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Abstract: This paper presents a novel low space complexity and high performance (low power and high speed)
unified and scalable word-based radix 4 architecture for Montgomery modular multiplication in GF(P) and GF(2k).
In this architecture, the multiplicand and the modulus words are allocated to each processing element rather than
pipelined between the processing elements as in the previous architectures extracted by L. Tawalbeh, and also the
multiplier bits are fed serially to the first processing element of the processor array every odd clock cycle. To reduce
multiplier area and accelerate its operation, the hardware architecture employs 3-to-2 carry save adders instead of
4-to-2 carry save adder, as used in conventional designs, to avoid carry propagation at each addition operation
of the add-shift loop. To reduce power consumption, glitch blockers are employed at the outputs of some circuit
modules to reduce the spurious transitions and the expected switching activities of high fan-out signals. Moreover,
the architecture was modified to reduce more power by replacing the dual field conventional 3-to-2 carry save
adder (CSA) by modified low power dual field 3-to-2 CSA that has internal logic structure with balanced delays in
SUM and CARRY outputs to reduce the chance of glitches occurrence. An ASIC Implementation of the proposed
architecture shows that it can perform 1024-bit modular multiplication (for word size w = 32) in about 4.81 µs.
Also, the results show that it has smaller Area × Time values compared to existing competing designs by ratios
ranging from 13.1% to 77.2% which makes it suitable for implementation where both area and performance are of
concern. Also, it has higher throughput over them by ratios ranging from 2.6% to 82.9%. In addition, it achieves a
decrease in power consumption compared to these designs by ratios ranging from 25.3% to 70.4%.
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1 Introduction

Modular addition, Modular multiplication and mod-
ular inversion in prime field GF(p) and binary exten-
sion filed GF(2k) are the essential math operations that
have numerous applications in cryptosystems, such
as DiffieHellman key exchange algorithm [1], Ellip-
tic Curve Digital Signature Algorithm [2], decipher-
ment operation of RSA algorithm [3], and elliptic
curve cryptography [4, 5]. The most critical of these
math operations is the modular multiplication opera-
tion since it is the center operation in numerous cryp-
tographic functions. Therefore, the performance of
any cryptography application depends to a large ex-
tend on the efficient implementation of the modular
multiplication operation. For resource constraint ap-
plications, it is necessary to develop efficient imple-
mentation for this operation that takes into account
savings in space and at the same time achieve high
performance (i.e., high speed and low power con-

sumption).
A famous approach for computing the modular

multiplication operation in hardware is based on the
Montgomery modular multiplication algorithm [6, 7].
This algorithm replaces the trial division by modu-
lus with a series of addition and shifting operations
which are easy to implement in hardware. Therefore,
the critical operation is basically the a three operand
addition inside an iteration loop. Unfortunately, The
long carry chains of the carry ripple adders when used
to add long operands seriously influence the perfor-
mance of cryptography system. Accordingly several
approaches to keeping away from long carry chains
during the addition operation have been proposed to
achieve a significant speed up of Montgomery modu-
lar multiplication.

The most important approach is the implemen-
tation of the modular multiplier architectures using
Carry Save Adders (CSAs) (e.g., [9]-[12]), but these
implementations are not desirable for resource con-
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strained applications that they have a significant in-
crease in hardware complexity and power consump-
tion [13, 14]. Moreover, most of the previously pub-
lished CSA-based scalable Montgomery multipliers
did not pay enough attention to the power consump-
tion issue. Consequently, this paper focuses on re-
ducing the power consumption with only a slight area
overhead. Previous published works such as [15, 16]
have developed techniques to reduce the power con-
sumption of Montgomery multipliers. The work in
[15] designed a low-power Montgomery multiplier
architecture that composed of ripple-carry adders by
employing the custom CMOS design of several ba-
sic building blocks, including logic gates, full adder,
and D flip-flop. In [16], some latches named glitch
blockers are located at the outputs of some circuit
modules to reduce the spurious transitions and the ex-
pected switching activities of high fan-out signals in
the radix-4 scalable Montgomery multiplier. In [17],
the authors modified the CSA-based radix 2 Mont-
gomery algorithm to bypass the iterations that perform
superfluous carry-save addition and register write op-
erations in the add-shift loop. In this paper, we at-
tempt to reduce the power consumption of CSAs in
the CSA-based unified and scalable radix 4 Mont-
gomery multiplier using technique that is different
from [15, 16, 17]. The goal is achieved by modifying
the conventional dual field 3-to-2 CSA to have inter-
nal logic structure, based on the multiplexing of the
Boolean functions XOR/XNOR and AND/AND, to
obtain balanced delays in sum and carry outputs that
reduce the chance of glitches occurrence. There are
several papers [18], [19] used the balanced delay tech-
nique to reduce the chance of glitches occurrence. In
[18], the authors modified the Wallace Tree multiplier
architecture to reduce spurious activity further by in-
troducing technique that combines transmission gates
with level-restoring static CMOS gates. This combi-
nation suppresses glitches via RC low pass filtering.
In [19], the authors presented a carry skip adder with
balanced critical paths. To achieve balanced delay,
they grouped the input bits into variable sized carry
skip blocks. This grouping reduces dynamic power
by minimizing extraneous glitches. These techniques
are totally different from the design technique used
in this paper in that they applied to architectures that
have carry ripple chain, but our technique is applied to
architecture that has unified carry save adders. More-
over, the technique used in the design of [18] was ap-
plied at the transistor level, but our technique was ap-
plied at the logic level.

The main idea of the architecture proposed in
this paper is based on the observation that the Mont-
gomery multiplication algorithm for both fields GF(p)
and GF(2k) are essentially the same algorithm. The

proposed unified architecture performs the Mont-
gomery multiplication in the field GF(p) generated by
an arbitrary prime p and in the field GF(2k) generated
by an arbitrary irreducible polynomial p(x). This pro-
posed unified architecture provides a significant sav-
ings in area and power when both types of modular
multipliers are needed.

In this paper, the first author modifies his earlier
architecture [37] by proposing a unified Montgomery
algorithm and carrying out a hardware implementa-
tion based on replacing the conventional 3-to-2 CSA
by modified dual field 3-to-2 CSA taking the advan-
tage of processing two operand words by the same
processing element (PE) of the processor array. The
internal logic structure of the modified dual field 3-to-
2 CSA will result in reduced power consumption with
only a slight area overhead. A unified word-based and
scalable radix 4 architecture is proposed that can han-
dle operands of any precision.

This paper is organized as follows. Section
2 presents the unified and scalable Multiple-Word
Radix-4 Montgomery Multiplication (MWR4MM) al-
gorithm with recoding [29]. Section 3 describes the
proposed processor array architecture. Section 4 de-
scribes several techniques to decrease power con-
sumption. Section compares the ASIC implemen-
tation of proposed processor array architecture with
the previous existing competing architectures. Finally
Section 6 concludes the paper.

2 MWR4MM algorithm
The notation used in this paper is as follows:

• Fsel : Field select bit, selects between GF(p) or
GF(2k)

• M : modulus.

• mj : a single bit of M at position j.

• A : multiplier operand.

• aj : a single bit of A at position j.

• B : multiplicand operand.

• n : operand size (in number of bits).

• R : a constant (called a Montgomery parameter),
R = 2n.

• qaj : coefficient determines the multiples of the
multiplicand B (qaj ×B).

• qmj : coefficient determines the multiples of the
modulus M (qmj ×M ).
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• S : intermediate partial product , or final result
of modular multiplication.

• w : word size (in number of bits) of either B, M
or S.

• e = ⌈ n
w⌉: number of words in either B, M or S.

• Ca, Cb : carry bits.

• (B(e−1), ..., B(1), B(0)): word vector of B.

• (M (e−1), ...,M (1),M (0)) : word vector of M .

• (S(e−1), ..., S(1), S(0)) : word vector of S.

• S
(i)
(k−1...0): bits k− 1 to 0 from the ith word of S.

Algorithm 1 shows the steps of the unified
and scalable MWR4MM algorithm. This algo-
rithm is a modified version of the Multiple-Word
High-Radix (Radix = 2k) Montgomery Multiplication
(MWR2kMM) algorithm presented in [22], [28]. It
differs from it in that it uses a recoding scheme to
recode qmj [29], it works for both fields GF(p) and
GF(2k) and it is represented in a regular iterative form.
The inputs of this algorithm are A,B,M and Fsel.
The output is the partial product S that is represented
in a carry save form (SS, SC). For multiplication in
GF(2k) the carry vector SC and carry bits Ca and
Cb are always kept zero. Since prime field GF(p)
uses carry-save arithmetic and binary extension field
GF(2k) is free from carry, a modified carry-save adder,
named as Dual Field Adder (DFA) is used to force the
carry to zero. The DFA is a conventional full adder
with additional Fsel signal. When Fsel is ’1’ the
carry C is computed, whereas when Fsel is ’0’ it is
always zero which is the desired property of GF(2k)
addition. In steps 3 to 8 of Algorithm 1, the output
word S initialized to zero. Through steps 11, 13, 15
and 16, The word vectors of S is computed by per-
forming the addition (Fsel × C, S(i)) = S(i) + X ,
where X is either (qaj×B) or (qmj×M ). In steps 17
and 20, the word vector S is shifted right by two bits
to implement the division by four operation included
in this algorithm.

we will use PP and MM to represent a partial
product qaj ×B and a multiple of modulus qmj ×M
, respectively.

In the case of radix-4, qaj , qmj are 2-bit num-
bers. Thus the value sets of PP and MM are as fol-
lows:

PP ∈ {0, A, 2A, 3A}, MM ∈ {0,M, 2M, 3M}

to calculate 3A and 3M on the fly, we need two extra
adders. To remove the burden of calculating 3A in the

Algorithm 1 Regular iterative Unified and Scalable
MWR4MM Algorithm.

1: Inputs: A,B,M,Fsel
2: Outputs: S = (SC, SS)
3: for i = 0 to e do ”Initialization”
4: S

(i)
−1 = 0

5: end for
6: for j = 0 to n− 2 do
7: S

(e)
j = 0

8: end for
9: for j = 0 to ⌈n/2⌉ − 1 do

10: qaj = Booth(a2j+1···2j−1) = Booth(Aj)

11: (Fsel × Ca, S
(0)
j ) = S

(0)
j−1 + (qaj ×B)(0)

12: qmj = Montg(S
(0)
j(1···0) × (4 −

(M
(0)
j(1···0))

−1) mod 4)

13: (Fsel × Cb, S
(0)
j ) = S

(0)
j + (qmj ×M)(0)

14: for i = 1 to e− 1 do
15: (Fsel×Ca, S

(i)
j ) = S

(i)
j−1 + (qaj ×B)(i)

16: (Fsel×Cb, S
(i)
j ) = S

(i)
j +(qmj ×M)(i)

17: S
(i−1)
j = (S

(i)
j(1···0), S

(i−1)
j(w−1···2))

18: end for;
19: Ca = Ca or Cb

20: S
(e−1)
j = signext(Ca, S

(e−1)
j(w−1···2))

21: end for;

PP’s value set, a modified Booth recoding scheme is
popularly used [29], see Table 1.

The problem of calculating 3M cannot be solved
by the Booth recoding scheme. L. Tawalbeh [29]
adopted a specialized recoding method to transform
the original value set of MM into the one that also
has easily obtainable elements only. We will give this
method the name ”Montgomery recoding scheme”.
Let (sp0,1,sp0,0)2 be the 2 bits in the Least Significant
Digit(LSD) of SP = S + PP and (m0,1,m0,0)2 be the
2 bits in the LSD of M . According to the input con-
dition that M has to be odd [22][29], m0,0 is always
’1’. Then, Montgomery recoding scheme takes a bit
stream (sp0,1, sp0,0,m0,1)2 as input and generates a
recoded MM according to Table 2, where qmj is the
recoded quotient digit for a MM at the jth iteration.

Montgomery recoding scheme transforms the
value set of MM into {−M, 0,+M,+2M}. The
proof that the algorithm is still correct after applying
Montgomery recoding scheme comes from the fact
that 3 ≡ −1mod4 [29].
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Table 1: Booth recoding scheme.
Three input Recoded quotient Recoded

bits for PP PP
aj,1 aj,0 aj,−1 qaj PP
0 0 0 0 0
0 0 1 +1 +A
0 1 0 +1 +A
0 1 1 +2 +2A
1 0 0 -2 -2A
1 0 1 -1 -A
1 1 0 -1 -A
1 1 1 0 0

Table 2: Montgomery recoding scheme.
Three input Recoded quotient Recoded

bits for MM MM
sp0,1 sp0,0 m0,1 qmj MM

0 0 0 0 0
0 0 1 0 0
0 1 0 -1 -M
0 1 1 +1 +M
1 0 0 +2 +2M
1 0 1 +2 +2M
1 1 0 +1 +M
1 1 1 -1 -M

3 Hardware Implementation
The author of this paper applied a mapping methodol-
ogy to the MWR4MM algorithm in prime filed GF(P)
in a previous publication [37] and explored four dif-
ferent processor array configurations. Two of these
processor arrays are suitable for efficient hardware
implementation (Design1 and Design2) and the other
two (Design3 and Design4) are complex designs and
are not suitable for hardware implementation. The
processor array architecture of Design1 was not re-
ported before in the literature, while the processor
array of Design2 was reported by L. Tawalbeh [29].
These designs perform multiplication in the prime
field GF(p) only. In this paper, we will modify the ar-
chitecture of Design1 to be used in both fields, prime
field GF(P) and binary extension field GF(2k). Fig-
ure 1 shows the proposed unified and scalable pro-
cessor array architecture that implements the unified
MWR4MM algorithm. The processor array consists

of z = ⌈(e+ 1)/2⌉ Processing Elements (PEs). Input
words B(2i), B(2i+1), M (2i), M (2i+1) are allocated to
processor PEi and Input aj is allocated to processor
PE0. qaj , qmj are generated inside PE0 and pipelined
to the next PEs with higher indices. The intermediate
output words S

(i)
j of each PE are pipelined between

adjacent PEs. A tristate buffer at the output of each
PE ensures that it is the only output fed to the output
bus. The Fsel signal is broadcast to each PE. This
signal makes the field multiplier operates in either
prime field GF(p) or binary extension field GF(2n).
If Fsel = 1 it works in GF(p) mode else in GF(2k)
mode

PE0 PE1 PEz

)0:2(jA

)0(B )0(M

)(iOS

)1(B )1(M )2(B )2(M )3(B )3(M
)1(eB )1(eM

):()( 013 wSC 0)(eSC):()( 011 wSC

0 0

)2:1()1( wSC ):()( 113 wSC

)(0S )1(S )2(S )2(eS )1(eS

)0:2(jqa
)0:2(jqm

Fsel

):()( 012 wSCe

)2:1()2( wSCe

):()( 013 wSS):()( 011 wSS ):()( 012 wSSe

)2:1()2( wSSe)2:1()1( wSS ):()( 113 wSS 0)(eSS

)0:2(jqa
)0:2(jqm )0:2(jqm

)0:2(jqa

Figure 1: Processor array for MWR4MM algorithm.

3.1 First PE architecture

Figure 2 shows the block diagram of the first PE
(PE0). The block diagram of this PE is divided into
two portions. The first portion computes only the
first 2 Least Significant Bits (LSBs) of the words of
S
(0)
j−1 + qaj × B(0) and S

(1)
j−1 + qaj × B(1) during

odd clock cycles (odd cycl = 1) and even clock cy-
cles (odd cycl = 0), respectively. The second por-
tion completes the computation of the word bits of
S
(0)
j−1 + qaj × B(0) and S

(1)
j−1 + qaj × B(1) dur-

ing the even clock cycles (odd cycl delay = 1) and
the odd clock cycles (odd cycl delay = 0), respec-
tively. Also, it performs the addition of full words of
S
(0)
j + qmj × M (0) and S

(1)
j + qmj × M (1) during

even clock cycles (odd cycl delay = 1) and odd clock
cycles (odd cycl delay = 0), respectively. The main
functional blocks are the Carry Save Adders (CSAs)
which perform steps 4, 6, 8, and 9 in the MWR4MM
algorithm, Algorithm 1. So, the intermediate partial
product S is represented in a carry save form as two
bit vectors SS (sum vector) and SC (carry vector).
So, while the leftmost adder (CSA0) works on the
two LSBs of a word of S(0)

j−1 + qaj ×B(0) or S(1)
j−1 +

qaj × B(1), the topmost adder (after the inter-stage
register) works on the other bits of S(1)

j−1+ qaj ×B(1)
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or S(0)
j−1+qaj×B(0), respectively. Therefore, there is

one clock cycle difference between the two portions.
So, The result word S

(0)
⌈n/2⌉−1 will be available on the

output bus through the tristate buffers after latency of
n+ 1 clock cycles (last cycl in = 1). In this case, two
rows of tristate buffers will be added to the next PEs
to prevent any two output words from driving the out-
put bus at the same time, see Figures 5, 6, and 7. The
input of the second PE (PE1) will be taken directly
from the output of the CSA2 of the first PE (PE0), see
Figure 2, to ensure that the input of the first PE (PE0)
from the second PE (PE1) arrives at the proper clock
cycles.

Figure 2 shows another function blocks. One of
these blocks is the Booth Recoder block that is used
to find the coefficient digit qaj according to Table 1.
The output of this block is the control signals for the
PP-Generator[29] block, see Figure 3, used to gener-
ate the multiples of B. There is also the Montgomery
Recoder Block that is used to find the coefficient digit
qmj according to Table 2. The output of the Mont-
gomery Recoder is the control signals for the MM-
Generator block, see Figure 4, used to generate the
multiples of M .
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Figure 2: First PE architecture.

3.2 Intermediate PE architecture

Figure 5 shows the block diagram of the intermedi-
ate Processing Element (PEi). This PE computes the
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Figure 5: Intermediate PE architecture.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Atef Ibrahim

E-ISSN: 2224-266X 433 Volume 13, 2014



3.3 Last PE architecture when (e+ 1) even

Figure 6 shows the block diagram of last PE (PEz).
It is the same as the intermediate PE (PEi) ex-
cept that we added two bit muxs at the output
of CSA2 to take sign extension into considera-
tion during the last cycle of computation. The re-
sult words S

(e−2)
⌈n/2⌉−1, (OSS(e−2), OSC(e−2)), and

S
(e−1)
⌈n/2⌉−1, (OSS(e−1), OSC(e−1)), will be available

on the output bus through tristate buffers after laten-
cies (n+e−1) and (n+e) clock cycles, respectively.
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Figure 6: Last PE architecture when (e+ 1) even.

3.4 Last PE architecture when (e+ 1) odd

In this case the previous PE will operate only on the
input words B(e) = 0, M (e) = 0, and S(e) = 0.
Since all of these inputs have a value of zero then the
previous PE block diagram can be reduced to the PE
block diagram shown in Figure 7. This PE is only
used to propagate the last carries of Ca , Cb and to
take sign extension into consideration during the last
cycle of computation. The last result word S

(e−1)
⌈n/2⌉−1

,(OSS(e−1), OSC(e−1)), will be available on the out-
put bus through tristate buffers after latency (n + e)
clock cycles.
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Figure 7: Last PE architecture when (e+ 1) odd.

4 low power techniques
In this section we further improve the hardware to
dissipate less power. The two circuit modules in
charge of the Booth and Montgomery recordings
comprise only combinational logic circuits according
to Tables 1, 2. The outputs of these modules have
unbalanced path delays and consequently introduce
glitches which cause worthless dynamic power dissi-
pation. Furthermore, the fan-outs of the glitchy sig-
nals are so big and this leads to the amount of dissi-
pated power is significant.

To reduce the glitching power dissipation, we put
in some latches and force the outputs to pass through
latches. If all flip-flops and registers capture their in-
puts at the clock’s rising edge, then the latches are
transparent when the clock is in a low state. If the out-
puts of the two recoding modules can reach their sta-
ble values before the clock’s falling edge, none of the
glitches can propagate to the fan-out modules driven
by the outputs. We name these latches ”glitch block-
ers” [16], see Figure 2. The glitch blockers are also
very effective for reducing the glitches appearing in
the CSA since they synchronize the arrival of PP and
MM at the CSA’s inputs.

PP generator makes a PP by modifying a word of
B according to the Booth recoder’s outputs, SEL PP
and EN PP. Also, MM generator makes a MM by
modifying a word of M according to the Mont-
gomery recoder’s outputs, SEL MM and EN MM.
When PP is zeroed by EN PP, PP outputted from the
PP generator does not depend on SEL PP. Thus, keep-
ing SEL PP frozen at that time is effective for reduc-
ing power dissipation. Same reasoning also applies to
SEL MM. We place two 1-bit flip-flops [16], see Fig-
ure 2, and construct feedback loops for SEL PP and
SEL MM to implement this idea.

The power consumption was reduced further by
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Figure 9: Dual Field adder.

modifying the structure of the conventional dual field
3-to-2 CSA shown in Figure 8. As shown in this fig-
ure, each cell of the conventional dual field 3-to-2
CSA consists of a dual field adder (DFA). The DFA is
a conventional full adder with extra field select (Fsel)
signal, as shown in Figure 9. From Figure 8, the sum
(ps) and carry (sc) outputs of the DFA can be written
as:

ps = x.(ss⊕ sc) + x.(ss⊕ sc) (1)

pc = x.(ss⊕ sc) + sc.ss

= [x.(ss⊕ sc) + sc.(ss⊕ sc)].Fsel (2)

= (x.Fsel).(ss⊕ sc) + (sc.Fsel).(ss⊕ sc)

where x represents the bit value of partial prod-
ucts PP or MM. sc and ss are bit values of the partial
product vectors SC and SS, respectively.

Figure 10 shows the modified dual field 3-to-
2 CSA. We notice from this figure that the internal
logic structure is based on multiplexing of the Boolean
functions XOR/XNOR and AND/AND, to obtain bal-
anced delays in sum and carry outputs that reduce
the chance of glitches occurrence. We did not realize
the XOR/XNOR functions by synthesizing the XOR
function and generating the XNOR function through
an inverter. This type of design has the disadvantage
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Figure 10: Modified dual field 3-to-2 CSA.

of delaying the XNOR output, giving rise to skewed
signal arrival time to the successive modules. This
will increase the chance of producing spurious switch-
ing and glitches in these modules.

5 ASIC Implementation Compari-
son

We described the explored architectures and the exist-
ing unified/scalable architectures of Son [16], Savas
[23], Harris [24], Todorov [28], Huang [35], Sud-
hakar [38], Ibrahim [39], Wang [40], Amberg [41],
Ye [42], Sassaw [43] and Ibrahim [44] in VHDL at
the register transfer level and synthesized them to the
gate level for n = 1024 and word size w = 32 us-
ing a 0.18µm, 1.8V, standard-cell CMOS technology
(In [38], the architecture is N bit-sliced architecture,
where N = zw). We used the Synopsys synthe-
sis tools package version 2005.09-SP2 for the logic
synthesis and power analysis. All the synthesis re-
sults are obtained under typical operating conditions
(1.8V, 25◦C). Simulations were performed with Men-
tor Graphics ModelSim SE 6.0a. Table 3 compares
the ASIC implementation of the different multipliers
architectures. In this table, the column entitled ”Area”
represents the area of the multipliers as the number of
gate equivalents and column entitled ”Max. Multipli-
cation delay” represents the maximum amount of time
required by the multiplier to complete a single opera-
tion (in some designs multiplication delay depends on
the operating fields GF(p) or GF(2n)), while ”Power”
represents the estimated power consumed by the mul-
tiplier. The Area×Time metric and throughput rate
were calculated using the synthesis results in order to
measure the degree of optimization achieved in each
multiplier. From Table 3 we notice that, The proposed
design has smaller Area× Time values compared to
all designs by ratios ranging from 13.1% to 77.2%.
Also, it has higher throughput over them by ratios
ranging from 2.6% to 82.9%. In addition, it achieves
a decrease in power consumption compared to these
designs by ratios ranging from 25.3% to 70.4%.
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Table 3: ASIC Implementation Comparison of Different unified/scalable field Multipliers for n = 1024 and
w = 32.

Field Radix Unified/ Area Max. Area(A) × Throughput Power
multiplier Scalable mult. Times(T) (nbits/T)

(A) [kgates] delay (T)
[µs]

[kgates.µs] [Mbps] [mW ]

Savas
[23]

2 for
GF(p),

yes/yes 22.822 28.220 644.044 36.29 87.50

4 for
GF(2n)

Harris
[24]

2 yes/yes 23.324 16.300 380.185 62.82 91.20

Sudhakar
[38]

2 yes/yes 23.221 17.180 398.945 57.53 90.57

Ibrahim
[39]

2 yes/yes 19.678 17.070 335.92 59.99 88.41

Son [16] 4 no/yes 35.212 10.122 365.416 101.17 53.23
Huang
[35]

4 no/yes 33.231 8.123 269.935 126.06 101.22

Wang
[40]

4 no/yes 35.212 4.952 174.370 206.79 99.44

Ye [42] 4 no/yes 34.231 4.942 169.170 207.20 77.77
Todorov
[28]

8 no/yes 42.626 5.720 243.821 179.02 107.99

Amberg
[41]

8 no/yes 38.412 4.960 190.524 206.54 106.88

Sassaw
[43]

8 no/yes 43.423 6.460 280.513 158.51 109.22

Ibrahim
[44]

8 yes/yes 39.279 5.450 214.071 187.89 43.23

proposed
Design

4 yes/yes 30.528 4.812 146.901 212.80 32.31
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6 conclusion
This paper presented a new low space complexity,
low-power and high-speed processor array architec-
ture for the unified and scalable MWR4MM algo-
rithm. In this architecture, the multiplicand and the
modulus words are allocated to each processing ele-
ment rather than pipelined between the processing el-
ements as in the previous architectures extracted by
L. Tawalbeh, and the multiplier bits are fed serially
to the first processing element of the processor array
every odd clock cycle. We applied several techniques
to this architecture to decrease the power consump-
tion. One of these techniques is conventional and uses
glitch blockers at the outputs of some circuit modules
to reduce the spurious transitions and the expected
switching activities of high fan-out signals. Another
new technique is to replace the dual field conventional
3-to-2 CSA by modified low power dual field 3-to-
2 CSA that has internal logic structure, based on the
multiplexing of the Boolean functions XOR/XNOR
and AND/AND, to obtain balanced delays in sum and
carry outputs that reduce the chance of glitches occur-
rence. An ASIC Implementation of the proposed ar-
chitecture and all of the efficient existing ones shows
that it can perform 1024-bit modular multiplication
(for word size w = 32) in about 4.81 µs. Also, the
results show that it has smaller Area × Time values
compared to all compared designs by ratios ranging
from 13.1% to 77.2% which makes it suitable for im-
plementations where both area and performance are
of concern. Also, it has higher throughput over them
by ratios ranging from 2.6% to 82.9%. In addition,
it achieves a decrease in power consumption com-
pared to these designs by ratios ranging from 25.3%
to 70.4%.
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