
A New Processor Array Structure for Protein Sequence Alignment
using Smith-Waterman Algorithm

ATEF IBRAHIM
Prince Sattam Bin Abdulaziz University
Department of Computer Engineering

Alkharj
SAUDI ARABIA

attif ali2002@yahoo.com

HAMED ELSIMARY
Prince Sattam Bin Abdulaziz University
Department of Computer Engineering

Alkharj
SAUDI ARABIA
hamed@eri.sci.eg

ABDULLAH ALJUMAH
Prince Sattam Bin Abdulziz University
Department of Computer Engineering

Alkharj
SAUDI ARABIA

aljumah88@hotmail.com

Abstract: This paper proposes a new processor array structure for the Smith-Waterman with affine gap penalty
algorithm to align protein sequences. This architecture is extracted by applying a nonlinear mapping methodology
to the Smith-Waterman with affine gap penalty algorithm after expressing it as Regular Iterative Algorithm (RIA).
This methodology uses a data scheduling and node projection techniques to explore the processor array structures
of the algorithm. The proposed structure is one of the explored structures and has the advantage that it can be
modified to enable hardware reuse rather than replicating processing elements of the processor array on a cluster
of FPGAs. The proposed hardware structure and the previously reported conventional one are described at the
Register Transfer Level (RTL) using VHDL language and implemented using the FPGA technology. The imple-
mentation results show that the proposed design has significant higher normalized speed-up (up to 124%) over the
conventional design for query sequence lengths less than 512 residues. According to the UniProtKB/Swiss-Prot
protein knowledgebase (release 2014 07) statistics, the largest number of sequences (about 80%) have sequence
length less than 512 residues that makes the proposed design outperforms the conventional design in terms of speed
and area in this sequence lengths range.

Key–Words: High performance computing, Parallel processing, Processor arrays, Bio-Computing, Protein se-
quence alignment, Reconfigurable Computing

1 Introduction

Protein alignment by Dynamic Programming based
(DP-based) algorithms using general purpose pro-
cessors (microprocessors) results in quadratic time
complexities. Because of the exponential growth
of biological databases, an enormous growth in re-
search which focuses on accelerating DP-based al-
gorithms has happened. These algorithms are ac-
celerated in parallel architectures such as linear sin-
gle instruction multiple data (SIMD) arrays and pro-
cessor arrays. Both architectures are good candi-
dates for fine-grained parallel architectures for the ac-
celeration of sequence alignment with DP-based al-
gorithms. Coarse-grained parallelism is another ap-
proach, where computations of DP-based algorithms

are distributed over multiprocessor clusters. In spite
of the fact that coarse-grained parallelism signifi-
cantly increases computation speed, such implemen-
tations consume significant amounts of energy as
well as involving increased size, operational costs,
and maintenance. On the other hand, fine-grained
parallelism using processor arrays has been imple-
mented on both FPGA and ASIC platforms. The lat-
ter implements processor arrays in a single-purpose
chip and has provided relatively good area/speed ra-
tios; however, the single purpose hardware lacks the
re-programmability which is important for sequence
alignment. Over the last decades, reconfigurable FP-
GAs have becoming an important alternative to the ex-
pensive and large energy consumption of high perfor-
mance supercomputers and multiprocessor clusters.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 282 Volume 14, 2015

The amazing speed-up of FPGAs in accelerating bio-
computing algorithms has led to such reconfigurable
computing platforms being used as acceleration plat-
forms for scientific computing.

Advances in IC technology over the last decade
have led to production of FPGAs with large sizes that
can accommodate complex designs available nowa-
days. This has led researchers to utilize FPGAs for
the implementation of the Smith Waterman alignment
algorithm with the affine gap penalty [1]. Human
Genome Project (HGP) in 2003, provided databases
with massive numbers of biological sequences [2].
Due to the massive number of biological sequences,
they require a large time and resources to be pro-
cessed, which represents a real challenge to the avail-
able technology. The implementation of the Smith-
Waterman with affine gap penalty on FPGA as in [3]
was among the early works reported in literature. Ya-
maguchi et al. [4] in 2002 implemented the Smith-
Waterman with affine gap function on the RC 1000-
PP Celoxica board with Virtex-II FPGA. During that
time, Virtex-II was the latest FPGAs and the Xilinx
XCV2000E device fitted a maximum of 144 process-
ing elements. Oliver et. al. in [3] presented in their
work the run time reconfiguration of PEs in order to
reuse the resources. Jacobi et. al. [5] realized a re-
configurable system to implement the algorithm on
Virtex-II FPGA board. Similar work presented by
VanCourt and Herbordt in [6] and Hoang et. al. in
[7]. Mohamed Abouellail et. al. in [8] presented PE
processor arrays on a cluster of multiple FPGAs, as
reported to solve the problem of long queries. An-
other approach to solve for long queries has also been
reported in [9], [10], [11], [12], [13]. They presented
the reuse of PEs in a technique known as folding. Ex-
amples of such an approach were reported by Xian-
yang et al. [13]. Zhang et. al. in [14] presented a new
implementation of the Smith-Waternam algorithm on
reconfigurable FPGAs in a supercomputer fashion by
redesigning the PEs in a way to reduce the storage ac-
companied with each PE to enable rapid access to the
substitution matrix as it was stored in the PE. Yam-
aguchi et. al in [15] presented similar technique to
store the substitution matrix in the PE for multiple-
pass computation. Isa et. al. in [16] presented a pro-
cessor array with reconfigurable PE, they presented
a scheduling strategy to optimize the overall run time
overlapped between computation and configuration of
the architecture.

In this paper, the authors propose a new folded
processor array architecture with reconfigurable PE
for the Smith-Waterman with affine gap penalty align-
ment algorithm that are more efficient in speed and
area than the folded processor array architecture pre-
sented in [16] specially for short query sequences.

This will be achieved by applying a nonlinear map-
ping methodology to the Smith-Waterman with affine
gap penalty alignment algorithm after expressing it as
Regular Iterative Algorithm (RIA). This methodology
uses a data scheduling and node projection techniques
to explore the processor arrays of the algorithm. Also,
we will present the HW realization of the processing
element (PE) of the processor array structure and ap-
ply the scheduling strategy of [16] to the PE structure
to reuse the processor array for multiple pass process-
ing without sacrificing more time required for config-
uration.

This paper is organized as follows. Section 2
presents the Smith-Waterman with affine gap penalty
algorithm. Section 3 presents the proposed methodol-
ogy employed to explore the processor array architec-
tures and describes the modification of the explored
architectures to be reused for multiple pass process-
ing using folding technique. Section 4 compares the
resulting processor array architectures in terms of area
and speed. Finally Section 5 concludes the paper.

2 Smith-Waterman with affine gap
penalty algorithm

Equation (1) shows the Smith-Waterman algorithm
with a linear gap penalty [17]. Given a query se-
quence, X = x1, x2, x3 . . . xi . . . xM (of length M)
and a subject sequence, Y = y1, y2, y3 . . . yj . . . yN
(of length N), this DP-based alignment algo-
rithm searches for the best alignment between sub-
sequences of X and Y using alignment matrix F (i, j).
This matrix calculates the maximum score among the
four alternatives and it is built recursively using Equa-
tion (1).

F (i, j) = max

0

F (i− 1, j − 1) + s(xi, yj)

F (i− 1, j)− d

F (i, j − 1)− d

(1)

the s(xi, yj) is the relating substitution matrix score
for residue i in query sequence X and residue j in
subject sequence Y , respectively. This score is a prob-
abilistic score which depicts biological relationship of
residues xi and yj as indicated in the substitution ma-
trix in Fig. 1. This figure presents an illustration
of the BLOSUM50 substitution matrix [18]. There
are different probabilistic models like BLOSUM62
and PAM that illustrates the biological relationships
between amino acids. The elements highlighted in

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 283 Volume 14, 2015

bold on the main diagonal represent indistinguishable
residue pairs. The 20 × 20 matrix comprises of 20
residues (or amino-acids).

Figure 1: BLOMSUM50 substitution matrix [18].

The constant d in Equation (1) represents the lin-
ear gap penalty that penalizes gaps of length g lin-
early, i.e. penalty(g) = −g ∗ d. GOTOH [1] in 1982,
presented a more productive gap penalty which is re-
ferred to as affine gap penalty as indicated in Equa-
tion (2). In this type of gap penalty, a fixed gap cost
is given when opening a new gap (gap opening or d),
while a linear and often smaller gap penalty is given
for following gap extensions (e) i.e. penalty(g) =
−d − (g − 1) ∗ e. The F (i, j) is the score up to
(i, j) where residue xi is aligned to residue yj . The
Ix(i, j) is the best score, where residue xi is aligned
to a gap and finally the Iy(i, j) is the best score, where
residue yj is aligned to a gap. In this paper, we will
apply a proposed methodology to Equation (2) to ex-
plore all possible processor array architectures and de-
scribe the modifications of the explored architectures
to be reused for multiple pass processing using folding
technique as shown in the following sections.

F (i, j) = max

F (i− 1, j − 1) + s(xi, yj)

Ix(i− 1, j − 1) + s(xi, yj)

Iy(i− 1, j − 1) + s(xi, yj)

Ix = max

{
F (i− 1, j)− d

Ix(i− 1, j)− e
(2)

Iy = max

{
F (i, j − 1)− d

Iy(i, j − 1)− e

3 A Systematic Methodology for
Processor Array Design

Systematic methodologies to design processor arrays
allow for design space exploration for optimizing per-
formance according to certain specifications while
satisfying design constrains. Several methodologies
were proposed earlier [19], [20], [21], [22]. How-
ever, most of these methodologies were not able to
deal with algorithms that have dimensions more than
two. The authors of [22], [23] proposed a systematic
methodology that deals with algorithms of arbitrary
dimensions. They proposed a formal algebraic proce-
dure for processor array design starting from a Regu-
lar Iterative Algorithm (RIA) for a three-dimensional
digital filter which gives rise to a dependency graph in
six-dimensional space. In this work, we used this for-
mal technique to develop processor arrays for Smith-
Waterman with affine gap penalty algorithm.

3.1 Obtaining the Algorithm Dependency
Graph (DG)

The Smith-Waterman with affine gap penalty algo-
rithm explained in Equation (2) can be easily defined
on a two dimensional (2D) domain since there are two
indices (i, j). The DG is shown in Fig. 2. The com-
putation domain is the convex hull in the 2D space,
where the algorithm operations are defined as indi-
cated by circles in the 2D plane [22], [23], [24]. Also,
from this figure we notice that the input variables xi,
F (i, j − 1) and Iy(i, j − 1) are represented by hor-
izontal lines, the input variables yj , F (i − 1, j) and
Ix(i − 1, j) are represented by vertical lines, and the
output variables F (i, j), Ix(i, j) and Iy(i, j) are rep-
resented by the slanted lines. the zero inputs at the left
and upper borders of DG represents the initial values
of the alignment matrix, F (i, 0), Ix(i, 0), Iy(i, 0) and
F (0, j), Ix(0, j), Iy(0, j).

3.2 Data Scheduling

Pipelining or broadcasting the variables of an algo-
rithm is determined by the choice of a timing function
that assigns a time value to each node in the DG. A
simple but useful timing function is an affine schedul-
ing function of the form [22].

t(p) = Gp− g (3)

where the function t(p) associates a time value t to a
point p in the DG. Value of G is chosen to ensure that
only positive time index values are obtained. The row
vector G = [g1 g2] is the scheduling vector and g is an
integer. The affine scheduling function must satisfy

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 284 Volume 14, 2015

j

i

(y1, 0)

(x1, 0)

(y2, 0) (y3, 0) (yj, 0) (yN, 0)

(x2, 0)

(x4, 0)

(x3, 0)

(x5, 0)

(xi, 0)

(xM, 0)

 xi, F(i, j-1),
Iy(i, j-1)

F(i-1, j-1),

Ix(i-1,j-1),

Iy(i-1, j-1)

 xi, Iy(i, j)
F(i, j),

Ix(i,j),
Iy(i,j)

yj,Ix(i,j)

yj,F(i-1,j),
Ix(i-1,j)

 F(M, 1),
Ix(M, 1),
Iy(M, 1)

t =1 t =2 t =3 t =4

Output

 F(M, 2),
Ix(M, 2),
Iy(M, 2)

 F(M, 3),
Ix(M, 3),
Iy(M, 3)

 F(M, 4),
Ix(M, 4),
Iy(M, 4)

 F(M, j),
Ix(M, j),
Iy(M, j)

 F(M, N),
Ix(M, N),
Iy(M, N)

Figure 2: Smith-Waterman with affine gap penalty al-
gorithm dependency graph.

several conditions. From Fig.2, we observe that in
each column the output variable Ix(i, j) of each node
depends on the output variables Ix(i−1, j) and F (i−
1, j) form the previous node in the same column, thus
we can write

t(p(i− 1, j)) < t(p(i, j)) (4)

Applying our scheduling function in Equation (3) to
this inequality, we get

[
g1 g2

] [i− 1

j

]
<

[
g1 g2

] [i

j

]
(5)

ig1 − g1 + jg2 < ig1 + jg2 (6)

Which could be simplified to

g1 > 0 (7)

Similarly From Fig.2, In each row we observe that
the output variable Iy(i, j) depends on the previous
output variables Iy(i, j − 1) and F (i, j − 1) of the
same row, thus we can write

[
g1 g2

] [i

j − 1

]
<

[
g1 g2

] [i

j

]
(8)

ig1 + jg2 − g2 < ig1 + jg2 (9)

Which could be simplified to

g2 > 0 (10)

From Equations (7) and (10) there are many so-
lutions for G, the most reasonable and simplest one
is

G = [1 1] (11)

If we want to pipeline or allocate a variable whose
nullvector is θ , we must have

Gθt ̸= 0 (12)

where θ is the nullvector of the variable dependence
matrix [22]. On the other hand, if we want to broad-
cast a variable whose nullvector is θ , we must have
[22]

Gθt = 0 (13)

To study the timing of the variables xi, yj ,
Ix(i, j), Iy(i, j) and F (i, j), we first find their nul-
lvectors

θxi = [0 1] (14)

θyj = [1 0] (15)

θIx(i,j) = [−1 − 1] (16)

θIy(i,j) = [−1 − 1] (17)

θF (i,j) = [−1 − 1] (18)

The product of G and these nullvectors gives

Gθtxi
= 1 (19)

Gθtyj = 1 (20)

GθtIx(i,j) = −2 (21)

GθtIy(i,j) = −2 (22)

GθtF (i,j) = −2 (23)

Therefore, The input and output variables will be
pipelined or allocated.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 285 Volume 14, 2015

3.3 DG Node Projection

The projection operation is a many-to-one function
that maps several nodes of the DG onto a single node,
which constitutes the resulting processor array. Thus,
several operations in the DG are mapped to a single
PE. The projection operation allows hardware econ-
omy by multiplexing several operations in the DG on
a single PE. The author of [22] explained how to per-
form the projection operation using a projection ma-
trix P . To obtain the projection matrix, we need to
define a desired projection direction d. The vector d
belongs to the null-space of P . Since we are dealing
with a two-dimensional DG, matrix P is a row vec-
tor and d is a column vector [22]. A valid projection
direction d must satisfy the inequality [22]

Gd ̸= 0 (24)

In the following, we will discuss design space ex-
plorations based on the timing function G obtained in
Equation (11). There are many projection directions
that satisfy Equation (24) for the scheduling function
in Equation (11). For simplicity we choose three of
them as follows:

d1 = [1 0]t (25)

d2 = [0 1]t (26)

d3 = [1 1]t (27)

The corresponding projection vectors are given
by

P1 = [0 1] (28)

P2 = [1 0] (29)

P3 = [−1 1] (30)

Our processor design space now allows for three
processor array configurations for each projection
vector for the timing function G. The processor ar-
ray associated with the projection vector P2 is the
same as the conventional one perviously reported in
the literature [16]. The processor array associated
with the projection vector P3 is not regular and have
high complexity that makes it not suitable for VLSI
implementation. Thus, we will ignore this design in
this research paper. In the following subsection, we
study the processor arrays associated with the projec-
tion vectors P1 and P2.

3.3.1 Design1: using P1 = [0 1]

A point in the DG p = [i j]t will be mapped by the
projection vector P1 = [0 1] onto the point

p′ = P1p = j (31)

The resulting processor array corresponding to the
projection vector P1 consists of N PEs. Only at most
M PEs are active at each time step. Fig. 3 shows the
processor activity for the case N = 6 and M = 3,
where the black nodes represent active PEs and white
nodes represent idle PEs. Since only maximum M
PEs are active at a given time step, the PEs are not
well utilized. To improve PE utilization, we need to
reduce the number of processors. We note from Fig.
3 that PEj and PEj+M are active at non-overlapping
time steps. Thus, each pair of PEs (PEj and PEj+M)
can be mapped to a single PE without causing time
conflicts. This can be achieved by mapping PEs with
indices j (in Fig. 3) to PEs with indices j

′
using the

following nonlinear projection operation:

j
′
= j mod M (32)

The resulting processor array for different values of
N and M is shown in Fig. 4. To the best of our
Knowledge, this processor array is new and was not
reported before in the literature. The processor ar-
ray consists of M PEs. Input bits of subject sequence
y(kM + j) should be allocated to each processing el-
ement in the processor array during the computation
cycle (M clock cycles), where k has values in range
from 0 to ⌈N/M⌉ − 1. On the other hand, Input bits
of the query sequence xi and intermediate out bits of
Ix(i, j), Iy(i, j) and F (i, j) are pipelined between ad-
jacent PEs. A tristate buffer at the output of each PE
ensures that it is the only output fed to the output bus.

3.4 Design1 folded processor array

To solve the problem of long queries, this design ar-
chitecture has been modified to be reused for multiple
pass processing and implemented on a single FPGA
instead of replicating the processing elements on a
cluster of multiple FPGAs. This design approach is
called folding approach [20], [25] and it has the ad-
vantage of decreasing the significant amounts of en-
ergy consumed as well as reducing design size, op-
erational costs and maintenance. The design mod-
ification starts by partitioning the algorithm in hand
into small alignment steps and map the partitioned al-
gorithm on a fixed size linear processor array. This
problem is well studied in the VLSI design arena [20],
[25]. The following illustrates the modification pro-
cess.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 286 Volume 14, 2015

0 1 2 3 4

1

2

3

PEj

tim
e

5

xi, Iy, F(i, j-1) yj, Ix, F(i-1, j)

xi, Iy(i, j)yj, Ix(i, j)

y1, 0

y2, 0

y3, 0

y4, 0

y5, 0

y6, 0

x1, 0

x2, 0

x3, 0

Ix, Iy, F(3,1)
4

5

6

7

8

Ix, Iy, F(3,2)

Ix, Iy, F(3,3)

Ix, Iy, F(3,4)

Ix, Iy, F(3,5)

Ix, Iy, F(3,6)

Ix, Iy, F(i,j)

Ix, Iy, F(i-1,j-1)

Figure 3: processor activity at different time steps for
d1 = [1 0]t, N = 6, and M = 3.

PE1 PE2 PEj

xi

PEM

y(kM+1)

Best score

Intermediate results and control

query sequence

y(kM+2) y(kM+j) y(kM+M)

Figure 4: processor array for d1 = [1 0]t for different
values of N and M .

let us presume the common situation of a query
sequence length of M and a linear processor array of
size v, where M > v and q = ⌈M/v⌉. First, the
linear processor array of length M is conceptually ex-
panded to an array of length q×v with the last qv−M
PEs filled with zero-values. Thereby, these additional
PEs do not effect the total alignment result. After this
conceptual step, the produced linear processor array
of length q×v is folded into the actual array of length
v. As a result of this folding process, the alignment
process is accomplished in kq passes over the linear
array. For this, we need a first-in-first-out (FIFO) to
store M − v bits of the query sequence, and interme-
diate results from each pass before they are fed back
to the array input for the next pass (see Fig. 5). The
depth of the FIFO is dictated by the length of the query
sequence.

The processing over multiple passes requires a

PE1 PE2 PEj

x

PEv

y(kM+(qv+1))

Best score

FIFO

depth = M-v

Intermediate results and control

query sequence

y(kM+(qv+2)) y(kM+(qv+j)) y(kM+(qv+v))

Figure 5: Design1 folded fixed size processor array

different set of substitution matrix columns for each
pass computation. The substitution matrix column (In
[16], the authors referred to substitution matrix col-
umn as the configuration element (CE) and we will
use this term here) is dictated by the subject residue
held by the PE for an alignment matrix computa-
tion. The design of the proposed sequence alignment
core architecture is based on the scheduling strategy
(Known as overlapped computation and configuration
(OCC)) proposed by [16]. We used fixed CEs (two
CEs) for each processing element and adopted the
double buffering technique proposed by [16] to man-
age the fixed CEs for alignment matrix computation
and CE configuration in the folded processor array. In
this case, the designed PE architecture optimizes logic
resources in the PE by having fixed numbers of CEs.
In the double buffering approach proposed by [16],
one of the CEs is configured with different probabil-
ity scores at different folds while the other CE holds
a column of substitution matrix scores for the corre-
sponding fold computation. A main controller [16] is
utilized to schedule both configuration and computa-
tion modes to run at the same time. Therefore, The
overlapping between configuration and computation
modes virtually removes the time taken for CE con-
figuration throughout every fold computation. Also,
Another logic unit called ”parallel loader” is proposed
by [16] for efficient scheduling between tasks in com-
puting the alignment matrix and configuring the CE
for following pass computation. This loader is in-
tended to configure CEs in parallel with limited CE
configuration time regardless of the number of PEs
or the length of the subject sequence. Thus, the time
taken to configure the CE in all PEs is less than the
time which has passed away in computing the align-
ment matrix. This enables the smooth scheduling of
the concurrent operations (alignment matrix compu-
tation and CE configuration) during each fold compu-
tation. The subject residue-to-CE mapping is a part
of the CE configuration task which is required to load
only the subject-related substitution matrix columns

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 287 Volume 14, 2015

into their corresponding CEs during CE configuration
phase. The logic component that is responsible for
mapping the CE with its corresponding subject se-
quence residue is called ”subject loader”. The oper-
ation of this loader is similar to the operation of the
”query loader” proposed by [16]. For more details re-
garding the ”main controller”, the ”parallel loader”,
and the ”query loader” - that is similar to the ”subject
loader” - are given in [16].

Figure 6 shows the hardware implementation of
each PE of the folded processor array. All compu-
tation parameters of gap data width (gw), compute
data width (cw) and the substitution matrix score data
width (w) in each PE are parameterizable. Four bits
of (gw) are sufficient to represent the gap open (d)
and gap extension (e) penalty scores for the affine
gap function, while five bits of (w) are sufficient
to represent the substitution matrix scores that each
substitution matrix column includes 20 amino acids.
The PE consists of three arithmetic units; the best
score F (i, j) where residues xi and yj are aligned
to each other, the best score Ix(i, j) where residue xi
is aligned to a gap, and the best score Iy(i, j) where
residue yj is aligned to a gap. The PE ”Best Score
unit” calculates the ’maximum so far’ of the align-
ment scores, taking into account the PEj and PEj−1

best scores. In this architecture, the input y(kM + j)
represents a residue of the subject sequence Y . It
is loaded in a register during the configuration phase
and it is applied for the whole computational cycle
(M clock cycles). The input xi represents the residue
of the query sequence X that is pipelined to the next
PE through register. The resulted best score (maxi-
mum score of Ix(M,kM + j) or Iy(M,kM + j) or
F (M,kM + j)) will be available on the output bus
after M clock cycles through a tristate buffer. If the
resulted best score satisfies a given threshold value,
the corresponding subject sequence address besides
the resulted best score itself are stored in a best score
FIFO, otherwise they are ignored. There is a data path
control signal called ”Last-clk-cycle”, that indicates
the last cycle in each iteration. It controls the tristate
buffer, at the output of each PE, to feed the resulted
score to the output bus at the proper time. This control
signal, in each PE, is delayed one clock cycle before
propagating to the next PE. This is done by propagat-
ing this signal through registers between the PEs.

During the configuration mode, the subject se-
quence residue selects its corresponding substitution
matrix column (CE) through multiplexors ”mux1” or
”mux2”. The CE briefly holds a column of substitu-
tion matrix scores for alignment matrix computation.
Since both CEs are used alternately for computation, a
multiplexer ”mux3” is used to select substitution ma-
trix scores either from CE0 or CE1, whereby the se-

lection is dictated by the CE-SEL port. The CE selec-
tion procedure is based on the computational passes.
During all even numbered fold computations, CE0 is
ready to supply its substitution matrix scores for PE
computation. So also, during all odd-numbered com-
putation, CE1 is ready to supply its substitution matrix
scores for computation. During computation mode,
query sequence residues selects the substitution ma-
trix score, S(xi, y(kM+j)), for the PE to process the
elementary functions of the DP alignment algorithm.

xi

y(kM+j)

PEj Best Score

E
N

B

Last-clk-cycle-in

R
eg

.

CE

Reg

Reg.
Last-clk-cycle-out1

L
U
T

mux1

CE0
1

L
U
T

mux2

CE1

(To next PE)

mux3
CE-SEL

S(xi, y(kM+j))

+

+

+

M
A
X

+

+

M
A
X

+

+

M
A
X

F(i, kM+j)

PE
Best Score

Ix(i, kM+j)

Iy(i,kM
+

j)

Reg

Iy(i, kM+j-1)

F(i, kM+j-1)

F(i-1, kM+j)
d

Ix(i-1, kM+j)
e

F(i-1, kM+j-1)

Ix(i-1, kM+j-1)

Iy(i-1, kM+j-1)

Substitution matrix scores (from parallel loader)

ww ww

w

w

w

Reg

cw

cw

cw

cw

cw

cw

cw

cw

cw

gw

gw

w

cw

0

(To next PE) w

From subject loader

From query FIFO

(To next PE)

Best Score from previous PE

cw

Figure 6: Design1 PE logic diagram.

3.5 Design2: using P2 = [1 0]

A point in the DG p = [i j]t will be mapped by the
projection matrix P2 = [1 0] onto the point

p′ = P2p = i (33)

The resulting processor array corresponding to the
projection matrix P2 consists of M PEs. Fig. 7 shows
the processor activity for the case N = 6 and M = 3,
where the black nodes represent active PEs and white
nodes represent idle PEs. At most time steps, the max-
imum number of PEs, M , are active and this results

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 288 Volume 14, 2015

in a good utilization of PEs. The resulting processor
array, for different values of N and M is shown in
Fig. 8. This processor array is similar to the one re-
ported in [26], [27], [28], [29], [9], [30], [31], [32],
[33], [34], [35], [36], [37], [38]. The processor array
now consists of M PEs. Input bits of query sequence
xi should be allocated to each PE (as reported in the
previous publications). On the other hand, input bits
of the subject sequence yj and the intermediate output
bits Ix(i, j), Iy(i, j), and F (i, j) c(i, j) of each PE are
pipelined to the next PE with higher index. The out-
put score is obtained serially from the last PE (PEM)
of the array after latency of M clock cycle.

0 1 2

1

2

PEi

tim
e

x1, 0

x2, 0

x3, 0

y1, 0

y2, 0

y3, 0

y4, 0

y5, 0

y6, 0

3

4

5

6

7

8

 Ix, Iy, F(3, 1)

 Ix, Iy, F(3, 2)

 Ix, Iy, F(3, 3)

 Ix, Iy, F(3, 4)

 Ix, Iy, F(3, 5)

 Ix, Iy, F(3, 6)

Figure 7: Processor activity at different time steps for
d2 = [0 1]t, N = 6, and M = 3.

3.6 Design2 folded processor array

To solve the problem of long queries, we used the
folding technique discussed in Sec. 3.4 and [16]. The

PE1 PE2 PEi
yj

PEM

x0

Best
score

Intermediate results, subject sequence and
control

x1 xi xM

Figure 8: Processor array for d2 = [0 1]t for different
values of N and M .

resulted folded processor array for Design2 is shown
in Fig. 9. Similar to the folded processor array of
Design1, the alignment process using this folded pro-
cessor array is accomplished in q passes over the lin-
ear array. For this, we need a FIFO to store the sub-
ject sequence and intermediate results from each pass
before they are fed back to the array input for the
next pass (see Fig. 9). In this case, the depth of
the FIFO is dictated by the maximum length of the
subject sequence in the protein database (the subject
sequence maximum length in UniprotKB/Swiss-Port
protein knowledgebase ,Release 2014 7 of July 2014,
is 35,213 amino acids) as opposed to the case of De-
sign1 that the depth of FIFO is dictated by the aligned
query sequence.

PE1 PE2 PEi

yj

PEv

x1

Best
score

FIFO

depth = N-v

Intermediate results and control

subject sequence

x2 xj xv

Figure 9: Design2 Folded fixed size processor array.

Figure 10 shows the hardware implementation of
each PE of the folded processor array. The PE con-
sists of three arithmetic units; the best score F (i, j)
where residues xi and yj are aligned to each other,
the best score Ix(i, j) where residue xi is aligned to
a gap, and the best score Iy(i, j) where residue yj is
aligned to a gap. The PE ”Best Score unit” calculates
the ’maximum so far’ of the alignment scores, taking
into account the PEj and PEj−1 best scores. In this
architecture, the input xi represents a residue of the
query sequence X . It is loaded in a register during
the configuration phase and it is applied for the whole
computational cycle (M clock cycles). The input yj
represents the residue of the subject sequence Y that is
pipelined to the next PE through register. The resulted

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 289 Volume 14, 2015

best score (maximum score of Ix(M, j) or Iy(M, j)
or F (M, j)) will be available on the output bus after
M clock cycles from the last PE in the processor ar-
ray. If the resulted best score satisfies a given thresh-
old value, the corresponding subject sequence address
besides the resulted best score itself are stored in a
best score FIFO, otherwise they are ignored.

During the configuration mode, the query se-
quence residue selects its corresponding substitution
matrix column (CE) through multiplexors ”mux1” or
”mux2”. The CE briefly holds a column of substitu-
tion matrix scores for alignment matrix computation.
Since both CEs are used alternately for computation, a
multiplexer ”mux3” is used to select substitution ma-
trix scores either from CE0 or CE1, whereby the se-
lection is dictated by the CE-SEL port. The CE selec-
tion procedure is based on the computational passes.
During all even numbered fold computations, CE0 is
ready to supply its substitution matrix scores for PE
computation. So also, during all odd-numbered com-
putation, CE1 is ready to supply its substitution matrix
scores for computation. During computation mode,
subject sequence residues selects the substitution ma-
trix score, S(xi, yj), for the PE to process the elemen-
tary functions of the DP alignment algorithm.

4 Implementation Results

This section discusses the resource utilization and
performance evaluation of the proposed novel de-
sign (Design1) and the previously reported de-
sign (Design2). The two designs are described in
VHDL language and implemented on Alpha Data
ADM-XRC-5LX card - with Xilinx Vertix-5 FPGA
(XC5VLX110) on it - using Xilinx ISE8.1 tools. Both
architectures are synthesized with query sequences
lengths ranging from 64 residues to 2048 residues
from the protein knowledgebase (UniPortKB). Each
of the query sequences is aligned against subject se-
quences of lengths ranging from 2 to 2048 in proces-
sor array of size v = 64 with different folds.

In Table 1, the columns entitled ”ET1” and ”ET2”
represent the execution time, in µs, needed to com-
plete an alignment operation for Design1 and De-
sign2, respectively. The columns entitled ”#LC1” and
”#LC2” represent the number of logic cells (LCs) oc-
cupied by each processor array for Design1 and De-
sign2, respectively. The ”Speed up”, ”Area Ratio”
and ”Area Normalized Speed up” design metrics are
calculated using the synthesis results in order to mea-
sure the degree of optimization achieved in each de-
sign. The ”speed up” is calculated by dividing the ex-
ecution time of Design2 ”ET2” by the execution time
of Design1 ”ET1”, while the ”Area ratio” is calcu-

xi

yj

PEi Best Score

R
eg

.

Reg

L
U
T

mux1

CE0
1

L
U
T

mux2

CE1 (To next PE)

mux3
CE-SEL

S(xi, yj)

+

+

+

M
A
X

+

+

M
A
X

+

+

M
A
X

F(i, j)

PE
Best Score

Ix(i, j)

Iy(i, j)

Iy(i, j-1)

F(i, j-1)

F(i-1, j)

d

Ix(i-1, j)

e

F(i-1, j-1)

Ix(i-1, j-1)

Iy(i-1, j-1)

Substitution matrix scores (from parallel loader)

ww ww

w

w

w

cw

cw

cw

cw

cw

cw
cw

gw

gw

w

0

Reg

Reg

(To next PE) w

From query loader

From subject FIFO

Best Score from the previous PE

Figure 10: Design2 PE logic diagram.

lated by dividing ”#LC1” by ”#LC2”. Moreover, the
”Area Normalized Speed up” is calculated by dividing
”Speed up” by ”Area Ratio”.

The Execution time for each design is calculated
as the product of the total number clock cycles it takes
and the clock period. The critical path delays obtained
from synthesis results determines the clock period.
The total number of clock cycles needed for Design1
are given by Equation 34, while the total number of
clock cycles needed for Design2 are given by Equa-
tion 35.

TDesign1 = qkM (34)

TDesign2 = qN (35)

We notice from Table 1 that the area of the pro-
posed design (#LC1) has different values depending
on the length of the query sequence. This is attributed
to the depth of FIFO in the processor array of Design1
is dictated by the length of the current aligned query
sequence, while the depth of the FIFO in the processor
array of the conventional design (Design2) is dictated
by the maximum subject length (N = 2048) in the
sample of subject sequences that the query sequence is

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 290 Volume 14, 2015

Ta
bl

e
1:

E
xe

cu
tio

n
tim

e
an

d
no

rm
al

iz
ed

sp
ee

d-
up

of
th

e
pr

op
os

ed
de

si
gn

(D
es

ig
n1

)
an

d
th

e
co

nv
en

tio
na

l
de

si
gn

(D
es

ig
n2

)
us

in
g

pr
oc

es
so

r
ar

ra
y

of
si

ze
v
=

64
w

ith
di

ff
er

en
tf

ol
ds

.
qu

er
y

se
qu

en
ce

q
D

es
ig

n1
D

es
ig

n2
Sp

ee
d-

up
A

re
a

R
at

io
A

re
a

N
or

m
al

iz
ed

Sp
ee

d
up

M
E

T
1(
µ
s)

#L
C

1
E

T
2(
µ
s)

#L
C

2
64

1
12

.0
6

41
,6

57
23

.0
4

49
,1

56
1.

9
0.

85
2.

24
12

8
2

29
.6

5
42

,5
46

46
.0

8
49

,1
56

1.
6

0.
86

1.
86

25
6

4
68

.4
9

43
,4

56
90

.1
1

49
,1

56
1.

3
0.

87
1.

49
51

2
8

17
6.

33
44

,7
58

17
8.

59
49

,1
56

1.
01

0.
91

1.
11

10
24

16
49

1.
52

46
,6

23
35

7.
17

3
49

,1
56

0.
73

0.
95

0.
77

20
48

32
1,

80
2.

24
49

,7
12

71
4.

35
49

,1
56

0.
4

1.
01

0.
39

aligned against. This demonstrates the fixed area val-
ues of the conventional design (Design2). Also, we
notice from this table that the proposed design (De-
sign1) has a normalized speed up of 11% for query
length M = 512 and increases linearly as the query
length decreases (up to 124% for M = 64). On the
other hand, the proposed design (Design1) has lower
normalized speed up for query values greater than 512
and decreases linearly as the query length increases.

Figure 11 shows the distribution of biological
sequences by length (number of residues) in the
UniProtKBSwiss-Prot database [39]. As of July
2014, the UniprotKB/Swiss-Port database (Release
2014 7) comprises 546,000 sequences or 194,259,968
residues. The average sequence length is 355 amino
acids, with the shortest of 2 amino acids and the
longest 35,213 residues [39]. We notice from this fig-
ure that the largest number of protein sequences have
lengths located roughly between 50 and 600 residues.
Therefore, most of the query sequence lengths lies in
the range less than 512, which makes the proposed
design (Design1) more suitable for protein sequence
alignment than the conventional design (Design2) as
it outperforms the conventional design in speed and
area in this sequence lengths range.

Figure 11: UniProtKB/Swiss-Prot knowledge base se-
quences by length-distribution [39].

5 Summary and conclusion

This paper presented novel reconfigurable processor
array architecture for the Smith-Waterman with affine
gap penalty algorithm to align protein sequences with
optimal results. This architecture is extracted by
applying a nonlinear mapping methodology to the

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 291 Volume 14, 2015

Smith-Waterman algorithm after expressing it as Reg-
ular Iterative Algorithm (RIA). Also, This architec-
ture has been modified using folding technique to en-
able hardware reuse to avoid replicating processing
elements of the processor array in multiple FPGAs.
The implementation results showed that the proposed
design is more efficient in speed and area - for query
length values less than 512 residues - than the conven-
tional processor array architecture previously reported
in the literature.

Acknowledgements: The authors would like to ac-
knowledge the support of the deanship of scientific re-
search at Prince Sattam Bin Abdulaziz university un-
der the research project #2014/01/2120.

References:

[1] G. Osamu, An improved algorithm for matching
biological sequences, Journal of Molecular Bi-
ology 162, 1982, pp. 705–708.

[2] D. Benson, I. Karsch-Mizrachi, D. Lipman,
J. Ostell, B. Rapp, and D. Wheeler, “Genbank,
Nucleic Acids Research 28, 2000, pp. 15–18.

[3] T. Oliver, B. Schmidt, and D. Maskell, Recon-
figurable architectures for biosequence database
scanning on fpgas, IEEE Transactions on Cir-
cuits and Systems II 52, 2005, pp. 851–855.

[4] Y. Yamaguchi, T. Maruyama, and A. Konagaya,
High speed homology search with fpgas, in
The Pacific Symposium on Biocomputing, 2002,
pp. 271– 282.

[5] R. Jacobi, M. Ayala-Rincon, C. Llanos, and
R. Hartenstein, Reconfigurable systems for se-
quence alignment and for general dynamic pro-
gramming, Genetics and Molecular Research 4,
2005, pp. 543–552.

[6] T. V. Court and M. Herbordt, Families of fpga-
based accelerators for approximate string match-
ing, Microprocessors and Microsystems, 31,
2007, pp. 135–145.

[7] D. Hoang, Fpga implementation of systolic se-
quence alignment, in International Workshop
on Field Programmable Logic and Applications,
(Vienna, Austria), 1992.

[8] A. Mohamed, E. Esam, and T. Mohamed, Dna
and protein sequence alignment with high per-
formance reconfigurable systems, in Second
NASA/ESA Conference on Adaptive Hardware
and Systems: IEEE Computer Society, 2007.

[9] K. Benkrid, L. Ying, and A. Benkrid, A highly
parameterized and efficient fpga-based skele-
ton for pairwise biological sequence alignment,
IEEE Transactions on VLSI Systems 17, 2009,
pp. 561–570.

[10] S. Lloyd and Q. Snell, “Hardware accelerated
sequence alignment with traceback,” Interna-
tional Journal of Reconfigurable Computing,
2009, pp. 10–18.

[11] X. Meng and V. Chaudhary, Boosting data
throughput for sequence database similarity
searches on fpgas using an adaptive buffer-
ing scheme, Journal of Parallel Computing 35,
2009, pp. 1–11.

[12] M. Isa, K. Benkrid, T. Clayton, C. Ling, and
A. Erdogan, An fpga-based parameterized and
scalable optimal solutions for pairwise bio-
logical sequence analysis, in NASA/ESA Con-
ference on Adaptive Hardware and Systems
(AHS’2011), 2011.

[13] J. Xian-yang, L. Xinchun, X. Lin, Z. Peiheng,
and S. Ninghui, A reconfigurable accelerator for
smith waterman algorithm, IEEE Transactions
on Circuits and Systems II 54, 2007, pp. 1077–
1081.

[14] P. Zhang, G. Tan, and G. R. Gao, Implemen-
tation of the smith-waterman algorithm on a
reconfigurable supercomputing platform, Altera
Corporation, 2007.

[15] Y. Yamaguchi, H. Tsoi, and W. Luk, Fpga-
based smith-waterman algorithm: Analysis and
novel design, Lecture Notes in Computer Sci-
ence; Reconfigurable Computing: Architectures,
Tools and Applications: Springer Berlin Heidel-
berg 6578, 2011, pp. 181–192.

[16] M. Isa, K. Benkrid, and T. Clayton, Efficient ar-
chitecture and scheduling technique for pairwise
sequence alignment, ACM, SIGARCH Computer
Architecture News 40, 2012, pp. 26–31.

[17] T. Smith and M. Waterman, Identification
of common molecular subsequences, J. Mol.
Biol 147, 1981, pp. 195–197.

[18] R. Durbin, S. Eddy, A. Krogh, and G. Mitchi-
son, Biological Sequence Analysis: Probabilis-
tic Models for Proteins and Nucleic Acids. Cam-
bridge University Press: Cambridge University,
1998.

[19] S. Rao and T. Kailath, Regular iterative algo-
rithms and their implementation on processor ar-
rays, Proc. IEEE, 76, 1988, pp. 259–269.

[20] S. Kung, VLSI Array Processors. Englewood
Cliffs, N.J.: Prentice- Hall, 1988.

[21] E. Abdel-Raheem, Design and VLSI Implemen-
tation of Multirate Filter Banks. PhD thesis,
University of Victoria, Victoria, BC, 1995.

[22] F. El-Guibaly and A. Tawfik, Mapping 3d iir dig-
ital filter onto systolic arrays, Multidimensional
Systems and Signal Processing 7, 1996, pp. 7–
26.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 292 Volume 14, 2015

[23] A. Ibrahim, F. Gebali, H. El-Simary, and A. Nas-
sar, Processor array architectures for scalable
radix 4 montgomery modular multiplication al-
gorithm, IEEE Trans. on Parallel and Dis-
tributed Systems 22, 2011 pp. 1142–1149.

[24] A. Refiq and F. Gebali, Processor array architec-
tures for deep packet classification, IEEE Trans.
on Parallel and Distributed Systems, 17, 2006,
pp. 241–252.

[25] D. Moldovan and J. Fortes, Partitioning and
mapping of algorithms into fixed size systolic ar-
rays, IEEE Trans. on Computers 35, 1986, pp. 1–
12.

[26] P. Guerdoux-Jamet and D. Lavenier, Samba,
hardware accelerator for biological sequence
comparison, Bioinformatics 13, 1997, pp. 609–
615.

[27] E. Chow, J. Peterson, M. Waterman,
T. Hunkapiller, and A. Zimmermann, “sys-
tolic array processor for biological information
signal processing,” in Proc. of the 5th Interna-
tional Conference on Supercomputing (ICS 91),
(USA), 1991, pp. 216–223.

[28] C. White and etl., Bioscan, vlsi-based system for
bio-sequence analysis, in Proc. Of IEEE Interna-
tional Conference on Computer Design (ICCD
91), 1991, pp. 504–509.

[29] T. Han and S. Parameswaran, Swasad, an asic
design for high speed dna sequence matching, in
Proc. of the 2002 Asia and South Pacific Design
Automation Conference (ASP- DAC 02), (USA),
2002, pp. 541–546.

[30] M. Gokhale and etl., “Splash: a reconfigurable
linear logic array,” in Int. Conf. on Parallel Pro-
cessing, 1990, pp. 526–532.

[31] G. Caffarena, C. Pedreira, C. Carreras, S. Bo-
janic, and O. Nieto-Taladriz, “Fpga acceleration
for dna sequence alignment,” J. Circuits Syst.
Compu 16, 2007, pp. 245–266.

[32] T. Oliver, B. Schmidt, and D. Maskell, Hy-
per customized processors for bio-sequence
database scanning on fpgas, in Proc. Of 13th
International Symposium Field-Programmable
Gate Arrays (FPGA05), 2005, pp. 229–237.

[33] S. Guccione and E. Keller, Gene matching us-
ing jbits, in Proc. of 12th Int. Conference on
Field- Programmable Logic and Applications
(FPL 02), 2002, pp. 1168–1171.

[34] C. Bio, White paper on clc bioinformatics cube
1.03, in Technical Report, CLC Bio, (Denmark),
2007.

[35] N. Sebastio, T. Dias, N. Roma, and P. Flo-
res, Integrated accelerator architecture for dna

sequences alignment with enhanced traceback
phase, in International Conference on High Per-
formance Computing and Simulation (HPCS),
2010, pp. 16–23.

[36] S. Lloyd and Q. Snell, Sequence alignment with
traceback on reconfigurable hardware, in Inter-
national Conference on Reconfigurable Comput-
ing and FPGAs (ReConFig 08), 2008, pp. 259–
264.

[37] N. Sebastio, T. Dias, N. Roma, and P. Flores,
Hardware accelerator architecture for simulta-
neous short-read dna sequences alignment with
enhanced traceback phase, Microprocessors and
Microsystems 36, 2012, pp. 96–109.

[38] J. Arram, k. Tsoi, W. Luk, and P. Jiang, Hard-
ware acceleration of genetic sequence align-
ment, Reconfigurable Computing: Architec-
tures, Tools and Applications, Lecture Notes in
Computer Science 7806, 2013, pp. 13–24.

[39] UniProtKB/Swiss-Prot, Uniprotkb/swiss-prot
protein knowledgebase release 2014 07.
http://web.expasy.org/docs/relnotes/relstat.html,
2014.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah

E-ISSN: 2224-266X 293 Volume 14, 2015

