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Abstract: The stabilization of linear differential linear repetitive processes subject to saturating controls is ad-
dressed. Sufficient conditions obtained via a linear matrix inequality (LMI) formulation are stated to guarantee
both the local stabilization and the satisfaction of some performance requirements. The method of synthesis con-
sists in determining simultaneously a state feedback control law and an associated domain of safe admissible states
for which the stability of the closed-loop system is guaranteed. Two cases are considered: the first one, the control
may saturate and limits may be attained. The second one, the control does not saturate and limits are avoided.
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1 Introduction

As is well known, many practical systems
can be modeled as two-dimensional 2D systems
[18, 19], such as those in image data processing and
transmission, thermal processes, gas absorption and
water stream heating. During the last few decades, the
investigation of 2D systems in the control and signal
processing fields has attracted considerable attention
and many important results have been reported to the
literature. Among these results, the H∞ filtering prob-
lem for two-dimensional 2D linear systems described
by Roesser and FornasiniMarchesini (FM) models in
[21, 25, 26, 22, 23, 8, 9, 38, 37, 30, 28, 29, 31, 32, 34],
for 2D linear parameter-varying systems, the related
work can be found in [36, 29], stability and stabiliza-
tion of 2D systems in [7, 24, 35, 27], H∞ control for
2-D nonlinear systems with delays and the nonfragile
H∞ and l2 − l1 problem for Roesser-type 2D systems
in [33]. However, because there is no systematic
and general approach to analyze linear repetitive
processes systems, many problems still remain.
On the other hand, Many physical systems complete
the same finite duration operation over and over
again. Repetitive processes have this characteristic
where a series of sweeps or passes are made through
dynamics defined over a finite duration known as
the pass length. Once each pass is complete, the
process resets to the original location and the next one
begins. The output on each pass is termed the pass
profile and the notation for scalar or vector valued

variables is yk(t), 0 ≤ t ≤ α < ∞, k ≥ 0, where y
is the scalar or vector valued variable, the integer k
is the pass number and α is the pass length. Also the
previous pass profile contributes to dynamics of the
next one and the result can be oscillations in the pass
profile sequence {y}k that increase in amplitude from
pass-to-pass (k) and cannot be controlled by standard
systems theory.
This paper studies the stability of differential linear
repetitive processes with input saturation where the
dynamics along the pass are governed by a linear
matrix differential equation and the pass-to-pass
dynamics by a discrete linear matrix equation. The
stability theory ([1]) for linear repetitive processes is
of the bounded-input bounded-output (BIBO) type
and is based on an abstract model in a Banach space
setting that includes a large range of examples as
special cases.
On the other hand, an important problem which
is always inherent to all dynamical systems is the
presence of actuator saturations. The class of systems
with saturations has attracted great interest over the
three last decades. Even for linear systems, this
problem has been an active area of research for many
years. In general, nonlinear control has to be used, as
only simple cases may be handled via linear control
laws,([2]) and the references therein. Two main
approaches have been developed in the literature:
The first, the so-called positive invariance approach,
is based on the design of controllers which work
inside a region of linear behavior where saturations
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do not occur,([3]), ([4] ), ([5]), ([6]) and the refer-
ences therein. One can also cite the work of ([7]),
([10]), ([11]), where the synthesis of the controller
is presented as a technique of partial eigenstructure
assignment. This resolution was also associated to
the constrained regulator problem. In this work,
the controller designed with this technique will be
referred as an ”unsaturating controller”.

The second approach allows saturations to take
effect while guaranteeing asymptotic stability, ([12]),
([13]) and the references therein. This approach, al-
lowing the control to be saturated, leads to a bounded
region of stability along the pass which is ellipsoidal
and symmetric. This region can easily be obtained
by the resolution of a set of LMIs. In ([14]), besides
the saturated character of the control, additional con-
straints on the increment or rate are taken into account.
Further, its results combine this technique with the
former one. The output feedback problem is also stud-
ied in ([7]), ([15]) using the tools of this approach. In
this work, the designed controller with this technique
will be referred as a saturating controller.
The main challenge in these two approaches is to ob-
tain a large enough domain of initial states which en-
sures stability for the closed-loop system, despite the
presence of saturations, ([16]), ([17]), ([12]), ([13]).
More precisely, this paper investigates the differen-
tial linear repetitive processes systems. The obtained
the differential linear repetitive processes is then de-
scribed as a convex combination of 2l differential lin-
ear repetitive processes systems. The aim of this
work is the design of stabilizing state-feedback con-
trollers for this class of systems. To this end, suf-
ficient conditions of stabilizability under LMI form
are presented. This formulation enables saturating
state-feedback controllers to be derived. Furthermore,
the unsaturating controller case for differential linear
repetitive processes systems is also considered in this
paper. In fact, stabilizability conditions are derived
such that the linear behavior is always guaranteed.
These conditions are also given under LMI form.

Notation : we use standard notation throughout
this paper. The notation P > 0(< 0) is used for posi-
tive (negative) definite matrices. ∗ stands for the sym-
metric term of the diagonal elements of square sym-
metric matrix. I denotes the identity matrix with ap-
propriate dimension. the superscript ”T” represents
the transpose. sym(A) indicates AT + A, diag(...)
stands for a block-diagonal matrix.

2 Problem formulation

Consider the differential linear repetitive processes
described by the following state-space model over
0 ≤ t ≤ β, k ≥ 0:

ẋk+1(t) = Axk+1(t) +B0yk(t) +Bsat(uk+1(t))
yk+1(t) = Cxk+1(t) +D0yk(t) +Dsat(uk+1(t))

(1)
where on pass k, xk(t) ∈ Rn is the state vector
and yk(t) ∈ Rm is the pass profile vector, and
uk+1(t) ∈ Rl is the control vector. respectively; A,
B0, B, C, D0, D are time-invariant real matrices with
appropriate dimensions.
the state initial vector on each pass and the initial pass
profile (on pass 0). The form of these considered here
is

xk+1(0) = dk+1, k ≥ 0
y0(t) = f(t)

(2)

The saturation function used here is the standard
symmetric one defined as follows for i = 1, . . . , l:

sat(u) = (sat(ui)) =


1 if ui > 1
ui if −1 ≤ ui ≤ 1
−1 if ui < −1

(3)
Note that in the general case of saturations, when
maximums are any positive real numbers (i.e., the
ith element of the real control vector w saturates at
Qi > 0), the change of variables ui = wi

Qi
can be used:

to use directly the definition of the saturation function
in (3), it is then only necessary to replace the original

matrix Bu =

[
B
D

]
with Budiag(Q1, ..., Ql) for the

differential linear repetitive processes system (1).
Further, the state-feedback control is used such that:

uk+1(t) =
[
K1 K2

] [ xk+1(t)
yk(t)

]
(4)

where matrix K =
[
K1 K2

]
is the state-

feedback gain to be designed.
Furthermore, define the sets ε(P, ρ) and £(H) as
follows:

ε(P, ρ) = {x ∈ Rn/xTPx ≤ ρ;P = P T > 0} (5)

£(H) = {x ∈ Rn/|(H)ix| ≤ 1} (6)

where ρ is a positive scalar.
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The problem we are addressing thereafter is to find
stabilizing state-feedback controllers for the differen-
tial linear repetitive processes system (1) with satura-
tion on the control (3) by using state-feedback con-
trol (4). We address the problem from two points of
view: first, saturating controls are allowed, so nonlin-
ear behavior may occur (Thus, a saturating controller
is used). Second, the behavior is limited to be linear,
so saturating controls are not allowed (an un saturat-
ing controller is designed).

3 Preliminaries

This section is devoted to some preliminaries useful to
the development in the sequel: the first lemma makes
it possible to write the saturated closed-loop system as
a convex combination of 2l linear systems. Besides,
conditions of stability for the differential linear repet-
itive processes systems are then presented. Finally, a
technical lemma giving a sufficient stability condition
is provided.

Lemma 3.1 ([12]) Let u ∈ ℜl and v ∈ ℜl, suppose
that |vi| ≤ 1, i = 1, . . . , l then

sat(u) ∈ co{Dsu+D−
s v}, s ∈ [1, N ],

where the Ds are all the different diagonal matrices
with elements either 1 or 0,D−

s = Il − Ds, N = 2l

and co stands for the convex hull: in such a case,
there exist δ1 ≥ 0, . . . , δN ≥ 0, with

∑N
s=1 δs = 1,

such that

sat(u) =

N∑
s=1

δs(Dsu+D−
s v) (7)

This lemma is used to rewrite the saturated control
problem using an auxiliary control v that fulfills
|vi| ≤ 1. Hence, in state-feedback control, for two
given feedback matrices K and H with u = Kx and
v = Hx, such that |(Hx)i| ≤ 1, by Lemma 1, there
exist δ1 ≥ 0, . . . , δN ≥ 0, with

∑N
s=1 δs = 1, such

that

sat(Kx) =
N∑
s=1

δs(DsKx+D−
s Hx) (8)

The result of Lemma 1 can be extended to differential
linear repetitive processes systems since the reasoning
depends on the saturation function and not on the
number of dimensions (independent variables on

which the control depends). Thus, (7) can be written
as follows:

sat(uk+1(t)) =

N∑
s=1

δs(k, t)(Dsuk+1(t)+D−
s vk+1(t))

(9)

Hence, using the state-feedback control (4) and

the fact that vk+1(t) = H

[
xk+1(t)
yk(t)

]
with H =[

H1 H2

]
and ξk(t) =

[
xk+1(t)
yk(t)

]
∈ £(H) the

closed-loop saturated differential linear repetitive
processes system can be rewritten as

[
ẋk+1(t)
yk+1(t)

]
= Aξk(t)+B

N∑
s=1

δs(k, t)(DsK+D−
s H)ξk(t)

where matrices A and B are given by

A =

[
A B0

C D0

]
;B =

[
B
D

]
That is[

ẋk+1(t)
yk+1(t)

]
=

N∑
s=1

δs(k, t)Ãsξk(t) = Ã(δ)ξk(t)

(10)
where matrices Ã(δ) and Ãs, are given by

Ã(δ) =
∑N

s=1 δs(k, t)Ãs; Ãs =

[
Ãs B̃s

0

C̃s D̃s
0

]
=

[
A+B(DsK1 +D−

s H1) B0 +B(DsK2 +D−
s H2)

C +D(DsK1 +D−
s H1) D0 +D(DsK2 +D−

s H2)

]
(11)

Consider now the following differential linear repeti-
tive processes autonomous system:[

ẋk+1(t)
yk+1(t)

]
= Aξk(t) (12)

Theorem 1 [20] A differential linear repetitive pro-
cesses described by (12) is stable along the pass if
there exist matrices 0 < P1 ∈ Rn×n and 0 < P2 ∈
Rm×m such that the following LMI holds P1A+AP1 P1B0 CP2

⋆ −P2 D0P2

⋆ ⋆ −P2

 < 0, (13)

In this case, the following is a Lyapunov function of
system (12):

V (k, t) = V1(k, t) + V2(k, t)
= xTk+1(t)P1xk+1(t) + yTk (t)P2yk(t)

(14)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Said Kririm, Abdelaziz Hmamed

E-ISSN: 2224-266X 143 Volume 14, 2015



Definition 1 :The increment of function V (k, t) given
by:

∆V (k, t) = V̇1(k, t) + ∆V2(k, t) (15)

Lemma 3.2 [39] A differential linear repetitive pro-
cesses described by (12) and is stable along the pass
if

∆V (k, t) < 0, (16)

4 Main results

With the background of the previous section, suffi-
cient conditions are now given for the stabilization of
differential linear repetitive processes saturated sys-
tems. The conditions presented so far are only useful
for analysis, but not for synthesis. In order to allow
the synthesis of stabilizing controllers some transfor-
mations to LMI form are then worked out. Thus, this
section presents sufficient conditions of stabilizability
of the differential linear repetitive processes saturated
systems expressed as LMIs. The two cases are consid-
ered separately: saturating controller and unsaturating
controller.

4.1 The saturating controller

Theorem 2 For a given scalar ρ > 0, if there exist
matrices H1 ∈ Rl×n, H2 ∈ Rl×m, K1 ∈ Rl×n,
K2 ∈ Rl×m, and symmetric positive definite matrices
0 < P1 ∈ Rn×n and 0 < P2 ∈ Rm×m such that the
following LMI conditions hold true, for s = 1, . . . , N :

Υ(s) =

 P1Ã
s + ÃsTP1 P1B̃

s
0 C̃sTP2

⋆ −P2 D̃sT
0 P2

⋆ ⋆ −P2

 < 0,

(17)
where matrices Ãs, B̃s

0, C̃s and D̃s
0 are given by (11),

and

ε(P, ρ) ⊂ £(H) (18)

with P = diag(P1, P2), then the differential linear
repetitive processes system (12) is stable along the

pass ∀ξ0 =
[
xk+1(0)
y0(t)

]
∈ ε(P, ρ).

Prof: Assume that condition (18) holds true; using
the condition of stability (13) for the closed loop
system given by (10), one obtains Υ(s) < 0, for
s = 1, . . . , N . �
The previous result states the stabilizability condition
along the pass for the closed-loop system. In the next,
the LMI formulation of these conditions is derived.

The state-feedback saturating controller can then be
synthesized.
Corollary 1:For a given scalar ρ > 0, if there exist
matrices Z1, Z2, U1, U2, W1 = W T

1 > 0, and
W2 = W T

2 > 0 such that the following LMIs hold
true:

Ψ(s) =

 Ψs
11 +ΨsT

11 Ψs
12 Ψs

13

⋆ −W2 Ψs
23

⋆ ⋆ −W2

 < 0, s = 1, . . . , N

(19) µ (U1)i (U2)i
⋆ W1 0
⋆ ⋆ W2

 > 0, i = 1, . . . , l (20)

where (U1)i and (U2)i hold for the ith row of matrices
U1 and U2 respectively; µ = 1/ρ while matrices Ψs

11,
Ψs

12, Ψs
13, Ψs

23 are given by

Ψs
11 = AW1 +B(DsZ1 +D−

s U1)

Ψs
12 = B0W2 +B(DsZ2 +D−

s U2)

Ψs
13 = W1C

T + (ZT
1 D

T
s + UT

1 D
−T
s ))DT

Ψs
23 = W2D

T
0 + (ZT

2 D
T
s + UT

2 D
−T
s ))DT

then the differential linear repetitive processes system

(12) is stable along the pass ∀ξ0 =

[
xk+1(0)
y0(t)

]
∈

ε(P, ρ) with P = diag(P1, P2), when the controller
gain is given by

K =
[
Z1W

−1
1 Z2W

−1
2

]
(21)

Moreover, the set £(H) is given by (8) with

H =
[
U1W

−1
1 U2W

−1
2

]
(22)

Prof:Post- and pre-multiply Υ(s) by the following
matrix:

Θ = diag(P−1
1 , P−1

2 , P−1
2 )

Replacing matrices Ãs, B̃s
0, C̃s and D̃s

0 by their ex-
pressions given by (11) ∀s ∈ [1;N ], one obtains (19)
with W = diag(W1,W2), Wi = P−1

i , Zi = KiWi

and Ui = HiWi, for i = 1, 2.
On the other hand, the inclusion (18) is equivalent
to ρ(H)iP

−1(H)Ti ≤ 1, i = 1, . . . , l. Developing
equivalently as follows:ρ(HW )iW

−1(HW )Ti ≤
1,that is ρ(U)iW

−1(U)Ti ≤ 1, Using Schur comple-
ment, one obtains:[

µ (U)i
⋆ W

]
> 0, i = 1, . . . , l (23)
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Finally, using µ = 1/ρ, W = diag(W1,W2) and
U = [U1, U2], the LMIs (20) follows.�
Example 1:
As an example, the metal rolling process is con-
sidered . This process is an extremely common
industrial process where, in essence, deformation of
the workpiece takes place between tow rolls with
parallel axes revolving in opposite directions.
Thus the following linear differential equation repre-
sent Metal Rolling dynamics: ([40]).

S̈k(t) +
α

M
Sk(t) =

α

α1
S̈k−1(t) +

α

M
Sk−1(t)−

α

Mα2
FM (t)

(24)

Where:
Sk(t):current passes through the rolls.
Sk−1(t):previous passes through the rolls.
M: is the lumped mass of the roll-gap adjusting
mechanism
α1: the stiffness of the adjustment mechanism spring
α2: the hardness of the metal strip
α = α1α2

α1+α2
:the composite stiffness of the metal strip

and the roll mechanism
FM (t):the force developed by the motor. is the input
function which is assumed here to be constrained
as |FM (t)| ≤ FMmax (with FMmax represent the
maximum driving force)
The linear differential equation (17) can be modeled
as a system (1) by imposing :

xk+1(t) =

(
sk(t)
ṡk(t)

)
, yk(t) =

(
sk−1(t)
s̈k−1(t)

)
Thus The linear differential equation (23) can be
writhed:

ẋk+1(t) =

(
0 1

− α
M

0

)
xk+1(t)+

(
0 0
α
M

α
α1

)
yk(t)+

(
0

− α
Mα2

)
FM (t)

yk+1(t) =

(
1 0

− α
M

0

)
xk+1(t)+

(
0 0
α
M

α
α1

)
yk(t)+

(
0

− α
Mα2

)
FM (t)

In these design studies, the data used are α1 = 600,
α2 = 2000 and M = 100 This yields α = 461.54,
resulting in the state-space model matrices in (1):

A =

(
0 1

−4.61538 0

)
, B0 =

(
0 0

4.61538 0.76923

)

C =

(
1 0

−4.61538 0

)
, D0 =

(
0 0

4.61538 0.76923

)

B =

(
0

−0.00231

)
, D =

(
0

−0.00231

)

For this data and ρ = 100, This model is both unstable
along the pass (A has eigenvalues (0 + 2.1483i, 0
- 2.1483i)) Corollary 1 can be successfully applied
here since the LMIs (19) and (20) are feasible, with a
solution give

K1 = [542.6908 434.9946]
K2 = 103[1.6313 0.2719]
H1 = [189.7717 143.6449]
H2 = [810.1543 135.0257]
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Figure 1. The evolution of the first component of
xk+1(t) using the saturating controller
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Figure 2. The evolution of the first component of
yk(t) using the saturating controller
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Figure 3. The evolution of the second component of
xk+1(t) using the saturating controller
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Figure 4. The evolution of the second component of
yk(t) using the saturating controller
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Figure 5. The evolution of the saturating controller
uk+1(t)
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Figure 6. The evolution of the saturating controller
uk+1(t)

4.2 The unsaturating controller

Consider now the differential linear repetitive pro-
cesses system (1) with constrained control (3). In
the previous section, the design of a saturating con-
troller was studied (saturation of control was allowed),
whereas in this section, saturation is not allowed and
the synthesis will guarantee that the state evolves in-
side a region of linear behavior given by £(F ) (F be-
ing the controller gain). Thus, this case can be seen as
a particular case of the saturating one.

Theorem 3 For a given scalar ρ > 0, if there exist

matrices F1 ∈ Rl×n, F2 ∈ Rl×m, and symmetric
positive definite matrices 0 < P1 ∈ Rn×n and
0 < P2 ∈ Rm×m such that the following LMI
conditions hold true:

Υ(s) =

 P1Ã+ ÃTP1 P1B̃0 C̃TP2

⋆ −P2 D̃T
0 P2

⋆ ⋆ −P2

 < 0,

(25)

ε(P, ρ) ⊂ £(H) (26)

where[
Ã B̃0

C̃ D̃0

]
=

[
A+BF1 B0 +BF2

C +DF1 D0 +DF2

]
and P = diag(P1, P2), then the differential linear
repetitive processes system (12) is stable along the

pass ∀ξ0 =
[
xk+1(0)
y0(t)

]
∈ ε(P, ρ).

Prrof: The proof follows readily if one replaces K
by F in the proof of Theorem 4.1 and removes the
saturated convex writing of the control. This can be
done, as in this case, the state is restricted to evolve
inside the linear region of behavior given by condition
(26).�
In the next result, the LMI formulation of these con-
ditions, that enables the unsaturating state-feedback
control to be derived, is given:
Corollary 1:For a given scalar ρ > 0, if there exist
matrices Z1, Z2, W1 = W T

1 > 0, and W2 = W T
2 > 0

such that the following LMIs hold true: Ψ11 +ΨT
11 Ψ12 Ψ13

⋆ −W2 Ψ23

⋆ ⋆ −W2

 < 0, (27)

 µ (Z1)i (Z2)i
⋆ W1 0
⋆ ⋆ W2

 > 0, i = 1, . . . , l (28)

where (Z1)i and (Z2)i hold for the ith row of matrices
Z1 and Z2 respectively; µ = 1/ρ while matrices Ψ11,
Ψ12, Ψ13, Ψ23 are given by

Ψ11 = AW1 +BZ1

Ψ12 = B0W2 +BZ2

Ψ13 = W1C
T + ZT

1 D
T

Ψ23 = W2D
T
0 + ZT

2 D
T
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then the differential linear repetitive processes system

(12) is stable along the pass ∀ξ0 =

[
xk+1(0)
y0(t)

]
∈

ε(P, ρ) with P = diag(W−1
1 ,W−1

2 ), when the
controller gain is given by

F =
[
Z1W

−1
1 Z2W

−1
2

]
(29)

Prof: The proof follows readily from Corollary 1.
Example 2:
Consider the same system studied in the saturating
controller case of Example 1. If no saturation is
allowed in the control signal, Corollary 2 can be used
to synthesize the controller. In this case, the LMIs
(27) and (28) are feasible, with a solution given by:
F1 = [231.9679 166.5527]
F2 = [627.1912 104.5319]
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Figure 7. The evolution of the first component of
xk+1(t) using the saturating controller
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Figure 8. The evolution of the first component of
yk(t) using the saturating controller
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Figure 9. The evolution of the second component of
xk+1(t) using the saturating controller
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Figure 10. The evolution of the second component of
yk(t) using the saturating controller
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Figure 11. The evolution of the saturating controller
uk+1(t)
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Figure 12. The evolution of the saturating controller
uk+1(t)
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5 Conclusions

In this paper, the problem of the stabilizability of
the differential linear repetitive processes saturated
systems has been studied using state-feedback con-
trol. Two different cases are considered guaranteeing
stability along the pass: the design of saturating and
unsaturating controllers. The first one allows satura-
tion to take effect, while the second limits the systems
evolution to the region of linear behavior. Sufficient
conditions of stability along the pass are derived for
each case. The synthesis of the required controllers
are also given under LMI form. Numerical examples
are provided to illustrate the results.
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