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Abstract: Results of intensive studies of neural systems could not fully explain the astonishing 

performance of biological nervous systems in complex situations. Therefore alternative models of 

neural nets and their ways of pattern-processing might be of interest. Fractal neural nets offer 

interesting rich and flexible connectivity and biomorph aspects as hemispheres, lobes, gyri, sulci, 

decussatio of fibres, ventricular systems, thalamic structures and a high dynamism of processed 

patterns. Combining these fractal features with intracellular memory-strings to encode sequences of 

activities as engrams or vectors, to store, compare and reconstruct patterns of activities, a new 

tomographic form of information-processing seems to be achievable for such fractal neural vector- 

machines. Those memory-strings could, though completely hypothetically concerning their biological 

relevance, at least in principle allow the inheritance of behaviour. Though very preliminary, the 

results of a first small simulation may shed a light on the interplay of innate talents and learning 

experiences as well as on hypothetical mechanisms of genetic adjustments of organisms to the 

environment during evolution.   
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1 Introduction 
The function of biological neural networks remains 

enigmatic in various aspects. Whereas main 

hypotheses of the functioning of neurons like 

changing synapses as base of learning [1] have 

proven their validity in many studies, full 

understanding is still lacking. Long term 

potentiation of synapses is found by non-

physiological protocols of activation [2]. Artificial 

neural networks are used in a great variety of areas: 

They are used, as examples, in fields of image 

compressing [3, 4], of pattern detection and 

classification in medicine [5] or to predict 

temperature in tanks in models of energy plants [6]. 

Open questions remain: amongst others, the 

inheritance of innate behaviour cannot be explained 

by determining the strength of single synapses by 

genetic means. But very complex behaviours are 

inherited, as we may find e.g. in many species of 

insects, so there have to be additional mechanisms 

to explain the function of biological neural nets. 

Fractal neural nets, their connectivity being 

completely determined by fractal functions [7] show 

interesting features, resembling to those of 

biological neural nets concerning morphology, 

structure and dynamical aspects as their ability to 

flexibly connect distant neurons and the occurrence 

of con- and divergence in different regions of the 

net as well [8].    

Some examples of such neural nets shall be 

presented. The connectivity of the three-dimensional 

nets is determined by using algorithms analogue to 

the Mandelbrot- and the Julia-algorithm, the 

squaring of quaternions and related functions 

combined with the addition of a constant vector to 

calculate the target-region, to which each neuron 

will project its activity. The trajectories of the 

projections from one point of the complex plane or 

in case of three-dimensional fractal nets of the three-

dimensional space are logarithmic spirals or their 

three-dimensional pendants as loxodromes. Those 

are modified by the addition of a constant vector by 

the fractal formula. Combining these two different 

motions, along the spiral trajectory and the straight 

vector, we get resulting trajectories of modified 

spirals, as well in 2D as 3D- structures as well. 

These trajectories may be interpreted as axons of 

neurons, projecting their activity from one location 
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of the net to its target-region. Thus, within the 

Mandelbrot set, we find a central structure, with 

certain ‘nuclei’ and efferent and afferent 

connections as well, resembling to a thalamus and  

analogue structures in three-dimensional 

‘Mandelbrot-sets’ too (fig. 1). 

In those networks, caused by the iterative nature of 

the process, at each neuron, a sequence of activity 

will occur, completely determined by and reflecting 

aspects of the starting pattern. Recording these 

sequences in form of intracellular memory-strings, 

strictly hypothetical in the biological hypothesis, in 

form of chains of triplets of RNA or DNA, allows a 

very efficient way to store, process and reconstruct 

information by these networks and at least 

principally the inheritance of behaviour by passing 

sets of memory-strings from one generation to the 

other, allowing evolutionary mechanisms to 

optimize these sets of memory-strings.    

The results of several preliminary studies with 

regard to these various aspects of those neural 

systems, shall be presented. 

 
Fig. 1 Central ‘thalamus’ of the Mandelbrot-set, 

‘nuclei’ (left) and ‘efferent connections’ to the 

periphery (‘cortex’) (right) 

 

 
Fig. 2 A three-dimensional analogon (‘thalamus’ 

and efferent projections) to fig. 1 

2 Methods and Material 
Equation 1 shows the fundamental squaring of 

complex numbers, combined with an addition of a 

constant vector c, base of Mandelbrot- and Julia-

sets: 

 

(1) f(z)  = c + z 
2
  

 

c and z being complex numbers, the iteration of 

equation (1) leads to the well-known fractals of the 

Mandelbrot- and the Julia-sets. In case of the 

Mandelbrot-set, we start for each point z1 of the 

plane at zero, the vector c equalling z1, while in 

Julia-sets, the vector c is chosen before starting the 

iterations and remains the same for all starting 

points z1 of the complex plane. The iterations are 

performed n-times until the modulus of the resulting 

z(n) will exceed a chosen limit(often called bailout, 

usually 2.0) or n will exceed a certain limit of 

iterations(often called maxiter). The behaviour 

during the iterations might be analyzed and used to 

color each point z of the complex plane according to 

a distinct color-table, thus resulting in a 

pseudocolor-representation of the complex plane, 

which we know as the typical fractals. The same 

basic procedure may be performed for each point z1 

of a three-dimensional space, whose coordinates x1, 

y1 and z1 may be used to calculate in an iterative 

manner the according point z2, to which a neuron at 

z1 is assumed to project its activity. Analogue to the 

two-dimensional fractals, we get according three-

dimensional fractal structures. By equation (1) no 

certain trajectory is determined, which we should 

follow when starting at z1 to reach point z2. Very 

sensible continuous functions to represent the 

movement from z1 to z1 in case of two-dimensional 

fractals are logarithmic spirals, because z1 as well 

as z2 will lie on the same logarithmic spiral. 

 

As a basic assumption, it is assumed, that the 

trajectories of the fractal functions shall represent 

axons of neurons, located at z1, projecting to 

(‘innervating’) neurons at z2, the same should apply 

to all neurons z(n) and z(n+1). 

For most simulations of neural nets, based on 

memory-strings, it is, very simplifying, assumed, 

that each neuron may have two states: active or 

inactive. All neurons may act synchronously in a 

certain sequence of activations. The neurons will 

project their activity along the trajectory of the 

modified spirals to their target-neurons. All 

connections are assumed to be recurrent, which 

means, all neurons may activate the neurons, they 

get activity from, as well. 80 % of connections in 

brains are recurrent [9]. In fractals these recurrent 
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connections are determined by reversing the 

squaring of the complex number z by calculating the 

two square-roots of any z or performing by 

geometrical means analogue functions for all three-

dimensional points z and subtracting c instead of 

adding it.  

Squaring of a complex number z is equivalent to a 

rotation around zero until the argument of z is 

doubled and squaring the distance from zero. The 

squaring of quaternions will do the same in an 

oblique ‘complex plane’, which is rotated around 

the x-axis, until the point z will lie within this plane. 

Geometrically we can combine these movements 

with additional movements, for instance a rotation 

of the oblique plane through z around the x-axis 

until its angle to the positive y-axis will be doubled, 

to get a way to calculate analoga of ‘squares’ of 

three-dimensional points z.  

In the simulations, all, or only certain, neurons are 

assumed to be able to record the sequence of 

activity, arriving at them, in form of ‘intracellular 

engrams’, short strings of numbers, representing the 

degree of activity at each activation cycle. These 

intracellular ‘memory-strings’ are used to compare 

them later to newly formed ones by comparing the 

encoded sequences of activity. The memory-string 

with the best fitting sequence, the most homologous 

one, will be chosen by the neuron, to send an 

associative answer to the net by recurrent activation 

of the adjacent chain or tree of neurons (fig. 3).  

Figure 3 displays this very schematically: above: 

The activity of each neuron of a chain of 4 neurons 

is projected stepwise to the next neuron in direction 

towards neuron 4. Neuron 4 (blown up) encodes 

each state of activity arriving at it at each working-

cycle by forming an intracellular engram, a chain of 

molecules (oligonucleotides or oligopeptides in the 

biological hypothesis), which reflects in its 

sequence of different components the sequence of 

activity. Thus two patterns are ‘learned’ by neuron 4 

and stored in engrams as base of ‘long-term-

memory’. Below: A third presented pattern leads to 

the forming of a third ‘memory-string’. The first 

learned string proves to be the most homologous. It 

will be chosen to be the string, with which the chain 

of neurons will be activated using its sequence (last 

in, first out) to reactivate the neuronal chain in 

reversed direction to reconstruct pattern 1 as an 

answer of the chain to pattern 3.  

 

To investigate principal aspects of the inheritance of 

behaviour, in a very preliminary study, a little 

organism, a ‘worm’ is simulated, which will move 

in a cellular world with ‘food’ and ‘enemies’. 

 
Fig. 3 Formation and using of memory-strings 

(schematic view) 

 

It is assumed to have a small ‘nervous-system’, 

consisting of a grid with 16 neurons (their x- and y- 

coordinates ranging from 1 to 4), which will have 

two possible states of activity: on or off. The first 8 

neurons (fig 23, 24) are ‘sensory neurons’, 

reflecting the existence of an obstacle in front of the 

worm by ‘on’, its absence by ‘off’. The first 4 

neurons 1-4 are ‘on’, if the obstacle will cover two 

cells of the environment, the neurons 5-8, if the 

obstacle will cover at least one cell. The basic 

information, the pattern within the sensory-neurons 

will be distributed over the whole net by a fractal 

algorithm. Each cell will activate its neighbour in 

vertical direction (e.g. neuron 5 will innervate 

neuron 9). Additionally, the x-coordinate of the 

neurons with x= 1 or 2 will be squared, and a 

constant vector vx, choosen to be 3, will be added. 

If the resulting value will be greater than 4, 4 will be 

subtracted. The resulting value will be the x-

coordinate of the second innervated neuron. The y-

coordinate will be treated as the x-coordinate, the 

constant vector vy was choosen to be 0. Thus we get 

the coordinates of the second neuron, which will be 

innervated. For the neurons with x-coordinates 3 or 

4, the corresponding neurons will be determined to 

be symmetrical to the midline to the second- target-

neurons of the neurons with x- coordinates 1 or 2. 

The resulting structures of connections will be 

symmetrical to the midline. Thus, in the course of 5 

iterations, in all neuron will arise a sequence of 5 

states of activity, which will distribute the starting 

information of the sensory-neurons over the whole 

net. The neurons 13 – 16 will work as motor-

neurons. They will compare the sequence of 

activity, occuring at them within 5 iterations to the 

bsequences of a set of 50 memory-strings, which 
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they possess as genotype ‘by birth’(in the simulation 

by a random sequencing or by mixing them from 

two formerly existing sets of memory-strings of two 

‘parents’), selecting the memory-string with the best 

fitting sequence. Each memory-string has at the 

sixth position one ‘base triplet’, a codon, encoding 

activity or no activity. According to this 6
th

 position, 

the motoneuron will be, as a consequence of the 

starting pattern represented within the ‘sensory 

neurons’, active or inactive. The motoneurons are 

assumed to have a hierarchical order: If the second 

motoneuron (neuron 14) will be active, the worm 

will move one cell forward in the same direction as 

before. If the second motoneuron will be inactive, 

the first motoneuron (neuron 13) will be 

deterrmining the reaction of the worm, if it is active. 

Then the worm will move one cell to the left (in 

respect to the former direction). If the first 

motoneuron will be inactive too, the third 

motoneuron (neuron 15), if active, will cause one 

step to the right, if inactive as well, the 4
th

 

motoneuron (neuron 16) will cause a movement two 

cells backwards. In 20% a step of one cell in a 

random direction will be choosen (to avoid endless 

loops). The number of cells with ‘food’ or ‘enemy’, 

hit by the ‘worm’ will be counted as a base for 

evaluating. As a positive or negative reinforcement, 

an additional codon, ‘base-triplet’, will be added to 

the memory-string, causing the last action, encoding 

positive or negative evaluation, influencing the 

selection of strings in later moves. In the presented 

study, this part of simulating the individual learning 

history is performed in a preliminary form. Each 

‘worm’ will get a set of 50 memory-strings at the 

beginning, simulating a set of ‘genes’. There were 

three kinds of sets used: one with only 20% of the 

encoding positions encoding ‘activity’, the second 

with 80% encoding activity and the sets of the 

‘children’, as a ‘mixture’ of two ‘parental’ sets.     

Codes were written using Blitzbasic, Lazarus and 

Delphi, fractal programs PodMe and 

ChaosPro(freeware) and the Raytracer 

PovRay(freeware). 

 

3 Results 
3.1 Trajectories and connectivity 
Starting at any point z1 we get a sequence of  points 

as result of the iterations of equation 1. These might 

be shown as a series of single points as in figure 4a. 

We can show the connections of points z1, z2, ... zn 

by connecting them directly(fig. 4b), we may as 

well show the influence of the two terms of equation 

1 to the results (segments of logarithmic spirals 

representing the squaring of the complex number, 

the straight lines the addition of the constant vector 

c)(fig. 4c) or we may (fig. 4d) show these two 

influences by both terms as a combined movement 

along modified spirals, leading from z1 to z2 and so 

on. This last concept is used throughout this paper to 

determine the course of the trajectories, or ‘axons’. 

 

 
 

Fig. 4 Course of values, starting at z1, various forms 

of visualization 

 

 

We get a basic trajectorial system of segments of 

logarithmic spirals, representing the squaring of 

complex numbers (fig.5).  

 

 
 

Fig. 5 Left: trajectorial system of segments of 

logarithmic spirals, upper half of the complex plane; 

to the right: The trajectorial system matches the 

course of the fibres of the optical nerve within the 

eye quite well (artistic-schematic view, according to 

[10]) 

 

The trajectorial system does fit the course of the 

fibres of the optic nerve (papillomacular and arcuate 

fibres) within the eye nearly perfectly, the blind spot 

representing point 1 on the x-axis. By convergence 

of the trajectories towards zero, a ‘macula densa’ 

will arise there (fig. 5 right).  

 

In case of the Mandelbrot-set, a neuron, getting 

activity, would not necessarily ‘know’, where to 

project, because this will depend on the actual 

constant vector c, which differs from starting neuron 

to starting neuron. With additional layers, which 

project from respective points to different targets in 

the basic layer, a net would be able to perform this 

algorithm (fig. 6). 
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Fig. 6 Hypothetical circuitry, able to perform the 

Mandelbrot-algorithm 

 

The starting point z1 has to activate the according 

layer B to determine, with which constant vector c 

the net should perform the projections. The structure 

with many parallel layers with two pathways 

innervating them resembles to the cerebellum with 

its mossy- and climbing-fibres. Such a net would 

have the option to compare and to process a much 

greater variety of patterns than a net based on the 

Julia-algorithm with fixed wiring only. 

 

 
Fig. 7 Connections between distant neurons 

 

Thus even very distant neurons may be connected 

directly or by only few interneurons. By the affine 

projections of the fractal algorithm, the neurons 

will, projecting their activities to the subsequent 

neurons, be organized in chains of neurons (fig.7). 

In three-dimensional nets the trajectories, examples 

shown in figures 2, 8, 23 and 24, the logarithmic 

spirals are replaced by their 3-D analogues, the 

squaring of quaternions, with fourth parameter set 

zero, or by loxodromes or variations of these 

functions.   

 

 
 

Fig. 8 Examples of three-dimensional trajectories 

 

We can see some characteristics of biological 

connections within brains: strictly topographic 

projections, systematic crossing of the midline 

(decussatio), spiral ‘biomorph’ courses, circuits 

from the center to the periphery and backwards 

(figs. 8 and 24). We may identify neurons, 

belonging to circuits with various numbers of 

neurons within them, reflecting different 

frequencies, after which a circuit will begin to 

repeat its course. Thus we get the central structures 

(figs. 1, 2 and 23) resembling to a thalamus, 

contending distinct nuclei with different afferent and 

efferent projections to the periphery (‘cortex’). 

  

 
   

Fig. 9 Fractal neural net(Julia algorithm c=0.25 + 

0.25*i), connections of the whole net to a 

circumscribed region(red circle) by applying the 

squaring(left)- and in reversed direction the square-

root-function(right).  

 

The rich connectivity will, by interneurons, allow 

the whole net or wider parts of it, to ‘innervate’ 

circumscribed regions and, by recurrent 

connections, in reversed direction, the activation of 
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these wide parts of the net by this circumscribed 

region (figs. 9 and 16). 

 

3.2 Morphology and morphogenesis 
 

            
 

Fig.10 Three-dimensional fractal neural net 

 

As a result we get three-dimensional fractal 

structures, which can be interpreted as neural nets 

(fig. 10). These are usually calculated by ‘squaring’ 

three-dimensional numbers (or related analogue 

functions) and adding a constant vector c, 

continuing the iterations, until a sphere around zero 

will be left or until a chosen number of iterations 

will be exceeded. But we may get these structures 

by reversing this procedure. We start with a sphere 

or bubble of points (‘cells’) and triplicate each ‘cell’ 

by projecting its two ‘children-cells’ to its positive 

and negative ‘square root’ combined with the 

subtraction of a constant vector. Imagining recurrent 

connections between each ‘parent-cell’ and each 

‘children-cell’, we get 3-D neural nets with the same 

rich connectivity as in 2-D-nets (Fig. 11). 

 
Fig. 11 Morphogenesis (iteration 2 to 5) 

If we start with a solid sphere, the result will be a 

solid structure, if we start with a bubble, we will get 

a fractal structure (with wide variability depending 

on the location and size of the starting ‘bubble’, the 

basic trajectorial system and the constant vector as 

well) with ‘lobes’, ‘gyri’, ‘sulci’ as if starting with a 

solid sphere, but now with an additional ‘ventricular 

system’ (fig. 12). 

 

  

 
Fig. 12 Three-dimensional net with ‘ventricular 

system’ 

 

As in two-dimensional fractals, distant cells will be 

connected by few interneurons, thus being able to 

synchronize their activity and to act as a neural 

ensemble (fig. 13). 

 

 
 

Fig. 13 Connected neurons, neural ensemble 

 

 

3.3 Memory-strings and Tomography 
Assuming each neuron will project its activity to its 

subsequent neurons, specific sequences of activity 

will arise in each neural chain, depending on the 

starting-pattern. Though very hypothetically, 

neurons might be able to record and store this 

sequence (using modulations of intracellular 

calcium-levels, reflecting the changes of the 

membrane-potential, which will transport 

information about the sequences of activity along 

the endoplasmatic reticulum to the nucleus of the 

neuron, to form respective molecules by calcium-

dependent Kinases and related enzymes), by 

forming short molecular chains, for instance 

oligonucleotides (or according oligopeptides), each 

base-triplet encoding a distinct degree of activity. 

Very early, engrams [11] were thought to be the 
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base of long-term-memory, whose consolidation can 

be blocked by inhibitors of protein-synthesis.  

In this model, these memory-strings might be used 

any time later to reactivate the neural ensemble with 

their specific sequence in recurrent direction, 

reconstructing the pattern completely or partially. In 

case of neural ensembles in form of binary (fig. 14) 

(or in three-dimensional fractal nets occasionally 

quaternary) trees, the reconstruction will reflect the 

way, by which structures are reconstructed in 

tomographic pictures. In those, straight rays are 

summing up specific information (degrees of 

absorption) of each voxel they pass. To reconstruct 

the pattern, the averaged degree of absorption is 

attached to each voxel, formerly passed by the ray. 

Overlapping of many rays enables us to reconstruct 

the original pattern sufficiently. In fractals, there are 

no straight rays, but neural ensembles in their most 

simple form as chains of neurons or, more complex 

and realistic, as binary (or, in three-dimensional nets 

even quaternary) trees.  

 

The root of each tree might get the information 

about the average activity of all neurons. 

Reactivating the neural tree by reversing the 

procedure, using the stored information, the fractal 

neural net will be able to reconstruct the original 

pattern by overlapping the information of many 

neural trees. Because the information might not only 

 
Fig. 14 Binary tree of neurons connected with z 

 

be averaged to all neurons of the tree, but might be 

attributed to the different levels of the tree correctly, 

this procedure is theoretically able to work more 

exactly than a usual tomographic procedure. 

    

 
 

Fig. 15 Reconstruction of a pattern by overlapping 

10 neural subsets (black arrows; the roots of the 

neural ensembles or –trees being indicated by 

yellow circles and purple crosses), right below: 

reconstruction of a pattern using 100 subsets (red 

arrow). 

 

In fig. 15 we see the reconstruction of a square by 

overlapping 10 subsets, each having only very 

limited similarity to the original square. According 

tomographic procedures, the overlapping of more 

and more neural trees (ensembles or subsets) will 

enable the net to reconstruct the original pattern 

sufficiently (Fig 15 right) [6].  

 

 
 

Fig. 16 Wide variety of subsets 

 

Depending on location and size of the dendritic trees 

(fig. 16, red circles) of the neurons and the constant 

vector c of the Julia-set, the subsets, leading to 

maximal activation of the neurons, show a 

tremendous variability. There are neurons, reflecting 

the activity of nearly the whole net, giving general 

information about the presented pattern, as well as 

neurons, indicating activity in very small regions, 

connected with small details of the scene. 
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Fig. 17 Learning and reconstructing of patterns 

using memory-strings 

 

Fig. 17 shows a neural net, using the squaring of 

complex numbers (constant vector = 0 + 0*i) for 

learning, for the reconstruction of the pattern only 

the positive square roots. Neural chains are shown 

in the upper left corner, some memory strings in the 

upper right corner. In the midline five different 

patterns, which are learned by the cells at the end of 

the neural chains (located in the pink/violet region 

of the net (fig. 17, left lower corner). Here we see a 

‘macula densa’ being automatically formed by such 

nets, because zero represents an attractor in case of 

the constant vector c being zero.  

 

The memory-strings may be regarded as vectors, 

therefore the whole nets act as vector-machines. 

They learn, compare and select vectors, represented 

in the simulations by strings of numbers, in the 

biological hypothesis by chains of molecules 

(oligonucleotides or –peptides), which encode and 

represent sequences of activity, respectively, 

patterns. 

  

3.31 Scanning patterns 

When the iterations are performed, as a result, a 

special sequence of activity will arrive in each 

neural ensemble at the root of the neural trees, 

specific for each starting-pattern. A high activity at 

a certain region of the net will thus indicate, that the 

neural tree does reflect the original pattern at least in 

parts very well. The starting pattern will be partially 

represented by the neural ensemble, connected with 

this specific root. Depending on the underlying 

algorithm (spiral trajectorial system and constant 

vector c as well), an unlimited number of different 

patterns might thus be ‘recognized’ by different nets 

without prior learning. During evolution, each 

species may have developed suitable nets, enabling 

them to deal with occuring situations in an optimal 

way. Different species may use different fractal 

nets, determined by certain spiral growing pathways 

and different constant vectors, formed by fields of 

gradients of growing factors, which depend on 

specific locations of cells, secreting these factors. 

 

 
 

Fig. 18 Scanning patterns 

 

Combing two fractals to get symmetric nets, these 

nets are able to ‘recognize’ very complex symmetric 

patterns by a high degree of activity in certain 

regions of the net. Within few iteration cycles, each 

starting pattern will be analyzed to which degree 

those unlimited numbers of possible complex 

patterns are represented within the starting pattern. 

Thus, this process may be regarded as a kind of 

Fourier- analysis of each starting-pattern. The nets 

will be able to analyze these patterns without any 

prior learning, their ability is ‘inherited’, ready for 

action as they are generated. Neurons with a 

dendritic tree, covering the regions of the two nets 

in Fig. 18 (left generated by vector c = - 0.8 + 0.32 * 

i, right c = 0.3255 + 0.55 *i), which are indicated by 

orange circles, will be maximally activated, if the 

complex patterns will be the starting patterns. 

Neighboured neurons will be activated by similar 

patterns, with small differences in shape and size, 

the differences increasing with growing distance of 

the neurons.  

 

3.4 Performance 
Some preliminary studies have shown, that these 

nets are able to perform tasks of pattern-processing 

quite efficiently [12],[13]. The concept of memory-

strings as engrams does not only suit to fractal nets, 

but to nets with randomized connectivity as well 

(fig. 19 and fig. 20). Assuming, memory-strings, 

used at a certain moment, shall be blocked at the 

next moment, a flow of patterns will emerge, 

associative alternative answers of the net to a 
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presented pattern, with sometimes surprising effects 

in pattern processing: 

 

             
 

Fig. 19 Example of a net with random connectivity, 

formed by 10000 neuronal chains  (one shown upper 

left) with 6 neurons each. Right: memory-strings, 

encoding learned patterns 

 

 

 
 

Fig. 20 Four patterns (row above) are learned. 

Reconstruction of a (shown at the left) presented 

pattern, middle row: without - , row below: with 

inhibition of the memory-strings, actually used to 

reconstruct a pattern, for the next three working-

cycles, causing a vivid sequence of sensible patterns 

and subpatterns.  

 

At first, the memory-strings with the best fitting 

sequence will be chosen to reconstruct the pattern. 

The most similar pattern will be reconstructed (fig. 

20 middle row). If these strings are blocked for a 

certain number of working-cycles, the net will 

‘play’ with patterns and subpatterns, which are not 

learned directly, but are included within the learned 

patterns (fig. 20 row below).  

Thus, a way to process informations, additionally to 

changing synapses, will become possible: an 

intracellular processing by ordering the memory-

strings by similarity, or e.g. producing average 

memory-strings out of a sample of memory-strings, 

all connected with related patterns. After learning 

patterns/pictures of different cars, the net could for 

each cell build a memory-string as an average of all 

‘car-related’ memory-strings, now representing ‘the 

idea’ of a car. The concept proves in case of 

‘biomorph’ neural nets with more than 3 million 

(though very simplified) neurons (fig. 21).  

 

 
 

Fig. 21 Large fractal neural net with maximally 

simplified neurons, patterns learned (middle 

column), are reconstructed, when presented partially 

(right column) 

 

Even moving, animated patterns might be learned 

and reproduced by nets working on base of 

memory-strings [14]. In figure 22, the blown up 

medial-right columns show the reproduction of a 

sequence of moving patterns, presented only 

partially for three working-cycles. 

 

      
 

Fig 22 Learning and reconstruction of animated 

sequences of patterns by a net with random 

connectivity, processing of patterns using memory-

strings 
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3.5 Inheritance of behaviour 

The fractal algorithm determines the connectivity of 

the neural net, the ’central nervous system’ of the 

simulated worm. A starting pattern, represented by 

the pattern of activity within the ‘sensory-neurons’ 

will be distributed over the whole net, causing a 

sequence of activity, arriving at the ‘motoneurons’ 

during the cycles of activation (figs 23 and 24). 

 

   1                 2               3             4              5 
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Fig. 23 The neural net of the simulated organism, 

distribution of a starting pattern (above), connected 

neurons (below), ‘memory-string’ (above-right)   

 

 
 

Fig. 24 The fractal connectivity of the neurons 

 

The activation of two neurons by each neuron in the 

course of iterations resembles to the connectivity of 

the pyramidal cells of the CA3-layer of the 

hippocampus, which project by their axons as well 

with the fornix to the limbic system and as well by 

Schaffer collaterals to pyramidal cells of the CA1-

layer of the hippocampus. 

 

As shown in figs 25 and 26, the ‘worm’ will move 

in the world, its movements, except in case of a 

random movement (20 percent of the moves to 

avoid endless loops), completely determined by the 

process of selecting best fitting memory-strings 

according to the sequence of activity, arriving at 

each motoneuron and the hierarchy of motoneurons 

 
 

Fig. 25 Left: course of the simulated ‘worm’ 

through the cellular world (3000 moves). Food: 

green, enemies: dark red squares. Right: three sets 

of ‘genes’, above and in the middle determined by 

random procedures, below, ‘genes’ of the ‘child’, 

mixed from the sets of memory-strings of its 

parents. Below each set of memory strings: the 

memory-strings used by the motoneurons are 

shown. 

 

 
 

Fig. 26 Another example suggesting a ‘mixture’ of 

behaviour (more nested or long-ranging), when 

inheriting to equal parts the memory-strings, ’genes’ 

of the ‘parents’ (above and middle) to the ‘child’ 

(below). 

 

(if several motoneurons will be active at the same 

moment, the first choice will be to move forward, 

next choices to move the left, to the right or 

backwards). Thus, different sets of memory-strings 

will result in different behaviour in identical 
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situations (respective identical patterns of activity of 

the sensory-neurons). Learning will be performed 

either by marking memory-strings, which will have 

caused a sensible or dangerous move. Such markers 

(encoded at an additional position of the memory-

string) will influence the process of selecting the 

memory-string, improving its chances to be 

selected, if it is marked as having caused useful 

former moves and, on the contrary, diminuishing its 

chances in case of negative effects in former moves.   

 

 
 

Fig. 27 Changing parameters of reinforcement 

during the course of movements might result in a 

change of behaviour (in the first half of moves more 

positive reinforcements).   

 

Changing the parameters of reinforcement (more 

positive reinforcement after a useful move in the 

first half of moves) resulted in a change of 

behaviour (fig. 27). This figure may suggest the 

effect of such a change of ‘psychological’ 

parameters, but further studies are needed to 

confirm the result, excluding possible artefacts or 

random-effects more strictly. 

 

Some courses may suggest an ‘inheritance’ of 

certain aspects of behaviour (e.g. movements in a 

more nested ore a more long-ranging manner) from 

parents to a child, when mixing the memory-strings 

of the parents to form the child´s ‘genes’ (fig. 26). 

 

These results are very preliminary and limited in 

their expressiveness. Nevertheless they might offer 

a hypothetical model, how organisms could inherit 

behaviour, using molecular chains (RNA or DNA-

molecules or oligopeptides in the biological 

hypothesis respectively vectors, chains or sets of 

numbers, in computer-simulations) as base of 

information processing. In the course of generations, 

evolutionary effects may optimize such behaviours 

in regard to the demands of the environment by 

selecting useful sets of memory-strings.   

 

 

5 Conclusion 
Two- and three-dimensional fractal neural nets offer 

numerous interesting features concerning richness 

of connectivity of the neurons even over long 

distances, the emerging of neural ensembles 

enabling tomographic ways of pattern - processing  

as well as morphologic similarities to biological 

structures. During growth (or generating in 

simulation), the connectivity arises inborn, without 

any prior learning. Thus the nets are, without 

learning, able to ‘recognize’ (different patterns will 

cause maximal activity in certain distinct neurons) a 

great variety of complex patterns by the neuronal 

ensembles, which will be formed by the fractal 

connectivity itself. Storage and processing of 

patterns by intracellular memory-strings in all or in 

specialized neurons enable the nets to perform 

extraordinary ways of learning, comparing, 

extracting and reconstructing patterns. Their ability 

to, at least theoretically, reconstruct the patterns in 

each neural ensemble (if these are pure chains, not 

trees) perfectly, not only associatively, offers 

advantages compared to nets, based upon changing 

of synapses. In those, the structure of the net will be 

changed by the learning procedure, which will not 

be the case for nets, working on memory-strings. 

Their connectivity will remain unchanged by all 

procedures of pattern processing. Several 

preliminary studies have shown the applicability of 

these principles. Only very hypothetically these 

concepts play a major role in biology. The obvious 

similarity of these structures in terms of their 

connectivity and morphology (strictly topographic 

projections, decussationes, occurence of nuclei like 

a thalamus (fig. 28), of lobi, gyri, sulci and 

ventricular systems, the similarity between the 

trajectorial system of the segments of logarithmic 

spirals with the course of the fibres of the optic 

nerve within the eye), but also their dynamics 

(activation of one neuron by many other neurons of 

distant regions with con- and divergence (fig. 29), 

the emergence of neural ensembles, enabling these 

nets to perform a tomographic way to process 

patterns) let this idea appear to be not completely 

fantastic. Memory-strings could, though completely 

hypothetically, explain, how complex behavioural 

patterns could be inherited from one generation to 

the next without need for learning. This concept is 

confirmed by the results of the very preliminary 

simulations, presented here. Means to generate and 

process such engrams, to compare and select them 

accordingly, are at least principally available in 

biological cells with regard to the genetic apparatus 

and Calcium-dependent Kinases and others. 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Thomas Kromer

E-ISSN: 2224-266X 474 Volume 13, 2014



Nevertheless they are strictly hypothetical, but they 

may work as alternative models, performing well in 

simulations, to widen our horizon and our concepts 

of the function of biological nervous systems. 

Further studies seem to be worth to explore the 

properties of these neural nets, which act as fractal 

neural vector-machines. 

 

 

 
 

Fig. 28 Central nuclei in a three-dimensional 

analogue of a Mandelbrot-set with a subset of 

‘efferent’ topographic projections forming tracts of 

fibres 

 
 

 

Fig. 29 Dynamics of fractal pathways 
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