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Abstract: - Most of current embedded applications need AES algorithm implementations of small size and low 

power consumption to assure safe information conveyance. In this article, we present the implementation of a 

compact ASE hardware encryption core that is suitable for resource-limited applications based on FPGA 

technology. The core has 8-bit data path structure and supports encryption with 128-bit keys. The core has been 

described using VHDL language. The simulation and synthesis results are obtained using ModelSim and Xilinx 

ISE software tools, respectively. This implementation is compared to the previously reported compact 

implementations in terms of speed, area, and consumed energy. The implementation results showed that the 

adopted design achieves significant reduction in area (up to 32.4%) and consumed energy (up to 66.7%). Also, 

it has a significant increase in speed by ratios ranging from 28.6%to 44.5%. This makes the adopted design 

more suitable for resource-limited embedded applications. 
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1 Introduction 
The use of cryptographic algorithms with the 

purpose of security is mostly linked to applications 

that require economization power preservation, such 

as Wireless LAN (WLAN), Wireless Sensor 

Networks (WSN), Personal Area Networks (PAN), 

and smartcards. In order for such algorithms to run 

with optimum performance and power consumption, 

hardware is preferred to software.  Having been 

standardized and regarded as secure, Advanced 

Encryption Standard (AES) ended up being the 

prime choice in a multitude of applications, among 

which are the wireless standard technologies WPA2 

(IEEE 802.11i) [1], IEEE802.15.4 [2], and ZigBee 

[3]. The implementation of FPGA-based AES 

encryption core that we adopt in this paper will meet 

the requirements of cheap and low-power 

applications. 

It is established that  hardware architectures with 

pipelines and unwound loops make it possible to 

realize very high-speed AES designs. However, they 

entail high space occupancy and high power 

consumption. Moreover, such architectures are not 

fully exploitable in modes of operation that use 

feedbacks [4, 5], which are most often used with the 

purpose of encryption and/or generation of MAC 

(Message Authentication Code); for example, as 

with the security plans described in [1-3]. Loop-

back designs rather enable less-resource-consuming 

implementations usable at full-speed also in 

feedback modes (because they comprise a single 

processor that is fed with its own output over and 

over [5, 6]). Data path width can also be reduced so 

that logic area and power are minimized [4-11].  

The presented AES core [12] has a byte of data 

path (8-bit) and it has the potential to perform 

encryption with keys of 128 bits length. For 

instance, the operation modes described in [1-3] 

demand only the AES key of 128 bits. That 

preserves hardware resources as the inverse and 

direct AES transformations are in part different. 

Compared to the previous 8-bit FPGA 

implementations of [4, 8, 20], the adopted core 

implementation achieves considerable reduction in 

area occupancy and energy consumption. Also, it 

increases speed significantly. This makes the 

adopted design more suitable for resource 

constrained embedded applications. 
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 Here is the scope of work of this paper. Section 

2 gives a short description of the algorithm of AES. 

Section 3 displays the compact AES 

implementations reported previously in the 

literature. Section 4 depicts the hardware structure 

of the AES core adopted here. Section 5 compares 

the implementation results of the adopted encryption 

core and preceding implementations. With section 6, 

we conclude this article. 

 

 

2 Spotlights on AES 
AES is considered a private-key algorithm [13]. It 

has three Rijndael cipher family members, each has 

128-bits data block size, but three various lengths of 

key: 128, 192 and 256 bits, which be composed of 

10, 12, or 14 repetition (iterations) cycles, 

respectively. Each iteration cycle scrambles plain 

data with a round key, which is derived from the 

cipher key. Decryption inverts the cycles of 

repetition bringing about, in part, a different data 

path. 

Fig. 1 depicts the iterative operations of 

encryption. The cipher internally saves a 4-bytes × 

4-bytes matrix, called State, by whose aid 

encryption processes are carried out. On the initial 

round, State is loaded with a block of input data and 

joined with the encryption key using a bitwise XOR 

operation. The rest of the rounds, except the last, 

comprise operations called Byte-Sub, Shift-Rows, 

Mix-Columns, and Add-Round-Keys. The final 

round is free of Mix-Columns. The encryption key 

length is what determines the number of iterations 

(rounds).  

The Byte-Sub operation is a non-linear 

substitution where each byte of the State is 

separately substituted by another byte using a 

substitution table called S-box. The S-box is derived 

by computing modular multiplicative inverses over 

GF (2
8
). Shift-Rows is an operation applied to each 

row of the matrix "State", where the first row 

remains unchanged, and the second, third and fourth 

rows are cycle-lift-shifted on an (k-1) basis, where k 

represents the order of a row. Mix-Columns carry 

out a modular multiplication over GF (2
8
) for each 

column. Within each round, Add-Round-Keys 

carry out XOR operation between State and the 

round key. The key expansion process (the process 

of generation of round key) incorporates word 

rotations, S-box substitutions, and XOR operations 

carried out on the encryption key. For more details 

regarding the AES algorithm we refer to [13]. 
 

 

Fig. 1 AES Encryption Process 
 

 

     A 32-bit design of AES, with a pre-calculated 

key expansion, that is tailored for FPGAs is 

described in [7]. In this design, S-box is 

implemented as a LUT, using to its favour the 

devoted memory pools of FPGAs. The paper 

suggests an arrangement of the bytes of the matrix 

"State" so that memory units (shift registers) can 

hold them efficiently. Such an arrangement enables 

executing Shift-Rows with addressing logic. A 

similar technique is suggested in [11] once more. 

The authors of [14] came up with an idea to 

decrease the storage space needed and to support 

many different data path widths. In [5], the 

decrypting function in [7] was taken off and the 

hardware core was to run the security procedure 

described in [2] on FPGA. In [15], there is an 

enhancement to the FPGA resource consumption of 

[7] making a good use of the T-box method. 

     Ref. [8] proposes FPGA implementation of the 

8-bit AES algorithm of which the keys are 256-bit, 

round keys are previously calculated, and "State" is 

saved in a memory. This allows performing Shift-

Rows with logical addressing. Yet, this design uses 

two pieces of the memory in turns, which consumes 

resources that could have been saved [14]. In 

comparison with [9, 10], the method of 

implementing Mix-Columns is by far more efficient 

as an input needs to be read one time only from its 

memory storage, while in [9, 10] the leading 3 bytes 

in each column have to read twice from memory 

pending every one of Mix-Columns operations. The 

sum of all cycles of the AES core described in [8] is 

less than that of [9, 10]. In our work, we adopt a 
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suchlike method for Mix-Columns operations as in 

[8]. 

     Paper [4] proposes an 8-bit AES hardware core 

based on FPGAs, with a capability of encryption 

and decryption using 128-bit keys. The data path 

part of this core consists of an S-box, modular 

multiplier, and accumulator. The procedure is run 

by an algorithm saved in the ROM, while RAM acts 

as a memory for data. The number of cycles in this 

design far exceeds that of [8, 9]. In our work, FPGA 

resources are better preserved those of [8]. 

 

 

4. Hardware Architecture of the AES 

Encryption Core  
The AES design solutions with the smallest size 

with respect to both ASICs [9, 10] and FPGAs [4] 

have been achieved with loop-back designs utilizing 

data paths of 8 bits. In this paper, we also use a data 

path of 8-bit width, but embrace the design 

approach of [12]. In papers [4, 9, 10], the operations 

of both AES loop-back and the key expansion are 

performed in a sequential manner. In the design 

approach of [12] that is embraced here, the 

operations are performed in a parallel manner, 

which to a far extent decreases the total number of 

cycles and increases the payload. We, still, managed 

to keep the hardware space occupancy and the 

power dissipation at a minimum. The top-level 

structure of the adopted AES encryption hardware 

core is shown in Fig. 2. The core admits keys of 

128-bit length and performs in 16 clock cycles a 

round at a time. It breaks down into five main 

building blocks: parallel-in/serial-out converter, 

byte permutation unit, S-box, Mix-Columns, and 

key expansion unit. There are two S-box units in 

this design, and all registers and connections have 

width of 8-bits. 

 

4.1 The unit of Byte Permutation. 
The byte permutation unit (BPU) combines the 

Shift-Rows processes and storing the matrix "State" 

partially (Fig. 3). Shift-Rows operation is performed 

by left-shifting the bytes of "State" in the way 

described above. The remaining four bytes (the first 

row) of State matrix are manipulated and kept in the 

registers of the other AES core data path. The BPU 

functioning is described in paper [14] in detail. In 

this unit, data is arranged by cyclically shifting the 

bytes of the last register inversely with the help of 

multiplexers. Such inversely allocation is feasible 

since particular bytes are readout previously, i.e., 

bypassed with the output multiplexers. There will be 

no deadlocks because the inversely allocation and 

bypassing are at equilibrium, and there is an empty 

slot available every time a byte wants to be 

inversely allocated. 

 

 
Fig. 2 Top-level structure of AES encryption 

module. 

 
     This BPU unit has the ability to make both right 

and left shift byte replacements with the help of 

control signals ci. When the ci value is zero, the 

most significant byte in the input is moved toward 

the output. The BPU logic circuit latency is 12 clock 

cycles; this is long enough for a byte to be moved 

through the permutation. Therefore, a minimum of 

twelve registers is required and this is the lowest 

limit for the complexity of registers. The operation 

of the BPU logic circuit is thus continuous without 

any break that there is no need for void cycles, and 

the following 128-bit pattern can be supplied 

through the time interval following the last byte of 

the preceding 128-bit pattern. The control signals 

shown in figure below are given for the permutation 

of only one 128-bit pattern, where the first clock 

interval (i.e, t = 0) is the time instant at which the 

headmost byte is at the input of BPU unit. 
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        Fig. 3 Structure of Byte permutation unit. 

 

Fig. 4 Mix-Columns Multiplier. (a) Logic diagram and (b) (Ri) registers’ contents through the four cycles (t). 

Multiplying coefficients {03} and {02} point out to the field multiplications of AES with x+1 and x, 

respectively. 

 

4.2 The Multiplier of MixColumns  
     Fig. 4(a) shows the Mix-Columns modular 

multiplier that carries out the modular multiplication 

process of Mix-Columns. A single "State" column is 

processed at the same time in four clock cycles as 

illustrated in Fig. 4(b). Data are fed to the input of 

unit byte by byte, and the intermediate results are 

kept in four registers. The coefficients of 

multiplication remain the same for any element of a 

column [13], only with a cyclic shift; therefore, a 

32-bit parcel of the Mix-Columns function can be 

carried out by XORing and circular shifting of the 

intermediate results in the multiplication unit [8]. 

The registers are zero-masked by means of the 

signal "en" when the first byte of a column is being 

input. The 32-bit output is input to the PISO 

(parallel-in/serial-out) register as soon as the byte is 

completely loaded. A complete Mix-Columns 

operation is formed in 16 cycles by the Mix-

Columns multiplier. This is done in parallel with the  

other operations of the AES core. 

 

 

4.3 Implementation of S-box 
Recent FPGAs have dictated on-chip memories that 

can be used efficiently to implement the S-box. 

There is a multitude of publications that adopt this  

approach in implementing the S-box [5, 7, 8, 11, 16, 

17, 18, 19]. Here, we adopted the S-box 

implementation of [7]. Fig. 5 exhibits the S-box 

with a block diagram. The high-level data path 

consists of a head S-box unit to perform Byte-Sub 

operations byte by byte. For key expansion, a 

similar S-box is used. 

 

4.4 Implementation of the Key Expansion 

Unit 
We used the method of [13] to implement the key 

expansion unit. Fig. 5 (a) describes one round of the 

Key Expansion transformation [13]. The 

transformation processes round keys as words of 4 

bytes. The words of the new round key are 

constituted by adding the corresponding word of the 

old round key to the preceding word. As to the last 

word, it is cyclically shifted, processed by S-boxes, 
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and then added to a constant called "Rcon". This 

constant depends on the current round of the key 

expansion unit. 

 

 

 
Fig. 4 Block diagram of S-box 

 

 

The storage for both the round key and the Key 

Expansion function are enclosed into the data path 

of the key expansion unit as shown in Fig. 5(b). 

Through the last iteration, the "rk_last_out" output 

signal is utilized for Add-Round-Key. Inasmuch as a 

Mix-Columns operation of 32 bits needs 4 clock 

cycles, the key expansion unit should have another 

output called "rk_delayed_out", which is restrained 

for 4 clock cycles from "rk_last_out". Add-Round-

Key needs the output through the systematic rounds 

and the addition of first (initial) encryption key. 

That Add-round-Key is carried out by the XOR gate 

that is available at the entrance of the BPU unit as 

shown by Fig. 2. The final Add-Round-Key is 

performed by means of the other XOR gate. The 

round-dependant constant (Rcon) is constructed by 

means of the round counter by employing time-

independent logic circuitry and zero-masked when 

not in use. Table 1 illustrates how the key expansion 

unit works. 

Shown in this table is a single round of 

expansion which needs the time (t) of 16 clock 

cycles. The contents of columns R15 through R0 

indicate the contents of the particular registers 

illustrated in Fig. 5(b). a15 through a0 symbolize the 

bytes of the previous round key, while b15 through b0 

symbolize the bytes of the current round key. S(ai) 

means the S-box replacement of the byte ai. The 

symbols in bold text represent the bytes that are 

continuously updated by the processes of the 

preceding cycle. Amidst the final round, the "bt" 

byte of the latest round key is output by 

"rk_last_out" at the "t" cycle. Through regular 

rounds, the output is held back by 4 clock cycles 

and produced by control signal "rk_delayed_out". 

 

4.5. Structure of the AES Encryption Core 

Data path. 
 Fig. 6 illustrates the data path of the implemented 

AES encryption core. A plain text (data block) 

along with the encryption key are concurrently get 

in to the data path byte by byte via input ports 

"data_in" and "key_in", respectively. Initially, an 

Add-Round-Key is carried out between the data 

block and the key throughout the loading. This is 

done with the XOR gate available at the input of the 

BPU unit. After 10 iterations, encryption is 

complete and the cipher text can be serially 

unloaded from "data_out" output port.  The 

encryption key must be re-entered to the data path 

accompanying each new data block; this is 

attributed to that the round keys overwrite the 

encryption key. 

     The last iteration, which consists of: Byte-Subs; 

Shift-Rows; and Add-Round-Keys (no Mix-

Columns), is executed while data is being unloaded. 

As round key is held by the key expansion unit and 

the State by that of the BPU series of registers, a 

brand-new data block of plain text and an 

encryption key are permitted to be fed in to the data 

path concurrent to the data block of the cipher text. 

This enhances the performance of the AES core 

since there are no wasted cycles between 

successively processed blocks of data. Such a 

feature is handy; for example, in the CBC-MAC 

mode, within which a block of cipher text is added 

to the next block of plain text prior to being 

processed. The processing one single block of data 

in our design lasts for 176 clock pulses counting in 

the loading and the unloading phases. As load and 

unload are synchronously performable, the effective 

number of cycles is 160, also with loop-backs. 

 

 

5. Comparison of Results 
The adopted AES core is described in VHDL at the 

RTL level and synthesized to extract the gate level 

using Xilinx ISE tools and Xilinx Sparatn-3 FPGA 

device. Table 2 shows the estimated area in terms of 

the number of CLBs slices and BRAMs, the power 

dissipation and the maximum frequency results are 

obtained at ordinary conditions ( .         C) of 

operation. Power analysis at gate level was carried 

out for power estimations. We based the 

assessments and the synthesis of power optimization 

on switching activities, which have been observed 

with simulation at gate level using stimuli (random 

test vectors). Simulations were carried out by 

ModelSim SE 6.0a simulation tools from Mentor 

Graphics Corporation. 
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Table 1. Operation of the key expansion unit. 

 

Fig. 5 Structure of key expansion unit: (a) Schematic diagram of the key expansion round. (b) The key 

expansion unit logic diagram. The organization of bytes shown in (a) synchronized with the registers shown in 

(b), when the entire round key is produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Structure of the AES encryption core data path. 
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Table 2 Results of this Implementation in comparison with others. 

 

 

      This table shows a comparison among the FPGA 

implementation results of the adopted 8-bit design 

to the earlier 8-bit AES implementations [4, 8, 20]. 

The results exhibit that our design achieves 

considerable reduction in area (up to 32.4%) and 

consumed energy (up to 66.7%). Also, it has a 

significant increase in speed ranging from 28.6% to 

44.5%. The reduction in energy consumption is 

attributed to the lower area consumed by the 

proposed design besides the lower number of clock 

cycles required by it to process one cipher block. 

The enhancement in performance is due to a new 

plain text data block and encryption key can be fed 

into the data path concurrent to the data block of the 

cipher text. This concurrency in feeding data gets 

rid of the wasted cycles between successively 

processed blocks of data. 

 

 

6. Conclusions 
Hereby, we presented the hardware implementation 

of a compact (8-bit) AES encryption core based on 

FPGA technology.  This implementation perfectly 

fits the applications that require low cost and low 

power. Also, it enhances the performance of the 

AES core since there are no wasted cycles between 

the successively processed blocks of data. This is 

attributed to that the brand-new data block of plain 

text and an encryption key are permitted to be fed in 

to the data path concurrent to the data block of the 

cipher text. Moreover, the reduction in energy 

consumption is attributed to the lower area 

consumed by the proposed design besides the lower 

number of clock cycles required by it to process one 

cipher block. Juxtaposed with earlier 8-bit designs, 

the adopted design achieves considerable reduction 

in size (up to 32.4%) and energy consumption (up to 

66.7%). It significantly increases speed by ratios 

ranging from 28.6% to 44.5% as well. This makes 

the adopted design more suitable for resource-

limited embedded applications. 
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