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Abstract: -For the improvement of reliability, safety and efficiency advanced methods of supervision, fault 
detection and fault diagnosis become increasingly important for many technical processes. This holds 
especially for safety related processes like aircraft, trains, automobiles, power plants and chemical plants. The 
fault detection based upon multivariate statistical projection method such as Principal Component Analysis 
(PCA) has attracted more and more interest in academic research and engineering practice. The PCA is an 
appropriate method for the control of the process based on selection of an optimal number of principal 
components. In this paper we present the design and a comparative study of offline fault detection indices based 
on PCA method and adaptive fault detection techniques which used the PCA method.  These indices are 
Squared Prediction Error (SPE), Hotelling’s Statistic (T2), Filtred Squared Prediction Error (Filtred SPE) and 

iD  Index. These indices and the adaptive detection methods are evaluated by handling a numerical example 
and a Continuous Stirred Tank Reactor (CSTR) benchmark.  
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1 Introduction 
 
The increasing demand for effective quality, high 
productivity and safe operation has enhanced 
research into fault detection and diagnosis methods 
[1], [2]. Several statistical methods such as Principal 
Component Analysis PCA [3] and [4], Partial Least 
Square PLS [5] and more recently Independent 
Component Analysis ICA [6] have been developed 
for process monitoring to deal with this challenging 
problem.  
 
  Principal Component Analysis (PCA) is a 
multivariate statistical method that can be used for 
process monitoring. The basic strategy of PCA is to 
extracts linear structure from high dimensional data 
by finding new principal axes. PCA divides data 
systematically into two parts, the first part is the data 
with wide variation and the second part is the data 
with the least variance, which is noisy.  The PCA 

method is a tool that models the behavior of 
processes in normal operation. The faults are 
detected then by comparing the observed behavior 
and the behavior given by the PCA model or by the 
generation of the detection indexes [7,8] such as, the 
squared prediction error SPE [9,10], and the 
Hotteling’s T2 statistic [11,12]. Since PCA is a 
projection method to reduce the data, the first step of 
its usage is devoted to modulation of the process to 
determine a suitable structure of the PCA model. 
Dunia and Qin [13] proposed the VRE (Variance of 
reconstruction error) method to determine the 
optimal number of components to be used for the 
construction of the PCA model. 
   In this paper, the VRE criterion is used to 
determine the structure of the model. For the fault 
detection, we present the SPE index, T2, filtered SPE 
[14], and the iD index. We present also a 
comparative study of the performance of these 
indices. 
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The paper is organized as follows: in section 2, the 
PCA approach and the VRE criterion are presented. 
The indices SPE, T2, filtered SPE, and iD are 
described in section 3. In section 4, the performances 
of the fault detection indices are evaluated on a 
numerical example. The adaptive fault detection 
methods are detailed in the section 5. Finally section 
6 concludes the paper. 

2 Principal Component Analysis 
2.1 Concept of PCA method 
PCA is to replace a family of variables with new 
variables having maximum variances. The new 
variables are uncorrelated pairs of variables that are 
linear combinations of the original variables. 
 Let at time k,  

[ ]1 2x(k) = x (k),x (k), ...,x (k) R
T m

m ∈ is the vector 
which contains the m observed system variables, 
and consider [ ]X = x(1) x(2) . . . x(N) RT N m×∈   the 
matrix of standardized data that contain N 
observations collected while the process is operating 
in normal mode. The PCA determines an optimal 
(considering covariance criterion) and linear 
transformation of the matrix X as follows: 

  T = XP  and X = TPT                               (1) 

with [ ]1 2T = t , t , ..., t R
T N m

m
×∈ ,where t (i = 1, ..., m)i  

are the principal components and the matrix  
[ ]1 2P = p ,p ,. . . , p Rm m

m
×∈   where the orthogonal 

vectors ip  are the eigenvectors corresponding  to 
the eigenvalues iλ  that results from the 
decomposition of the correlation matrix (or 
covariance) Q  of X on eigenvalues and 
eigenvectors.  

               Q = PΛPT  and PP = P P = IT T
m             (2) 

with 1 mΛ = diag(λ ...λ )  is a diagonal matrix where 
the diagonal elements are ordered in descending 
order.  
  Let’s consider the l first principal components ti 
(i=1,….l). It turns out that the rest of the information 
contained in X can be explained using 

[ ]1
ˆ ,..., m l

lP p p R ×= ∈ and represented by T = XPɶ ɶ . 
Therefore, the first eigenvectors from the vectorial 
subspace reduced by the initial data called the 
principal subspace noted as SP and the (m-l) last 
eigenvectors from the residual subspace noted SR. 
The matrix P and T can be partitioned as follows:  

               [ ]ˆP = P Pɶ ,  [ ]ˆT = T Tɶ                              (3) 

The equation (1) can be written then as follows: 

T T T Tˆ ˆ ˆ ˆ ˆX = TP + TP = XPP + XPP = X + Eɶ ɶ ɶ ɶ                (4) 

with 
T Tˆˆ ˆ ˆX = XPP = XC, E = XPP = XCɶɶ ɶ  

Tˆ ˆˆ ˆC = PP and C = I - Cɶ . 
Ĉ andCɶ  are the projection matrices respectively in 
the principal and residual subspaces. They represent 
the PCA model of the system. 
The matrix X̂ and E  represent respectively the 
modeled and non-modeled variations of X . 
 
 

2.2 Determination of the Number of 
Principal Components 

In order to apply the PCA concept in diagnosis, it is 
important to determine the number of principal 
components to retain.  
For instance, when the number of components to 
retain is small, we risk losing valuable information 
which leads to incomplete representation of the 
process, and therefore have modeling errors that 
taints the residues causing false alarms. 
   On the other hand, in the case where the number 
of components to retain is large, the model will be 
on-set and may contain measurement noise because 
it may contain components that are carriers of noise. 
Further, reduction of the dimension of the residual 
space causes the non detection of faults. 
Therefore, Dunia and Qin suggested determination 
of the number of components to retain by 
minimizing the variation of reconstruction error. 
Reconstruction is estimating a variable of the vector 
x(k)  at a given time denoted as ix (k)  using all the 
other variables jx (k)  at the same time from the PCA 
model. The ith variable is reconstructed using the 
following equation:  

                   i ix (k) = G x(k)                                  (5) 

with [ ]1... ...T
i i mG gξ ξ= ,

T T
-i +iT

i ii
ii

c 0 c
g = with c < 1

1- c

 
     

where: 

[ ]T
iξ = 0...1...0 is the i th column of the identity 

matrix. 
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[ ]1 2c = c c ...c = c c cT T T
i i i mi i ii i− + 

  . ic  is the ith column 

of the matrix  Ĉ and the indexes (-i) and (+i ) 
represent respectively the vectors formed by the 
( 1)i −  first and ( )m i− last elements of the vector ic . 

The variation of the reconstruction error of the ith 
component x(k)  is given by the following equation:   

    
T

T i i
i i i T 2

i i

ξ Qξ
σ (l) = var(ξ (x - x )) =

(ξ ξ )

ɶ ɶ

ɶ ɶ
                             (6) 

with i i
ˆξ = Cξɶ  andQ  is the correlation matrix. 

The optimization problem of variables resides 
therefore in minimizing the variance of 
reconstruction error iσ  considering the number of 
principal components l : 

1

σ (l)J(l) = min l = 1,....,m -1
ξ Qξ

m
i

l T
i i i=
∑                      (7)  

Once the model is determined, the faults can be 
detected. 

 

3 Fault Detection indices 
To detect faults, several indices are 

conventionally used: 
 

3.1 Squared Prediction Error (SPE) 
The squared prediction error (SPE) index allows 

fault detection in the residual subspace.  

At time k  it is given by: 

     

2T

m2 2
j

j= l+ 1

S P E (k )= x (k) x (k) = C x (k)

= t(k ) = t (k )∑

ɶɶ ɶ

ɶ ɶ
                   (8) 

This index is an aggregate indicator that sums 
residues regardless of their variances. When the 
systems are no longer linear, residues with high 
variances carry modeling errors produced by the 
PCA model. Therefore, they have more effects on 
the SPE amount compared to the residues with low 
variances that correspond to linear or quasi-linear 
redundancy relations. The sensitivity of the SPE 
indicator to modeling errors causes many false 
alarms. 

The system is considered in abnormal operation at 
time k  if: 

           2
αSPE(k) > δ                                                  (9) 

With 2
αδ  is the control limit of SPE(k) . For a 

confidence level α , 2
αδ  is determined theoretically by 

box [15].                  
                   2 2

α h,αδ = gχ                                           (10) 

with { }
2 m i2 1

i j
j=l+11 2

θ θ
g = ,h = and θ = λ ,i 1, 2

θ θ
∈∑  and jλ  

is  the jth eigenvalue of the matrixQ . 
In order to guarantee the detection of fault  d(k)  
by SPE index, a sufficient condition must be added 
to the projection of the fault in the residual space. 
You can get this condition using the following 
equation: 

 
2 2T T * T

jSPE(k) = C x(k) = C x (k) + C ξ d(k)ɶ ɶ ɶ           (11) 

Since *x (k) is a measurement vector in normal 
operating mode:  

                 T *
αC x (k) < δɶ                                        (12) 

Since:  
* *C x (k) + C ξ d(k) C ξ d(k) - C x (k)T T T T

j j≥ɶ ɶ ɶ ɶ            (13)                                 

Consequently: 

T * T T
j j αC x (k) + C ξ d(k) C ξ d(k) - δ≥ɶ ɶ ɶ                    (14) 

In order to ensure the fault detection, the condition 
2
αSPE(k) > δ must be satisfied.  We require then that: 

       
2T T 2 2

j α α
C x ( C ξ d(k) -δ ) > δ≥ɶ ɶ                       (15) 

The resolution of the inequality (15) yields to: 

         
2T T 2 2

j α j α α

2T T
j α j

C ξ d(k) - 2δ C ξ d(k) + δ > δ

C ξ d(k) > 2δ C ξ d(k)

ɶ ɶ

ɶ ɶ

           (16) 

Consequently:    
              T

j αC ξ d(k) > 2δɶ                                    (17) 

otherwise: α
d > 2δɶ  

 where    jd = d(k) ξɶ ɶ    
The equation (2) must be satisfied to guarantee the 
fault detection. 
 

3.2 Hotelling’s T2Statistic 
Unlike the SPE index, the Hotelling’s T2 statistic 
measures variations of the projections of the 
observations in the principal subspace. T2 
determined from the first l principal components 
according to the following equation: 
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2

l j2 T -1
l

j=1

t̂ (k)ˆ ˆT (k) = t (k)Λ t(k) =
λj

∑                       (18) 

where l 1 lΛ = diag(λ , ..., λ )   is the diagonal matrix 
containing the l largest eigenvalues of the 
correlation matrix.                                                                                                         
The process is considered faulty at time k if:  
             2 2

l,αT (k) > χ                                              (19) 
where 2

l,αχ is the chi-2  distribution with degree of 
freedom equals to l , and confidence level equals to 

α . To ensure the fault detection using the 2T  indexa 
condition that considers the fault amplitudes  should 
be added. This condition is determined using the 
same approach as the SPE index. From equation 
(18), we get: 

         
21-2 *2

l
ˆT (k) = Λ P (x (k) + ξ d(k)T

j                     (20) 

The following condition guarantees the fault 
detection: 

                    
1

T2
j αl

- ˆΛ P ξ d(k) > 2T                           (21) 

 
 

3.3 Filtred SPE Index 

In order to improve the fault detection, EWMA 
(Exponentially Weighted Moving Average) filter 
may be applied to residues .The expression of the 
filtered residues is given by [16]: 

            e(k) = (I -β)e(k -1) + βe(k)                           (22) 
with  e(0) = 0 and β  is the diagonal matrix given by 
the following equation: 

              β = γI                                                       (23) 

where 0 < γ < 1  is the forgetting factor. 
Consequently, the filtered SPE denoted as SPE is 
given by the following equation: 

                 2SPE(k) = e(k)                                    (24) 

The process is supposed to be faulty when: 

                  2
αSPE(k) > δ                                         (25) 

where 2
αδ  is a control limit of SPE. 

Qin [17] showed that 2
αδ  follows 2χ  rule and is 

related to the non-filtered control limit 2
αδ  by the 

following equation: 

               2 2
α α

γ
δ = δ

2 - γ
                                           (26) 

3.4 iD  Index 

The iD index is determined using the last principal 
components using the following relation:  

     
m 2

i j
j=m-i+1

D (k) = t (k), i = 1,2,..., (m -1)∑ ɶ                   (27) 

The process is considered faulty at time k if: 

                      2
iD (k) > τi,α                                     (28) 

The index iD  is indeed an SPE calculated using 
PCA model that has ( )m i− principal components. 

Thus, the control limits 2
i,ατ  can be approximated, 

for a given confidence level α, by a 2χ distribution 
with (i)h degree of freedom: 

                  2
i,α

2
χ(i) h ,α(i)τ = g                                     (29) 

The parameters (i)g  and (i)h are given by the 
following equation: 

       

m m2 2
j j

j=m-i+1 j=m-i+1
(i) (i)m m 2

j j
j=m-i+1 j=m-i+1

(λ λ )
g = , h =

λ λ

∑ ∑

∑ ∑

                  (30)

 
Like the SPE index, failure detection is guaranteed 
if the following condition is satisfied: 

                     (i)
i,αjξ d(k) > 2τɶ                         (31)

  
where 

(i)
j i j

ˆξ = (I - C )ξɶ  and (i) (i) (i)T
j ii j

ˆ ˆ ˆ ˆξ = (I - C )ξ , C = P Pɶ ; (i)P̂  
is formed by the i last eigenvectors of the matrix Q. 

 

4 Simulation Results 
To evaluate the performances of these detection 

indices, simulations on a numerical example are 

presented in the following sections. 

Consider a static system with seven variables 
described by the following equations: 

1 1 1z (k) = u (k) + ε (k)  

2 1 2z (k) = u (k) + ε (k)  

3 1 3z (k) = u (k) + ε (k)  

4 1 2 4z (k) = 2u (k) + u (k) + ε (k)  

5 2 5z (k) = u (k) + ε (k)  

6 2 6z (k) = u (k) + ε (k)  

7 1 2 7z (k) = 2u (k) + 3u (k) + ε (k)  
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with: iε , { }i 1, ..., 7∈  are random noises with 
amplitudes that vary from -0.05 to +0.05, 1u and 2u  
represent the inputs of the system. 
The inputs have niche forms that have randomly 
changing amplitudes and durations, and iz  are the 
outputs of the system with { }i 1, ..., 7∈ . 
This system has modeling errors. The system 
equations show that the variables are correlated 
since there is a direct redundancy among the 
variables 1z , 2z  and 3z , and another one between 5z  
and 6z . The model is simulated using 500 samples.  

Suppose that [ ]T
1 mz(k) = (k)... (k)z z  is the raw 

measurement vector and [ ]T
1 mx(k) = x (k)...x (k)   is 

the vector of the normalized data. 

The application of the PCA allows the identification 
of the values and eigenvectors of the correlated 
matrix X. We apply then the VRE criteria to 
determine the structure of the model.  

According to the table 1, the minimum of ( )
l
σ li

i=1
∑ is 

obtained when 2l =   and the variances of the 
different variables calculated using two-component 
model are less than 1 (table2). Consequently, all the 
variables can be reconstructed and the number of the 
principal components l is equal to two. 

Table 1: Variance of of The Reconstruction Error 
For The Variables 

7
( )

1
lii

σ∑
=

 
2.3 0.32 0.67 11.5 47.69 58.6 7.45 

We note also from table 1 that the VREs of the 
variables 5x and 6x  are higher than the others. We 
deduce therefore that these variables are less 
correlated than the others. Consequently, we 
conclude that the VRE criterion gives an optimal 
number of the components to identify the PCA 
model.  Once the model is identified, we proceed to 
the procedure of fault detection. We suppose that the 
variable 3x is affected by a simple fault (bias) 
between the instant 250 and 400 with an amplitude 
value equals to 22% of the range of variation of this 
variable. 

 

Table 2: Variance of The Reconstruction Error of  
Differents Variables For l=2 

σ (1)2  σ (2)2  σ (3)2  σ (4)2  σ (5)2  σ (6)2  σ (7)2  
0.0105 0.0082 0.0088 0.0864 0.1010 0.0955 0.009

7 

In the figure 1 the evolution of the criterion based 
on the concept of variation of the reconstruction 
error as a function of the number of principal 
components is presented. From the represented 
curve, the minimum of this criterion is attained 
when l equals two.  

Fig.1 Variances of the reconstruction error for the  
number of components in the PCA model 

 
In the figure 2 the evolution of the different 
variables and their estimation is presented. This 
figure shows that the estimated error is almost zero 
for all variables except 7x and 8x  where the 
estimated values are high. This can be explained by 
non-linearity of these variables.   

 

Fig.2 Measurements and estimations of different 
variables 
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The performances evaluated for the four indices are: 
- The False Alarm Rate (FAR) which expresses 

the ratio of the violated samples (Those which 

exceed the detection thresholds) to the faultless 

data. 

%violated samples
FAR

faultless data
=

                
(32) 

- GDR is defined as the ratio between the total 

time of the detected faults and the total time 

when the system is not operating properly. 
 

In Figure 3, the evolution of the detection index SPE 
and the filtered SPE are presented. We remark that 
the detection using the SPE index causes many false 
alarms for a confidence level equals to 95%. To 
reduce these false alarms, we increase the 
confidence level to 99%. Moreover, we note that the 
SPE index has undetected errors between the instant 
250 and 400. This means that the system is 
functional despite the presence of a fault. For the 
filtered SPF index, we notice that the fault is clearly 
detected with delay. 
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Fig.3 SPE and filtred SPE with a fault on variable 

3x  
In the figure 4 the evolution of the T2 index with a 
fault on the variable 3x  between the instant 250 and 
400 is illustrated. This fault is represented by a 
constant bias of amplitude equal to   22% of 3x . 
According the figure 4, the fault is not detected and 
the projection of the variations of the observations 

in the principal space is masked by the variation of 
measurements during normal operation.  

Fig. 4 2
T with a fault on variable 3x  

 
When the fault satisfies the detectability condition, 
the fault is guaranteed to be detected. To highlight 
this fact, a fault is simulated between the instants 
250 and 400. The minimum fault amplitude is equal 
to mind = 84.64.  

Figure 5 presents the evolution of the 2T index with 
amplitude of fault equals to 84.64. The fault is 
clearly detected in this case. We can conclude 
therefore that the Hotelling 2T index cannot detect 
fault with low amplitude because the variation of the 
projection of these fault in the principal subspace 
can be masked by the variations of measurements in 
normal operation.  
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Fig.5 evolution of 2

T with a fault ( min 84, 64d = )  on 

variable 3x  
 
We add a fault (bias) to the variable 3x through the 
previous /example. We apply then the detection 
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procedure using the iD  index. As shown in Figure 
6, the fault is detected for 1i = . Compared to other 
indices, we notice that the undetected errors and 
false alarms are very low.  
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Fig.6 iD with a fault on variable 3x  
From tables 3 and table 4, we note that the index 1D  
has a low FAR and good GDR.  

Table 3: FAR and GDR of different indices for 
α = 99%  

 SPE Filtred 

SPE  

T2 D1 

FAR(%) 2.38 15.2 2.9 1.39 

GDR(%) 72.19 98.68 0 93.38 

Table 4: FAR and GDR of different indices for 
α = 95%  

 SPE Filtred 

SPE  

T2 D1 

FAR(%) 15.69 15.25 17.1 13.73 

 GDR(%) 79.47 98.68 0 93.38 

 
We conclude that 1D  has the best performance 
since, unlike other indices, it detects very low 
amplitudes.  
 

5 Online fault detection methods 
 
Despite its great success, PCA with its original form 
is not able to cope with time-varying systems that 
operate at deferent conditions and modes. 

Furthermore, when conventional PCA is used to 
monitor such a process, an excessive rate of false 
alarms and missing detection may occur. Therefore, 
an adaptation strategy for PCA algorithms is 
recommended. To overcome this problem, the 
Conventional PCA [18], the Sliding Window PCA 
(SWPCA) [19-20] and the Recursive Principal 
Component Analysis based on First Order 
Perturbation (RPCA-FOP) [21] have been proposed 
in recent years. 
 
5.1 Conventional PCA  

Based on new measurements that represent the 
normal process operation, conventional PCA is used 
to update the PCA model for online fault detection. 
The following algorithm is adopted.  

1- Construct an initial PCA model using initial 
identification data 

2- Collect a next testing sample and scale it using 
current scaling parameters. 

3- Evaluate the monitoring index for the scaled 
testing sample, if the control limit is not 
exceeded, the new measurement is considered 
normal. So, it will be used to update the PCA 
model. 

4- Recalculate the eigenvalues and the 
eigenvectors of the updated correlation matrix 

5-  Repeat from step 2  
 

5.2 Sliding window principal component 
analysis (SWPCA) 

 
The basic idea of SWPCA method consists in 
moving a window along data in real time allowing 
the algorithm to operate online in time-varying 
environment. A sliding window technique is applied 
by removing the oldest sample and adding the newly 
available one. A detailed algorithm for the 
implementation of the SWPCA is presented as 
follows [22]: 
1- Construct an initial PCA model using initial 

identification data 
2- Collect a new input sample x. Scale it using a 

current mean and a standard deviation. 
3- Determine the monitoring index, if the control 

limit is not exceeded, the measurement x is 
considered normal. So, it will be used to update 
the PCA model. 

4-  Slide the training data window by 
concatenating it in the measurement matrix and 
deleting the oldest one. 
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5- Recalculate the eigen-value decomposition of 
the new correlation matrix to update the PCA 
model 

6- Repeat from step 2 
 

5.3 Recursive Principal Component Analysis 
based on First Order Perturbation 
(RPCA-FOP) 
 

The principle of the RPCA-FOP method for fault 
detection consist that the recursive computation of 
the eigen-values and eigenvectors is based on 
perturbation analysis of the correlation matrix. 

 
5.4  Simulations 

The process is a Continuous Stirred Tank Reactor 
CSTR, a dynamic non-linear system, used for the 
conduct of the chemical reactions [23], [24] so that 
two reactants 1 and 2, with concentration 1bC and 

2bC  and feed 1w  and 2w , respectively, are mixed 
to provide a final product with a concentration bC . 
The physical equations describing the process are: 

1 2
( ) ( ) ( ) 0.2 ( )dh t

w t w t h t
dt

= + − .                (33) 

( )

( )
( )

1
1

12
2 2

2

( ) ( )
( ) ( )

( )
( )( )

( ) ( )
( ) 1 ( )

b
b b

b
b b

b

dC t w t
C t C t

dt h t

k C tw t
C t C t

h t k C t

= −

⋅
+ − −

+ ⋅
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Where h(t) is the height of the mixture in the  
reactor. 1k and 2k are the consuming reactant rate 
assumed to be constant. The temperature in the 
reactor is constant and equal to the ambient 
temperature. A diagram of this reactor is given in 
Figure 7.  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Chemical reactor Diagram  
 

The variables used to monitor the CSTR process are 
respectively 1w , 2w , 1bC , 2bC and bC   
We have collected 3000 data observations from the 
process. 
We have used 1000 observations in order to 
construct an initial PCA model.  
To evaluate the performances of the online detection 
methods, three types of faults are considered. A bias 
fault affected the 1w variable, a drift fault affected 
the 1bC  and a normally-distributed noise injected in 
the 2bC  variable. 
The description of all types of faults is presented in 
Faults in Table 5. 
 
Table 5: Sensor fault description 

 
Case Faults description 

Affected 
variable 

Fault 
description 

Fault time 

Bias  
1w  1 10%d =  2000-

2500 
Drift  

1bC  5
2 9 10 0.1d k−= ⋅ −

 
2000-
2500 

Normally-
distributed 

noise 

2bC  3 (0,0.1)d N=  2000-
2500 

 
The evaluated performances are respectively, the 
false alarm rate (FAR), the good detection rate 
(GDR) and the computing time (CT). 
 
According the table 6, we remark that the RPCA -
FOP method is better than the other methods 
especially in term of computing time. 
  
Table 6: Performances of the three online faults  
detection methods 
 

 
 
In the figures 8, 9 and 10, the SPE index based on 
the RPCA-FOP method is presented 10.  According 
these figures, we remark that the injected fault is 
detected in both case of detection threshold.   

Approach FAR 
(95%) 

GDR 
(95%) 

GDR 
(99%

) 

CT(s) 

RPCA-FOP 0.06 100 91.24 13.02 

SWPCA 0.08 100 96.88 17.07 

Conventional 
PCA 

1.02 91 89.45 21.67 
 0w  : feed of 

product 
 bC  : Concentration product  

 

1w volumetric  
flow rates1 

          2bC  : 
Concentration   

                  of  reactant 
 2w : volumetric  

flow rates 2 

                  1bC : 
Concentration  

 
h   
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Fig. 8 Online fault detection result in the case of a 
bias fault 
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Fig.9 Online fault detection result in the case of a 
drift fault  
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Fig.10 Online fault detection result in the case of a 
normally-distributed noise. 

 
 

6 Conclusions 
In this paper, we have presented the design and a 
comparative study of offline fault detection indices 
based on PCA method. We have presented the four 
indices of fault detection and we have compared 
their performance through a numerical example. 
Then adaptive fault detection techniques based on 
the PCA method are presented. It has been shown 
that the RPCA-FOP has better performances than 
the other methods especially in terms of average 
computation time. These algorithms have been 
tested on Benchmark CSTR and the results were 
satisfactory. 
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