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Abstract: - Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),  Genetic Algorithm (GA) 
and Simulated Annealing (SA) are mostly used as metaheuristic for electronic circuit’s performances 
optimization. Despite their different research techniques, these methods achieve the optimal solution for analog 
circuit design. The aim of this paper is to make a comparison between the performances reached by those four 
techniques in the optimal sizing of a CMOS second generation current conveyor (CCII) and an operational 
amplifier (Op-Amp). The highlighted results obtained by the used algorithms, will be compared in terms of 
optimum quality, convergence rate and the computing time.   
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1 Introduction 
Analogue circuit design deals with very complex 
nonlinear equations, obtaining optimal solution of 
these equations due to particular constraints in short 
time and acceptable error is an increasing challenge. 
It is then generally carried out thanks to the 
experiment and the intuition of the designer. 
Automatics procedures for the sizing of analog 
circuits are mostly suitable in order to design and 
simulate quickly a given electronic circuit 
performances and then reducing its time to market 
[1]. 
 
The best-known approaches in literature are based 
on fixed topologies and/or statistical techniques [2]. 
They are generally initialized with a "good" solution 
("good" DC quiescent point) provided by the skilled 
analogue designer. The problem with these methods 
is that they are often very slow and they don’t 
guarantee the convergence to a global optimum. The 
use of new methods is required. New heuristics 
based methods able to resolve optimization 
problems were then introduced [3], among which 
some are adaptable to many different problems 
referred to as metaheuristics. Their ability to 
optimize a problem from a minimum of information 
is compensated by the fact that they offer no 
guarantees about the optimality of the best found 
solution. Only an approximation of the global 
optimum is given at very reasonable times [4]. 
Starting from a current given point, in the research 

space, these methods generate new points by 
applying operators and by statistically moving 
toward more optimal places in the research space. 
Some (meta-)heuristics were proposed in the 
literature and used by analog designers, such as 
Tabu Search (TS) [5,6], Genetic Algorithms (GA) 
[7], Local search (LS) [8], Simulated Annealing 
(SA) [9], Ant Colony Optimization (ACO) [10-12], 
Wasp Nest (WN) [13], Bacterial Foraging 
Optimization (BFO) [14] and Particle Swarm 
Optimization (PSO) [15,16]. 
 
In this work, four different metaheuristic algorithms 
to solve typical analog circuit sizing problems will 
be used: Particle Swarm Optimization and Ant 
Colony Optimization which are derived from the 
Swarm Intelligence, Genetic Algorithm inspired by 
mechanisms from evolutionary algorithm and 
Simulated Annealing based on the physical 
phenomena. The aim is to compare these four 
techniques in terms of results quality and computing 
time for the resolution of analog sizing optimization 
problems. Two application examples are considered, 
a second generation current conveyor (CCII) and a 
two-stage CMOS operational amplifier (Op-Amp).  
 
The rest of the paper is organized as follows. The 
Section 2 begins by a brief overview of the PSO, 
ACO, GA and SA techniques. The viability of the 
proposed algorithms, via some test problems, and 
the optimization results, obtained by each technique, 
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are presented and compared with each other in 
section 3 where is also presents the SPICE 
simulation results which show the validity of the 
obtained results. In section 4, we give a computing 
time and a checking of the convergence for the used 
algorithms. Finally, the major conclusions resulting 
from this work are presented and discussed. 
 
 
2 An overview on the used 
metaheuristics 
 
2.1 Swarm intelligence: PSO and ACO 
The most used Swarm Intelligence (SI) techniques 
in the literature are Particle Swarm Optimization 
(PSO) and Ant Colony Optimization (ACO) [17-
19]. They are artificial intelligence techniques 
inspired by the collective behaviour of a group of 
animals such insects, birds and fish. 
 
2.1.1 Particle Swarm Optimization: 
The PSO is a stochastic global optimization method 
based on the social behaviour (bird flocking or fish 
schooling) and intelligence of swarm searching for 
the global optimal. This new method was developed 
by Edward and Kennedy in 1995 [17]. The PSO 
shares many similarities with evolutionary 
computation techniques such as Genetic Algorithms 
(GA). The system is initialized with a population of 
random solutions and searches for optima by 
updating solution generations. However, unlike the 
GA, the PSO has no evolution operators such as 
crossover and mutation [20].  
In the standard PSO, each particle I, is marked by 
two coordinates, a position-vector ( )ix  and a 
velocity a velocity-vector ( )iv . Each particle 
remembers its own best position and the global best 
position (best solution of the entire group).  
The equations of velocity and position are illustrated 
by the following equations:  
 

( ) ( ) ( ) ( )( ) ( ) ( )( ){ }iigbestiilbestii xxrcxxrcvcv −+−+=+ 22111 ω  (1) 

 

( ) ( ) ( )iii vxx +=+1
                          (2) 

 
Where ( )iv  is the particle velocity and ( )ix , ( )ilbestx
and ( )igbestx  are respectively the current particle, 
local best solution and global best solution at the ith 
generation, r1 and r2 are uniformly distributed in 
[0,1], c1 and c2 are the learning factors appointing 
two positive constants defined with  an empirical 
way and according to the relation c1 +c2 ≤ 4 , ω is 

the inertia weight; it controls the impact of the 
previous velocity on the current one, and c is a 
positive constant named constriction factor and used 
to control and constrict velocities. 
During the iteration time t, the update of the velocity 
from the previous value to the new one is 
determined by eq. (1). The new position is then 
determined by the sum of the previous position and 
the new velocity by (2). Each particle, which flies 
over the solution space, remembers the encountered 
best solution. If this new solution has a cost less 
than the cost of the current global solution, then this 
best local solution replaces the best global solution. 
This process is then iterated many times. 
The advantage of the PSO is its easiest 
implementation and its reduced number of 
parameters to adjust. The pseudo code of the PSO 
procedure can be presented as follows: 
 

Initialize the size of the particle swarm and other 
parameters. 
Initialize the positions and the velocities for all the 
particles randomly. 
Do 
   For each particle  
      Calculate fitness value 
        If  the fitness value is better than the best fitness   
            value (pbest) in history 
            set current value as the new pbest 
   End 
       Choose the particle with the best fitness value of 

all the particles as the gbest 
    For each particle  
        Calculate particle velocity according to (1) 
        Update particle position according to (2) 
    End  
While maximum iterations or minimum error criteria 
is not attained 

 
Algorithm 1.  Pseudo code of the PSO algorithm 

 
2.1.2 Ant Colony Optimization: 
Ant Colony Optimization technique is a meta-
heuristic stochastic combinatorial computational 
discipline inspired by the behavior of ant colonies 
[21,22]. While walking, ants deposit pheromone on 
the ground marking a path that may be followed by 
other members of the colony. Shorter paths, as they 
accumulate pheromone faster than the longer ones, 
have a higher probability of being used by other 
ants, which again reinforce the pheromone on that 
path. 
The ACO was first adapted to solve graph related 
problems, [23,24]. In such problems, ants randomly 
select the vertex to be visited. When an ant k is in 
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vertex i, the probability of going to vertex j is given 
[23,25] by: 
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where Ji
k  is the set of neighbors of vertex i of the kth 

ant, τij is the amount of pheromone trail on edge (i,j), 
α and β are weightings that control the pheromone 
trail and the visibility value, i.e. ηij, given by: 

ij
ij d

1
=η  (4) 

ijd  being  the distance between vertices i and j. 
The pheromone values are updated at each iteration 
by all the m ants that have built a solution in the 
iteration itself. The pheromone ijτ , which is 
associated with the edge joining vertices i and j, is 
updated as follows: 
 

∑ ∆+−= =
k
ij

m
kijij ττρτ 1 )1(  (5) 

where ρ is the pheromone evaporation rate, m is the 
number of ants, and )(tk

ijτ∆  is the quantity of 
pheromone laid on edge   (i, j) by the ant k: 
 
Each ant k will randomly choose a path according to 
the probability given by expression (3), and form a 
directed graph while randomly generating a rate of 
pheromone at the formed graph edges. At each 
iteration, the path giving the minimum value of the 
Objective Function (OF) sees its pheromone rate 
increasing, in contrast with the other paths for which 
the pheromone rates are partially evaporated with 
respect to expression (5). The pseudo code of the 
ACO procedure can be presented as follows: 
 
Random initialization of the pheromone value 
Do 
    For each iteration 
        For each ant 
            For each variable 
               Compute of the probability P according to (3) 
               Determine the Pmax 
               Deduce the value of  Vi 
            End  
         Compute OF 
         End  
      Deduce the best OF 
      Update pheromone values according to (5) 
     End  
    Report the best solution 
End 

 
Algorithm 2.  Pseudo code of the ACO algorithm 

 
2.2 Genetic Algorithm 
Darwin's theory about evolution inspired Holland 
and Goldberg [26,27]; they mimic natural evolution 
processes to find a solution to a problem: 
combination of selection, recombination and 
mutation. They form a subclass of evolutionary 
algorithms. Figure 1 illustrates its basic principle. 
 

Fitness 
Assignment

Ev
al

ua
tio

n

Recombination

Se
le

ct
io

n

In
iti

al
 p

op
ul

at
io

n

 
 

Fig. 1  The basic cycle of evolutionary algorithms 
 
where Evaluation consists of computing the 
objective values of the solution candidates. Fitness 
Assignment uses the objective values to determine 
fitness values. Selection chooses the fittest 
individuals for reproduction, and Reproduction 
creates new individuals from the mating pool by 
crossover and mutation [28]. 
The pseudo code of a basic GA is given in 
Algorithm 3. 
 

InitPopulation ( ) // random initialization of the 
population  

max_fitness := 0 
For each member chromosome 

                  fitness := Fitness_Evaluation (chomosome) 
If fitness > max_fitness 

max_fitness := fitness 
fittest_solution = chromosome 

End  
End  
while generation < max_generations 

offspring := Selection (parents) // using 
roulette-wheel selection 

fitness := Fitness_Evaluation (offspring) 
If fitness > max_fitness 

max_fitness := fitness 
fittest_solution = offspring 

End  
save fittest_solution 

End 
 

Algorithm 3.  Pseudo code of  the GA algorithm 
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2.3 Simulated Annealing  

The method of simulated annealing (SA) was first 
introduced by Kirkpatrick [29]. This technique 
simulates the annealing process in which a solid, in 
a heat bath, is heated above its melting temperature 
and then progressively, the temperature is lowered 
slowly to produce the crystalline lattice, which 
reduces its energy probability distribution. This 
crystalline lattice is an attractive example of nature 
finding of an optimal configuration [30].   

Generally, SA exploits the Metropolis Algorithm 
[31] which provides the criterion for acceptance of a 
solution ‘x’ constructed by disrupting the current 
solution x. This process gives the possibility of 
moving away occasionally of a local minimum to 
allow a widening of the research field of the ideal 
solution. There are several distinct steps that the SA 
process has to go through as the temperature is 
condensed and randomness is applied to the input 
values.  

The pseudo code of the SA procedure is as follows: 

 
Setup the SA. 
Choose a random solution (x) which takes the 
minimum solution xmin (x=xmin) 
Evaluate the cost function f (x) equal to f (xmin) 
Initialize the temperature T 
Repeat 
   Repeat 
       Generate a neighbor X' perturbing the solution X. 
           Acceptance with the criterion of Metropolis 
           if   f (x') ≤ f (x)  
                f (x) = f (x')  
                x=x' 
           if not 
               Calculate Δ f = f (x’) - f (x) 
               Calculate the probability p = exp (- Δ f / T)  
               Choose a random solution R between [0, 1]  
               if  R ≤ p 
                    f (x) = f (x') 
                    x= x'  
               end if 
              fmin = f (x) and  xmin = x 
           end if 
    Until thermodynamic equilibrium reaches 
T: = to decrease temperature 
Until maximum iterations or minimum error criteria is 
attained 

 
Algorithm 4.  Pseudo code of  the SA algorithm 

 
 

3 Test and application examples 
Under similar conditions, the four metaheuristics 
were applied to the optimal design of the 
aforementioned two CMOS circuits and two test 
functions.  
The proposed MATLAB-implemented algorithms 
parameters are given in Table 1 with a generation 
algorithm of 200 with Pentium (R) Dual-Core CPU, 
T4500 @2.3 GHz. 
 

Table 1.  Parameters of algorithms 

PS
O

 Swarm size 100 
inertia weight (w) 0.9 
Particle Velocity (c1) 1 
Particle Position (c2) 3 

A
C

O
 

Number of Ants 100 
Evaporation rate (ρ) 0.1 
Quantity of deposit pheromone (Q) 0.2 
Pheromone Factor (α) 1 
Heuristics Factor (β) 1 

G
A

  Population size 100 
Crossover Probability 0.9 
Mutation Probability  1e-4 

SA
 Initial temperature (T) 100 

Annealing rate  0.9 
Final temperature  1e-8 

 
3.1 The test examples 
In order to check the performances of the proposed 
algorithm, two classical objectives test functions 
[28,32] were used; their   expressions are given  in 
Table 2. 

Table 2.  The test functions 

 Variable 
Bounds Objective Functions 

F1 
4,4 ≤≤− yx

 
( ) ( ) ( ) ( )23222 625.225.25.1, xyxxyxxyxyxf +−++−++−=

 

F2 10,0 ≤≤ yx  ( ) ( ) ( )yyxxyxf 2sin1.14sin, +=  

 
In Table 3 we present the obtained minimas by 

all the studied algorithm as well as the theoretical 
know results. 

 
Table 3.  Comparison algorithm results and 

theoretical results 
 theoretical 

results PSO ACO GA SA 

F1 0.00 0.00 0.00 0.00 1.1581e-05 
F2 -18.5547 -18.5547 -18.5547 -18.5517 -18.5516 
 
We can notice that, the good agreement between 
theoretical results and those obtained using the 
proposed algorithms. The techniques ACO and PSO 
provide the global minima, whereas the GA and SA 
give closer but acceptable results. 
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3.2 The application examples 
In the previous work, we have described our 
proposed algorithms and shown their performance 
on a set of well-known test functions. In this part, 
the abovementioned algorithms were used to 
optimize performances of the following analog 
circuits and performances under consideration are: 

• The X-port parasitic resistance of a CMOS 
second generation current conveyor (CCII). 

• The high cut-off frequency of a CMOS 
second generation current conveyor (CCII). 

• The Open-loop voltage gain and the 
Common Mode Rejection Ratio, the Die 
Area and the Power dissipation of a two-
stage CMOS Op-Amp. 

 
3.2.1 Performance optimization of a CMOS CCII 
The four considered techniques, i.e. PSO, ACO, GA 
and SA, were used to optimize performances of a 
CCII circuit that is shown on Figure 2. 

XY Z

V DD

V SS

M 7M 8M 9M 10

M 1 M 2

M 3 M 4

M 6M 5M 11M 12M 13

Ibias

 
 

Fig. 2  A second generation current conveyor (CCII) 
 
3.2.1.1 Objective functions and constraints 
 
The objective functions to be optimized are [33,34]: 

• RX: the X-port input parasitic resistance to 
be minimized. 

• fci: the current high cut off frequency to be 
maximized.  

All the CCII transistors must operate in the 
saturation mode. Saturation constraints of each 
MOSFET were determined [35].  
 
The geometric variables to be considered for the 
CMOS CCII performances optimization are the 
MOS transistors sizes: channels lengths (LN, and 
LP) and gates widths (WN and WP) while 
respecting the saturation conditions of the MOS 
transistors. The used supply voltages are 

VDD/VSS=2.5V/-2.5 V and a bias current, Ibias=100 
µA. 
 
3.2.1.2 Optimization results 
Tables 4 and 5 give optimal results obtained by 
using the PSO, the ACO, the GA and the SA 
algorithms for the parameters and the circuit’s 
performances for CCII. 
 

Table 4.  Optimization and simulation results for Rxmin 
 LN 

(µm) 
WN 
(µm) 

LP 
(µm) 

WP 
(µm) 

Rxmin (Ω) 
Opt. Sim. 

PSO 0.59 18.74 0.35 30.00 464 477 
ACO 0.55 20.36 0.36 30.00 441 451 
GA 0.50 13.86 0.35 27.32 529 512 
SA 0.55 17.49 0.35 30.00 473 475 

 
Table 5.  Optimization and simulation results for fcimax 

 LN 
(µm) 

WN 
(µm) 

LP 
(µm) 

WP 
(µm) 

fcimax (GHz) 
Opt. Sim. 

PSO 0.54 05.80 0.35 10.05 1.751 1.784 
ACO 0.56 05.39 0.35 09.49 1.791 1.887 
GA 0.58 5.96 0.36 10.56 1.576 1.621 
SA 0.55 8.16 0.35 14.13 1.422 1.485 

 
Figure 3 and 4 show the simulation results (Rx and 
fci) corresponding to the application of the PSO, 
ACO, GA and SA techniques for CCII. 

 
Fig. 3  Rx-pole resistance (Ω) vs. frequency (Hz) 

 

 

Fig. 4  Current gain (dB) vs. frequency (Hz) 
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3.2.2 Optimizing performances of a CMOS 
operational amplifier 
The schematic of the two stage CMOS operational 
amplifier is shown in Figure 5. Performances of the 
op-amp are evaluated via several parameters [10]: 
 

• The Open-loop voltage gain Av to be 
maximized. 

• The Common Mode Rejection Ratio CMRR 
to be maximized. 

• The Die Area A to be minimized. 
• The Power dissipation P to be minimized. 

 
VDD

VSS

Vout

Cc CL

M1 M2

M4M3

M6

M5M8 M7

V-V+

Rc

Ibias

 
Fig. 5  A two stage CMOS operational amplifier 

 
Determining the optimal dimensions of the 
transistors for a specific design involves a tradeoff 
among all these performance measures. 
Ensuring the saturation of each transistor of the 
circuit constitutes the constraints of the problem 
[10]. 
 
The considered optimization problem is a multi-
objective one that consists of maximizing two 
objective functions such as the Av, CMRR and 
minimizing the two other performances; the die area 
and the consumed power. In this work we focus on 
the mono-objective optimization. For this we will 
use the weighted cost functions technique [28]. It 
consists of weighting each function and 
transforming the set of objectives into an equivalent 
cost function (OF). Thus, OF can be expressed as 
follows: 

CMRRAPAOF v 4321 αααα +++=               (6) 
where 41−α  are normalization coefficients. 
 
The compensation resistor (RC=800Ω), the 
compensation capacitor (CC=3pF) and the capacitive 
load (CL=10pF) are considered as fixed parameters. 
The transistors M1-M8 have a same channel length 
L but several gates widths W1-W8.  Those 

parameters and the bias current Ibias were optimized 
by the four algorithms. A Table 6 shows the 
obtained optimal values and the Table 7 gives the 
associate performances and simulations results. 
 

Table 6.  Optimization  results  

 

W1,2 
(µm) 

W3,4 
(µm) 

W5 
(µm) 

W6 
(µm) 

W7 
(µm) 

W8 
(µm) 

L 
(µm) 

Io 
(µA) 

PSO 213.59 255.01 56.37 477.99 52.83 09.24 0.35 10.24 
ACO 215.02 260.96 57.82 459.52 50.91 09.65 0.35 10.00 
GA 211.49 260.09 79.42 404.09 61.69 09.52 0.35 10.16 
SA 216.38 260.05 59.03 470.11 53.35 10.00 0.35 10.00 

 
Table 7.  Performance  and simulation results for 

Av, CMRR, A and P 
 

 
Av (dB) CMRR 

(dB) 
A 

(µm2) 
P 

(mW) 

PSO 
Opt. 103.51 110.57 5368 1.3 
Sim. 095.43 101.43 --- 1.8 

ACO Opt. 104.13 113.91 5354 1.2 
Sim. 096.74 105.29 --- 1.7 

GA Opt. 099.76 105.23 5242 1.6 
Sim. 092.86 096.58 --- 2.4 

SA Opt. 104.50 108.35 5408 1.2 
Sim. 097.31 099.43 --- 1.8 

 
Figure 6 and 7 show the simulation results (Av and 
CMRR) corresponding to the application of the PSO, 
ACO, GA and SA techniques for Op-Amp.  

 
 

Fig. 6  Gain (dB) vs. frequency (Hz) 
 

 
 

Fig. 7  CMRR (dB) vs. frequency (Hz) 
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4 Computing time and Convergence 
checking  
 
4.1 Computing time 
Table 8 shows a comparison between average 
computing times for 100 runs of each algorithm. 
Figure 8 shows a recapitulation of the corresponding 
computing times. 
 
Table 8.  Average computing time (seconds) for the 

test functions and the studied circuits 
Circuits and 
test functions 

PSO ACO GA SA 

F1 0.1275 2.1392 0.1467 0.6753 
F2 0.1628 2.4263 0.1563 0.9811 
Rx 2.5876 7.2716 2.8982 4.0234 
fci 2.4331 9.3154 2.5652 3.6842 
Ampli-Op 4.3170 22.183 2.4972 3.1442 

 

 
Fig. 8  Execution time (seconds) for the five 

objective problems 
 
We clearly notice that the ACO algorithm is the 
slower compared to other algorithms. 
 
4.2 Convergence checking 
In order to check the convergence rate of the 
proposed algorithms, a robustness test was 
performed. i.e. the algorithms are applied a hundred 
times for optimizing all objectives ( F1, F2, Rx, fc, 
Av, CMRR, P and S). In Figures 9, 10 and 11 we 
present the Box Plots of each algorithm for each 
objective considered function. 
 

  
(a) 

 
(b) 

Fig. 9  Box plot for the convergence rate: (a) for F1 and 
(b) for F2 

 

  
(a) 

 
(b) 

Fig. 10  Box plot for the convergence rate: (a) for Rx and 
(b) for fci 
 
 

  
(a) 

 
(b) 

  
(c) (d) 

 
Fig. 11  Box plot for the convergence rate: (a) for Av, 
(b) for CMRR, (c) for P and (d) for A 
 
We can be easily noticed the good convergence 
ratio, despite the probabilistic aspect of the 
algorithms. We note that the spacing between the 
optimal values given by PSO and GA algorithms is 
larger than those of ACO and SA techniques which 
therefore show a good degree of dispersion. In the 
other hand, the PSO technique has the most outlier 
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values and the GA presents the best symmetry of the 
values. We can, also, notice that the robustness of 
the ACO algorithm is better than the robustness of 
the PSO, GA and SA algorithms. 
 
 

5 Conclusion 
The presented work presents a comparison between 
four metaheuristic techniques: Particle Swarm 
Optimization, Ant Colony Optimization, Genetic 
Algorithm and Simulated Annealing. Each 
technique was first validated through mathematical 
test functions and used for the optimal sizing of two 
analog circuits; a CMOS second generation current 
conveyor and an operational amplifier. The 
considered algorithms achieve the optimal solution; 
the choice between these algorithms will depend on 
the desiderata of the designer. However, our results 
suggest that a hybrid algorithm consisting of at least 
two techniques, one taking care of optimum quality, 
the other taking care of running time, is a promising 
research direction. 
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