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Abstract: - This paper presents a detailed study of the extended Kalman filter (EKF) for estimating the rotor resistance 

and rotor speed of an induction motor drive. The overall structure of the EKF is reviewed and the various system vectors 

and matrices are defined. By including the rotor resistance and rotor speed as a state variables, the EKF equations are 

established from a discrete two-axis model of the three-phase induction motor. The investigations show that the EKF is 

capable of estimating the rotor resistance and capable of tracking the actual rotor speed provided that the elements of the 

covariance matrices are properly selected. Moreover, the performance of the EKF is satisfactory even in the presence of 

noise or when there are variations in the induction machine parameters. 
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1 Introduction 
In IFOC, imperfect knowledge of the rotor 

resistance degrades the steady-state and transient 

responses of the drive because the decoupling 

between torque and rotor flux is lost [1]. Then, on-

line estimation of the rotor resistance is needed. 

Many methods for such estimation have been 

proposed. Many of them have limitations for 

practical use, mainly at low load level because of 

the low rotor currents. Generally, the lower load 

limit for good rotor-resistance estimation is around 

30% of nominal load [2],[3]. Some efficient 

techniques for low load level use algorithms which 

require knowledge of the stator resistance, but they 

are sensitive to temperature drift [4], [5]. Other 

strategies simultaneously estimate rotor flux and 

parameters using observers. A first set of flux 

estimators is based on the deterministic observer’s 

theory. The observer structure and its gains allow a 

reduction in the sensitivity to rotor-resistance 

variations [6], [7], [8]. However, the error dynamic 

contains a driving term which is associated with the 

uncertainty on the stator resistance, and causes 

steady-state error. A second set of observers is 

based on the extended Kalman filter (EKF) theory 

[9], [10] and adaptive approach [11], [12], but they 

are also sensitive to the stator resistance 

uncertainties. Another problem is the use of a 

mechanical sensor. It reduces the robustness of the 

drive and, together with the cost of the hardware, 

cause additional expense. This has led to a speed 

sensorless vector control [13]. The observer theory 

has been also applied to the design of the extended 

Luenberger observer for speed estimation. However, 

these schemes are very sensitive to stator-resistance 

variations, and the choice of the observer gains 

becomes a difficult problem [14], [15]. The EKF 

algorithm has already been used for the rotor speed 

estimation. This algorithm is very complex and has 

high computational requirements due to the use of a 

high-order model of the motor. Also, the adaptive 

approach was developed for the sensorless vector-

controlled induction motor [16]. 

In this paper, an effective approach is proposed 

for parameter estimation, rotor resistance, and speed 

sensorless control using the EKF technique. For 

this, an EKF is expressed in a frame rotating 

synchronously with the stator current vector with 

the use of a reduced dynamic motor model to 

economize the computational requirements of the 

EKF. This algorithm is optimized to reduce the 

computational complexity. The investigations show 

that the EKF is capable of tracking the actual rotor 

resistance and speed provided that the elements of 

the covariance matrices are properly selected. 

Moreover, the performance of the EKF is 

satisfactory even in the presence of noise or when 

there are variations in the induction machine 

parameters. Computer simulations tests of the 

transient and steady-state performances are 

presented to highlight the effectiveness of the 

proposed methods. 
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List of Symbols  

Rs , Rr           stator and rotor resistances [Ω] 

ids , iqs           direct and quadrature stator currents [A] 

idr , iqr           direct and quadrature rotor currents [A] 

vds , vqs        direct and quadrature stator voltages [V] 

vdr , vqr        direct and quadrature rotor voltages [V] 

Ls , Lr, Lm             stator, rotor and mutual inductance [H] 

λds, λqs direct and quadrature stator fluxes [Wb] 

λdr, λqr direct and quadrature rotor fluxes [Wb] 

Tem electromagnetic torque [N.m] 

ωr, ωe, ωsl rotor, synchronous and slip frequency [rad/s] 

τr rotor time constant (=Lr/Rr) [s] 

J inertia moment [Kg.m
2
] 

σ leakage coefficient 

ts sampling period [s] 

np number of pole pairs 

An, Bn, Cn input and output matrices of discrete system 

G weighting matrix of noise 

F matrix of state prediction 

H matrix of output prediction 

K Kalman filter gain 

P error covariance matrix 

Q covariance matrix of system noise 

R covariance matrix of measurement noise 

uk control function, vector 

vk noise matrix of output model 

wk noise matrix of state model 

xk system state 

yk system output 

CRPWM current-regulated pulse width modulation 

 

 

2 Design of Extended Kalman Filter 
The Kalman filter is an optimal recursive data 

processing algorithm for linear systems. It is optimal 

in that it incorporates all the information that is 

provided to it, regardless of their precision, to 

estimate the current value of the state. The latter is 

obtained by combining a prediction of the state, 

computed from history based on a given model, and 

the current weighted measurement data in such a 

way that the error is minimized statistically 

(minimizing the covariance of the state) [17]. The 

EKF is recursive in the sense that although it 

incorporates the history into the present, it does not 

require all previous data to be kept in storage and 

reprocessed at every iteration [18]. 

The dynamics of the discrete-time system to 

which the EKF will be applied is modeled in the 

form: 

1 ( , ) ,k k k k kx f x u G w                 (1) 

( , ) ,k k k ky h x u v                   (2) 

where xk ϵ R
n
 is the system state vector at time 

step k, yk ϵ R
m
 is the measurement vector, f(.) ϵ R

n×n
 

is the state transition matrix, Gk ϵ R
n×r

 and h(.) ϵ 

R
m×n

 are discrete-time matrix functions, and wk ϵ R
r
 

and vk ϵ R
m
 are Gaussian white-noise sequences 

satisfying. 

   E 0, E ,T

k k l k klw w w Q         (3) 

   E 0, E ,T

k k l k klv v v R           (4) 

where Qk ϵ R
r×r

 and Rk ϵ R
m×m

 are symmetric 

positive definite covariance matrices, and kl is the 

discrete Dirac function satisfying: 

1, ,
,

0, .
kl

k l

k l



 


                      (5) 

After initialization, the EKF proceeds recursively 

in two steps: a prediction step using the process 

model of the system dynamics; and a measurement 

update step that adjusts the predicted states based on 

the measured outputs and relative magnitudes of the 

disturbance and measurement noise covariance’s 

[19]. 

In the pose estimation system, the prediction 

step, at time step k, uses the previous estimate to 

predict the system states using the process model: 

| 1 1| 1
ˆ ˆ( , ,0),k k k k kx F x u                 (6) 

T

| 1 1| 1 ,k k k k k k kP F P F Q               (7) 

where k/k denotes a prediction at time k based on 

data up to time k. Similarly, (k+1)/k denotes a 

prediction at time k+1 based on data up to time k. Qk 

is the disturbance noise covariance at the k
th
 time 

step; Fk is the linearization, through Taylor series 

expansion, of the process model: 

1| 1ˆ ,
k kk x

f
F

x  





                     (8) 

and 
T

kF  is the matrix transpose of Fk. 

Similarly, the measurement model is linearized 

about the current state estimate, resulting in the 

measurement Jacobian, Hk, 

| 1ˆ ,
k kk x

h
H

x 





                     (9) 
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The Kalman gain, K is calculated using this 

linearized model, the previous estimate covariance, 

and the measurement noise covariance, Rk, 

1
T T

| 1 | 1 ,k k k k k k k k kK P H H P H R


 
       (10) 

Finally, the estimates and estimate covariance 

are updated using this gain and the innovation of the 

measurements, the difference between the measured 

and predicted outputs, 

| | 1 | 1
ˆ ˆ ˆ( ) ,k k k k k k k kx x K y h x 

        (11) 

  | | 1,k k k k k kP I K H P               (12) 

The block diagram of the EKF estimator is 

shown in Fig.1. 
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Fig.1 EKF bloc diagram 

 

The state and output equations of the reduced 

order model of the induction motor established in 

stationary stator reference frame d-q can be written 

as: 

( , ) ,k k k k k kf x u A x B u               (13) 

( ) ,k k kh x C x                       (14) 
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where  
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                   (20) 

where AK, Bk, Ck are input and output matrices of 

discrete system, s is viscous friction load, 
2

1 m

s r

L

L L
   is leakage coefficient, and ts is 

sampling period.  

The matrices f, h, ∂f/∂x, ∂h/∂x are obtained as 

follows: 

1

1
,

1

r m r
s dr r s qr s ds

r r

r m r
r s dr s qr s qs

k r r

s em
s r s

r k

R L R
t t t i
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The combination of rotor speed and rotor 

resistance used the EKF algorithm illustrated by the 

flowchart of Fig.2. 

 
start

set cycle time

give electrical and mechanical parameters

give thermal parameters

give matrices Q, R, P0

perform f(…) and calculate Jacobian matrix Fk

acquire ids and iqs

calculate filter gain, estimation error. and correct state estimates

update R1k and R2k

update nominal states

is time =cycle time

output estimates

stop

acquire vds and vqs

Yes
No

 
Fig.2 Flowchart of EKF algorithm used for combination of 

rotor speed and rotor resistance estimation in induction motor 

 

A critical point during the design of the EKF is 

the choice of the elements of the covariance 

matrices P0, Q and R, which affect the performance 

and the convergence as well. Diagonal initial state 

covariance matrix P0 represents variances or mean 

squared errors in the knowledge of the initial 

conditions. Varying P0 yields different amplitude of 

the transient, while both transient duration and 

steady state conditions will be unaffected [20]. The 

matrix Q gives the statistical description of the drive 

model. The increasing Q would indicate the 

presence of either heavy system noise or increased 

parameter uncertainty. An increment of the elements 

of Q will likewise increase the EKF gain, resulting 

in a faster filter dynamic. On the other hand, matrix 

R is related to measurement noise. The increasing 

the values of the elements of R will mean that the 

measurements are affected by noise and thus they 

are of little confidence.  

Accordingly the filter gain K will decrease, 

yielding poorer transient response.  

It is a common practice to assume the covariance 

matrices Q, R and P0 to be diagonal, for the lack of 

sufficient statistical information to evaluate their 

off-diagonal terms [21], [22]. On the other hand, 

practice has revealed that even starting with non-

zero off-diagonal values; at steady state off-diagonal 

terms remains several times smaller than the 

corresponding diagonal terms.  

It can be realized that both Q and R depend on 

the drive parameters, the sampling time, the 

measurements amplitude and some other secondary 

factors. 

The advantage of the proposed method is that the 

appropriate design and tuning of Q and R made for 

an IM drive works well for any other drive with 

similar sampling time. It’s also been experienced 

that the EKF behavior is not influenced by different 

SVM technique.  

The simulations tests on a motor drive can derive 

appropriate ranges of normalized elements of the 

covariance matrices. 

In the simulation, the error covariance matrix P, 

the noise covariance matrices R, Q, and noise 

weight matrix G of the EKF are assumed as: 

0

2.3 0 0 0

0 2.3 0 0
,

0 0 2.3 0

0 0 0 2.3

P

 
 
 
 
 
 

                (25) 
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The values of λ, ρ, α and β in matrices G and Q 

are usually determined using a trial-and-error 

process. For comparison purposes, the performance 

of the EKF with different compositions of G and Q 

is evaluated by the mean-squared error between the 

estimated rotor resistance - rotor speed and the 

actual rotor resistance - rotor speed. Simulation is 

carried out in order to verify the performance of the 

rotor resistance and speed estimation algorithm in 

addition to verifying the response of drive system. 

The block diagram of indirect vector controlled 

induction motor drive system incorporating the 

estimation algorithm using EKF is shown in Fig.3. 
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Fig.3 Indirect field oriented induction motor drive with EKF rotor resistance and speed estimator 

 

Table 1 shows typical EKF performance 

obtained by a trial-and-error method. It is found that 

poor rotor resistance - rotor speed estimation 

performance results when the parameters λ, ρ, α and 

β are equal (Cases 1–3). By selecting larger values 

of β and ρ relative to α and λ, the EKF performance 

is improved (Case 4). Very good rotor resistance - 

rotor speed estimation performance is obtained with 

the matrix Q=Diag[1.2.10
-5

, 1.2.10
-5

, 1.2.10
-5

, 

1.2.10
-3

] and G=Diag[1.2.10
-5

, 1.2.10
-5

, 1.2.10
-5

, 

1.2.10
-3

] (Case 5). Fig.4 and Fig.5 shows the 

estimated rotor resistance and rotor speed of the 

EKF for Cases 1, 2, 3, and 5 respectively. The 

results are consistent with the observation made 

with reference to Table 1.  

 

Table 1. Effects of the covariance matrices G and Q on the mean squared error of estimated rotor resistance - rotor speed 

 Rotor resistance estimation Rotor speed estimation  

 

case 

 

Covariance matrices G and Q  
2

1

1 n

i i

i

act est
n




 
 

 
2

1

1 n

i i

i

act est
n




 
 

 

Estimation results 

1 λ=ρ=α=β=1.2.10-3 126.1558 167.0661 poor 

2 λ=ρ=α=β=1.2.10-4 273.9267 290.4005 poor 

3 λ=ρ=α=β=1.2.10-5 391.4082 413.3117 poor 

4 λ=α=β=1.2.10-4 and ρ=1.2.10-3 1.3648 1.7448 good 

5 λ=α=1.2.10-5 and ρ=β=1.2.10-3 0.9701 0.4057 very good 

 
act: actual rotor resistance –speed;  

est: estimated rotor resistance –speed; 

n: number of data samples (=30000); 

ε: mean squared error of estimated rotor resistance –speed. 
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Manual tuning of the EKF using the trial-and-

error method is simple to carry out, but the process 

is very time consuming and satisfactory 

performance can only be obtained with great effort 

from an experienced operator. As the distribution of 

noise is usually unknown, it is not possible to 

deduce a generic relationship between the values of 

the matrix elements and the EKF performance for 

fine tuning of the matrices to yield the best speed 

estimation results. 

 
Fig.4 Estimated rotor resistance with various covariance 

matrices 

 
Fig.5 Estimated rotor speed with various covariance matrices 

 

Acceleration and reversal of the drive are carried 

out in order to observe the performance of estimator 

during the operation. The machine is accelerated at 

0.04 s to a command speed of 100 rad/s; and then, it 

is reversed at 1.5 s (see Fig.7). The rotor resistance 

is changed abruptly during steady-state operation of 

the drive. Its value is increased from the nominal 

value of 0.3858 Ω to 150%R r,n at 0.5 s; and then, 

decreased to 50%R r,n at 1 s. The resistance is 

increased again to 125%R r,n at 2 s; and then, 

decreased to its nominal value at 2.5 s (see Fig.6). 

 
Fig.6 EKF rotor resistance estimation 

 
Fig.7 EKF rotor speed estimation 

 
Fig.8 Current ia 

 
Fig.9 Electromagnetic torque 

 

Table 2  EKF rotor speed results summary 

Rotor speed rise time/s overshoot/% settling time/% steady-state error/% 

EKF 0.03 2.9 0.08 0.7 

 

Figure 6 show that a good operation of the 

estimator does not depend on, in addition, the initial 

value of Rr that is chosen in the algorithm. This is  

 

 

very important since in reality we do not know the 

exact value of the resistance when the estimation 

algorithm starts. The convergence of this method is 

thus confirmed. In reality, the actual rotor resistance 
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varies much more slowly, this means that the 

estimated rotor resistance can track even better the 

actual rotor resistance. 

We can confirm that the estimated rotor 

resistance allows us to obtain an optimal vector 

control where there is a perfect decoupling between 

torque and flux. The report torque/current (Tem/isq) is 

then maintained its maximum value corresponding 

to a given load.  

The speed estimation response using EKF 

controller shows that the drive can follow the low 

command speed very quickly and smoothly without 

overshoot, no steady-state error and rapid rejection 

of disturbances, with a low dropout speed (Fig.7 and 

Table 2). The current responses are sinusoidal and 

balanced, and its distortion is small (Fig.8). The 

torque ripple is reduced and its dynamic is enhanced 

by the new control method (Fig.9) well as the 

decoupling between the flux and torque is verified. 

The question of sensitivity of the control system 

to variations in parameters of induction machine has 

been analyzed. We have focused our attention on 

the influence of rotor resistance because it varies 

most a function of temperature among the 

parameters of induction machine. 

 

 

3 Conclusions 
The estimation results have shown the ability of the 

EKF to combine speed and rotor resistance 

estimation in the indirect field-oriented control of an 

induction machine.  The effects of the covariance 

matrices of the EKF are investigated and a guideline 

for selecting the covariance matrices is proposed.  

Moreover, this model has been expressed in a frame 

rotating synchronously with the stator-current vector 

in order to deal with constant quantities in steady-

state, and avoid lag errors.  The performance of this 

strategy is satisfactory even in the presence of noise, 

at low speeds, or when there has variations in the 

parameters of the induction machine. Good 

estimation accuracy for the rotor resistance and the 

rotor speed was obtained, and the response of the 

sensorless indirect vector controlled drive was found 

to be satisfactory. 
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