8, 20].

The results exhibit that our design achieves

considerable reduction in area (up to 32.4%) and

consumed energy (up to 66.7%). Also, it has a

significant increase in speed ranging from 28.6% to

44.5%. The reduction in energy consumption is

attributed to the lower area consumed by the

proposed design besides the lower number of clock

cycles required by it to process one cipher block.

The enhancement in performance is due to a new

plain text data block and encryption key can be fed

into the data path concurrent to the data block of the

cipher text. This concurrency in feeding data gets

rid of the wasted cycles between successively

processed blocks of data.

6. Conclusions
Hereby, we presented the hardware implementation

of a compact (8-bit) AES encryption core based on

FPGA technology. This implementation perfectly

fits the applications that require low cost and low

power. Also, it enhances the performance of the

AES core since there are no wasted cycles between

the successively processed blocks of data. This is

attributed to that the brand-new data block of plain

text and an encryption key are permitted to be fed in

to the data path concurrent to the data block of the

cipher text. Moreover, the reduction in energy

consumption is attributed to the lower area

consumed by the proposed design besides the lower

number of clock cycles required by it to process one

cipher block. Juxtaposed with earlier 8-bit designs,

the adopted design achieves considerable reduction

in size (up to 32.4%) and energy consumption (up to

66.7%). It significantly increases speed by ratios

ranging from 28.6% to 44.5% as well. This makes

the adopted design more suitable for resource-

limited embedded applications.

References:

[1] IEEE, IEEE Standard for Local and

Metropolitan Area Networks - Specific

Requirements - Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer

(PHY) Specifications - Amendment 6: Medium

Access Control (MAC) Security Enhancements,

IEEE Std 802.11i, 2004.

[2] IEEE, IEEE Standard for Local and

Metropolitan Area Networks - Part 15.4:

Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specifications for Low-

Rate Wireless Personal Area Networks (LR-

WPAN), IEEE Std 802.15.4, 2003.

[3] ZigBee Alliance. ZigBee Specification Version

1.0, Dec. 2004.

[4] T. Good, M. Benaissa, AES on FPGA from the

fastest to the smallest, In Proc. 7th Int.

Workshop on Cryptographic Hardware and

Embedded Systems (CHES 2005), Edinburgh,

UK, 2005, pp. 427–440.

[5] P. Hämäläinen, M. Hännikäinen, T.

Hämäläinen, Efficient hardware implementation

of security processing for IEEE 802.15.4

wireless networks, In Proc. 48th IEEE Int.

Midwest Symp. on Circuits and Systems

(MWSCAS 2005), Cincinnati, OH, USA, 2005,

pp. 484–487.

[6] A. Satoh, S. Morioka, K. Takano, S. Munetoh,

A compact Rijndael hardware architecture with

S-box optimization, In Proc. 7th Int. Conf. on

Theory and Application of Cryptology and Inf.

Secur., Advances in Cryptology (ASI-ACRYPT

2001), Gold Coast, Australia, 2001, pp. 239–

254 .

[7] P. Chodowiec, K. Gaj, Very compact FPGA

implementation of the AES algorithm, In Proc.

Implementation Area (CLB slices

+ BRAMs)

clock

cycles per

Block

Maximum

Frequency

(MHZ)

Total

computation

time (µs)

Power

(µW)

Energy =

PDP(nJ)

Ref [8] 222+3 230 50 2.56 45 0.12

Ref [4] 210+3 209 60 2.13 42 0.09

Ref [20] 201+2 198 70 1.99 39 0.08

The proposed 150+2 160 90 1.42 31 0.04

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim

E-ISSN: 2224-266X 370 Volume 14, 2015

5th Int. Workshop on Cryptographic Hardware

and Embedded Systems (CHES 2003), Cologne,

Germany, 2003, pp. 319–333.

[8] S. Farhan, S. Khan , H. Jamal , Mapping of

high-bit algorithm to low-bit for optimized

hardware implementation, In Proc. 16th IEEE

Int. Conf. on Microelectronics (ICM 2004),

Tunis, Tunisia, 2004, pp. 148–151.

[9] Feldhofer M., Dominikus S., and Wolker-

storfer J., Strong authentication for RFID

systems using the AES algorithm, In Proc. 6th

Int. Workshop on Cryptographic Hardware and

Embedded Systems (CHES 2004), Boston, MA,

USA, 2004, pp. 357–370.

[10] M. Feldhofer, J. Wolker-storfer, V. Rijmen,

AES implementation on a grain of sand, IEE

Proc. Inf. Secur., Vol. 152, No. 1, 2005, pp.

13–20.

[11] N. Pramstaller, S. Mangard, S. Dominikus, J.

Wolker-storfer, Efficient AES implementations

on ASICs and FPGAs, In Proc. 4th Conf. on

the Advanced Encryption Standard (AES

2004), Bonn, Germany, 2005, pp. 98–112.

[12] P. Hamalainen, T. Alho, M. Hannikainen, T.

Hamalainen, Design and Implementation of

Low-area and Low-power AES Encryption

Hardware Core, In Proc. 9th EUROMICRO

Conference on Digital System Design:

Architectures, Methods and Tools, Dubrovnik,

Aug. 30 – Sep. 1, 2006, pp. 577-583.

[13] National Institute of Standards and Technology

(NIST). Advanced Encryption Standard (AES),

FIPS-197, 2001.

[14] T. Järvinen, P. Salmela, P. Hämäläinen, J.

Takala, Efficient byte permutation realizations

for compact AES implementations, In Proc.

13th European Signal Processing Conf.

(EUSIPCO 2005), Antalya, Turkey, 2005.

[15] G. Rouvroy, F. Standaert, J. Quisquater, J.

Legat, Compact and efficient

encryption/decryption module for FPGA

implementation of the AES Rijndael very well

suited for small embedded applications, In

Proc. IEEE Int. Conf. on Inf. Tech.: Coding

and Computing (ITCC 2004), Vol. 2, Las

Vegas, NV, USA, 2004, pp. 583–587.

[16] D. Canright, A very compact S-box for AES,

In Proc.7th Int. Workshop on Cryptographic

Hardware and Embedded Systems (CHES

2005), Edinburgh, UK, 2005, pp. 441–455.

[17] S. Kumar, V. Sharma, K. Mahapatra, Low

Latency VLSI Architecture of S-box for AES

Encryption, In Proc. Int. Conf. on Circuits,

Power and Computing Technologies, 2013,

pp.694-698.

[18] H. Trang, N. Loi, An efficient FPGA

implementation of the Advanced Encryption

standard algorithm, In Proc. of Int. Conf. on

Computing and Communication Technologies

RIVF, 2012, pp. 1-4.

[19] A. Elazm, M. El-Moursi, H. Elsimary, M.

Dessouky, High speed low power composite

field SBOX, In Proc. of IEEE 5th

international Design and Test workshop, Abu

Dhabi, 2010, pp. 24-27.

[20] P. Khose, V. Raut, Implementation of AES

Algorithm on FPGA for Low Area

Consumption, In Proc. of IEEE int. Conf. on

Pervasive Computing (ICPC 2015), Pune,

India, 2015, pp. 1-4.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim

E-ISSN: 2224-266X 371 Volume 14, 2015

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Alho,%20T..QT.&searchWithin=p_Author_Ids:37689480600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11117
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11117
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11117

