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Abstract: In this paper, an intelligent adaptive control system (IACS) for induction motor (IM) servo drive to 

achieve high dynamic performance is proposed. The proposed IACS comprises a recurrent functional-link-

based Petri fuzzy-neural-network (RFLPFNN) controller and a robust controller so that the developed adaptive 

control scheme has more robustness against parameters uncertainties and approximation errors. The RFLPFNN 

controller is used as the main tracking controller to mimic an ideal control law while the robust controller is 

proposed to compensate the difference between the ideal control law and the RFLPFNN controller. The proposed 

RFLPFNN model uses a functional-link neural network to the consequent part of the fuzzy rules. Thus, the 

consequent part of the proposed RFLPFNN model is a nonlinear combination of input variables. Moreover, the 

online structure and parameter-learning of the RFLPFNN are performed concurrently. The structure learning is 

based on the partition of input space and the parameter learning is derived based on the Lyapunov stability 

analysis and the back propagation method to guarantee the asymptotic stability of the IACS for the IM servo 

drive. In addition, to relax the requirement for the bound of minimum approximation error and Taylor higher-

order terms, an adaptive control law is utilized to estimate the mentioned bounds. A computer simulation is 

developed and an experimental system is established to validate the effectiveness of the proposed IACS. All 

control algorithms are implemented in a TMS320C31 DSP-based control computer. The simulation and 

experimental results confirm that the IACS grants robust performance and precise response regardless of load 

disturbances and IM parameters uncertainties. Furthermore, the superiority of the proposed IACS is indicated in 

comparison with the Petri fuzzy-neural-network control system and traditional PID controller. 

 

Key-Words: Functional-link neural-networks (FLNNs), intelligent control, indirect field-orientation control 

(IFOC), induction motor, Lyapunov satiability theorem, Petri net (PN), fuzzy-neural-network, robust control. 

 

1 Introduction 
Induction motors (IMs) have many advantageous 

characteristics such as high robustness, reliability 

and low cost compared with DC motors. In the last 

two decades, field-oriented control has become the 

preferred method used in the control of high 

performance IM drives. The objective is to obtain a 

torque dynamic similar to that of a separately excited 

DC motor. Therefore, IM drives are frequently used 

in high-performance industrial applications which 

require independent torque and speed/position 

control. Induction motors also possess complex 

nonlinear, time-varying and temperature dependency 

mathematical model. However, the control 

performance of the IM drives is sensitive to the 

motor parameter variations, especially the rotor time 

constant, which varies with the temperature and the 

saturation of the magnetizing inductance. In addition, 

the performance of IM drives is still influenced by 

uncertainties, such as mechanical parameter variation, 

external disturbance, unstructured uncertainty due to 

non ideal field orientation in the transient state and 

unmodeled dynamics. From a practical point of view, 

complete information about uncertainties is difficult 

to acquire in advance [1]-[2]. Therefore, in recent 

years much research has been done to apply various 

approaches to attenuate the effect of nonlinearities 

and uncertainties of IM servo drives to enhance the 

control performance [8]-[30]. Conventional 

proportional-integral-derivative (PID) controllers are 

widely used in industry due to their simple control 

structure, ease of design and implementation [3]-[7]. 
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However, the PID controller cannot provide robust 

control performance because the IM servo drive 

system is highly nonlinear and uncertain. In addition, 

an objection to the real-time use of such control 

scheme is the lack of knowledge of uncertainties. 

Due to the existence of nonlinearities, uncertainties, 

and disturbances, conventional PID controller cannot 

guarantee a sufficiently high performance for the IM 

servo drive system. To deal with these uncertainties 

and nonlinearities and to enhance the control 

performance, many control techniques have been 

developed for IM drive system, such as robust 

control [8]-[11], sliding mode control (SMC) [12]-

[16], intelligent control [17]-[24], hybrid control 

[25]-[28], H Control [29], [30]. These approaches 

improve the control performance of the IM drive 

from different aspects. Therefore, the motivation of 

this paper is to design and implement a suitable 

control scheme to confront the uncertainties existing 

in practical applications of an indirect field-oriented 

controlled IM drive. 

The concept of incorporating fuzzy logic into a 

neural network (NN) has grown into a popular 

research topic. In contrast to the pure neural network 

or fuzzy system, the fuzzy-neural-network (FNN) 

possesses both their advantages; it combines the 

capability of fuzzy reasoning in handling uncertain 

information and the capability of NNs in learning 

from the process [31]-[35]. On the other hand, the 

recurrent fuzzy-neural-network (RFNN), which 

naturally involves dynamic elements in the form of 

feedback connections used as internal memories, has 

been studied in the past few years [34], [35]. In 

recent years, Petri net has found widely applications 

in modeling and controlling discrete event dynamic 

systems [36]-[39]. For the last decades, Petri net 

(PN) has developed into a powerful tool for 

modeling, analysis, control, optimization, and 

implementation of various engineering systems [40]-

[46]. In [45], the concept of incorporating PN into a 

traditional FNN to form a new type Petri FNN 

(PFNN) framework for the motion control of linear 

induction motor drive is presented. In [46], the 

designed of a network structure by introducing PN 

into RFNN to form a dynamic Petri RFNN 

(DPRFNN) scheme for the path-tracking control of a 

nonholomonic mobile robot is presented.  

One of the important points in the design of FNNs 

is the consequent part, which is able to impact 

performance on using different types. Two types of 

FNNs are the Mamdani-type and the Takagi-Sugeno-

Kang (TSK)-type. For Mamdani-type FNNs, the 

minimum fuzzy implication is adopted in fuzzy 

reasoning. For TSK-type FNNs, the consequence 

part of each rule is a linear combination of input 

variables. It has shown that TSK-type FNN offer 

better network size and learning accuracy than 

Mamdani-type FNNs. In the TSK-type FNN, which 

is a linear polynomial of input variables, the model 

output is approximated locally by the rule 

hyperplanes. Nevertheless, the traditional TSK-type 

FNN does not take full advantage of the mapping 

capabilities that may be offered by the consequent 

part. Therefore, several researches [47]–[51] 

considers trigonometric functions to replace the 

traditional TSK-type fuzzy reasoning and also obtain 

better performance. In this view, the functional-link 

neural network (FLNN) has been proposed using 

trigonometric functions to construct the consequent 

part. The functional expansion increases the 

dimensionality of the input vector and thus creation 

of nonlinear decision boundaries in the 

multidimensional space and identification of 

complex nonlinear function become simple with this 

network. It seems to be more efficient to include the 

functional-link fuzzy rules into the PFNN. In [48]-

[50], a functional-link-based fuzzy neural network 

for nonlinear system control is proposed, which 

combines a fuzzy neural network with FLNN. The 

consequent part of the fuzzy rules that corresponds to 

an FLNN comprises the functional expansion of the 

input variables. 

With the above mention motivations, this paper 

presents the combination of PFNN and FLNN to 

construct the consequent part, called recurrent 

FLNN-based PFNN (RFLPFNN) controller, for 

dynamic system identification and control of IM 

servo drive system. The proposed RFLPFNN is 

designed to improve the accuracy of functional 

approximation. Each fuzzy rule that corresponds to 

an FLNN consists of a functional expansion of input 

variables. The orthogonal polynomials and linearly 

independent functions are adopted as FLNN bases. 

An online learning algorithm, consisting of structure 

learning and parameter learning, is proposed to 

construct the RFLPFNN model automatically. The 

structure learning algorithm determines whether or 

not to add a new node that satisfies the fuzzy 

partition of input variables. Initially, the RFLPFNN 

model has no rules. The rules are automatically 

generated from training data by entropy measure. 

The parameter learning algorithm is based on back 

propagation to tune the parameters in the RFLPFNN 

model simultaneously to minimize an output error 

function. The advantages of the proposed RFLPFNN 

model are summarized as follows. First, the 

consequent of the fuzzy rules of the proposed 

RFLPFNN is a nonlinear combination of input 

variables. This paper uses the FLNN to the 

consequent part of the fuzzy rules. The functional 
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expansion in RFLPFNN can yield the consequent 

part of a nonlinear combination of input variables to 

be approximated more effectively. Second, the 

online learning algorithm can automatically construct 

the RFLPFNN. No rules or memberships exist 

initially. They are created automatically as learning 

proceeds, as online incoming training data are 

received and as structure and parameter learning are 

performed. Third, as demonstrated in Section 3, the 

proposed RFLPFNN can solve temporal problems 

effectively and is a more adaptive and efficient 

controller than the other methods.  

This paper is organized as follows. Section 2 

presents the indirect field–orientation control and 

dynamic analysis of the IM servo drive as well as the 

problem formulation. Section 3 presents the 

description of the intelligent adaptive control system 

for the IM servo drive. In addition, the design 

procedures and adaptive learning algorithms of the 

proposed RFLPFNN control system and the robust 

controller are described in details in Section 3. As 

well, the stability analysis of the proposed control 

system is introduced. The validity of the design 

procedure and the robustness of the proposed 

controller are verified by means of computer 

simulation and experimental analysis. All control 

algorithms have been developed in a control 

computer that is based on a TMS320C31 and 

TMS320P14 DSP DS1102 board. The dynamic 

performance of the IM drive system has been studied 

under load changes and parameter uncertainties. 

Numerical simulations and experimental results are 

provided to validate the effectiveness of the proposed 

control system in Section 4. Conclusions are 

introduced in Section 5. 

 

2 Preliminaries 

2.1 Induction Motor Dynamic Model and 

Indirect Field-Orientation Control  

The dynamic model of the three-phase squirrel-cage 

IM in d-q axis arbitrary reference frame is helpful for 

dynamic analysis and control [1], [2]. The voltage 

equation in d-q axis based on the stator currents and 

rotor fluxes is given by (1) and the electromagnetic 

torque is given by (2) while the mechanical equation 

of the IM is given by (3) [1], [2].  
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The electromagnetic torque can be expressed as: 

 dsqrqsdr
r

mm
e ii

L

LP
T  

22

3
     (2) 

The mechanical equation can be expressed as: 
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The IFOC dynamics for the IM is derived from (1) 

and (2) respectively at the synchronous reference 

frame by setting 0e
qr  0/ dtd e

qr  and e  . The 

torque equation and slip angular frequency for rotor 

flux orientation are given in (4) and (5) while the 

voltage commands are given in (6)-(9) [2]. 
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where Vqs, Vds, iqs and ids are the d-q axis stator 

voltages and d-q axis stator currents, qr and dr are 

the q-axis rotor flux and d-axis rotor flux, 

respectively. Rs, Rr, Ls, Lr and Lm are the stator 

resistance, rotor resistance, stator self inductance, 

rotor self inductance and mutual inductance, 

respectively. r, r, J and  are the rotor speed, the 

rotor position, the effective inertia and the friction 

coefficient, respectively. Te, TL, r, s and sl are the 

electromagnetic torque, the load torque, the rotor 

time constant, the stator time constant and the slip 

angular frequency, respectively. eqs, eds,   and e are 

the back emfs, the angular frequency of the arbitrary 

and the synchronous reference frames respectively.   

and Pm are the leakage flux coefficient and the 

number of poles, respectively. rrr RL /  and 

rsmrs LLLLL /)( 2 . The parameters of the IM are 

listed in Table (1).  

The dynamic analysis of the IM may be expressed 

as follows. From (3) and (4), the mechanical 

dynamics can be simplified as: 

L
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where )()( * titU e
qs  is the control effort, 

*2 )/)(2/)(2/3( e
dsrmmt iLLPK  , )2/)(/( mmmm PJA  , 

)2/)(/( mmtm PJKB   and )/1)(2/( mmm JPD  . 
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Fig. 1 Structure of the proposed intelligent adaptive control system (IACS) with RFLPFNN for IM servo drive 

 

2.2 Problem Formulation  

In order to efficiently control the rotor position of the 

IM drive system, an IACS is proposed to increase the 

robustness of the IFOC-IM drive system. The 

intelligent adaptive control system for the IM drive is 

shown in Fig. 1, in which the reference model is used 

as the closed loop transfer function of the drive 

system with the 2DOF I-PD position controller [20]. 

The proposed controller combines a RFLPFNN 

controller and a robust controller. The RFLPFNN 

controller is utilized as the main tracking controller 

to mimic an ideal control law while the robust 

controller is designed with adaptive bound 

estimation algorithm to recover the residual of the 

approximation error via the RFLPFNN controller 

approximation. The hybrid control law is assumed to 

take the following form:  

)()()( tUtUtU RC
qs

RFLPFNNC
qsqs        (12) 

where )(tU RFLPFNNC
qs  is the RFLPFNN controller and 

)(tU RC
qs

 is the robust controller. In the following 

section, the description of the proposed control 

scheme and the stability analysis are introduced. 

 

3 Intelligent Adaptive Control System 

(IACS) 
In this section, the design procedure for the recurrent 

functional-link-based Petri fuzzy-neural-network 

controller in order to control the position of the IM is 

carried out. The proposed RFLPRFNN control 

scheme combines the merits of the Petri fuzzy-

neural-network (PFNN), recurrent FNN and FLNN 

so that the robust control performance of the IM 

servo drive can be preserved. Define the tracking 

error vector as follows: 

TmmT
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where )(tm
r  is the desired position command, )(tr  is 

the actual rotor position, )]()([)( ttte r
m
r

m    is the 

position error and )]()([)( ttte r
m
r

m 
   is the tracking 

position error change. Now, assume that the 

parameters of the IM servo drive system and the 

external load disturbance are well known, the ideal 

control law can be defined as follows: 

])()()([)( 1* KEtTDtAtBtU Lmrm
m
rmqs      (14) 

where ][ 12 kkK  , in which k1 and k2 are positive 

constants. Substituting (14) into (11) will yield  

0)()()( 21  tektekte mmm
       (15) 

Suppose the control gain K is chosen such that all 

roots of the characteristic polynomial of (15) lie 

strictly in the open left half of the complex plane. 

This implies that the position tracking error will 

converge to zero when time tends to infinity, i.e. the 

IM servo drive states can track the desired trajectory 
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asymptotically. However, the parameter variations of 

the IM are difficult to measure and the exact value of 

the external load disturbance is also difficult to know 

in advance for practical applications. Though, if the 

IM parameters are perturbed, the performance 

specified by (15) can not guarantee. Moreover, the 

stability of the IM servo drive may be destroyed. 

Therefore, to ensure the stability of the IM servo 

drive despite the existence of the uncertain dynamics 

and external load disturbance, a RFLPFNN 

controller is proposed. 

 
Table (1) Parameters of IM servo drive used in simulation 

and experimentation 

Quantity Symbol Value 

Nominal power Pn 1.5 kW (3-

phase) 

Rated voltage  VL-L 380 V 

Nominal speed (electrical) r 296.48 

rad/sec 

Nominal speed (mechanical) Nr 1415 rpm 

Number of poles Pm 4 

Rated torque Te 12 N.m 

Rated current  I 3.8 A 

Rated frequency f 50 Hz 

Self inductance Ls = Lr 480 mH 

Magnetizing inductance Lm 464 mH 

Stator winding resistance Rs 6.30  

Rotor resistance Rr 3.60  

Rotor inertia Jm 0.038 kg.m
2
 

Friction coefficient m 0.0085 

N.m/rad/sec 

Resolution of the encoder nE 5000 p/r 
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Fig. 2 Structure of functional-link neural- network 

 

The following subsections describe the structure 

of FLNNs and RFLPFNN models. In FLNNs, the 

input data usually incorporate high-order effects, and 

thus, artificially increase the dimensions of the input 

space using a functional expansion. Consequently, 

the input representation is enhanced and linear 

reparability is achieved in the extended space. The 

RFLPFNN adopted the FLNN and generating 

complex nonlinear combinations of input variables to 

the consequent part of the fuzzy rules. The details of 

these structures are given below. 

 

3.1 Structure of Functional-Link Neural-

Network  (FLNN) 

To improve the accuracy of the function 

approximation, an FLNN is adopted to implement 

the function expansion for the proposed RFLPFNN. 

The architecture of the FLNN is shown in Fig. 2, in 

which the functional link acts on an element of input 

variables by generating a set of linearly independent 

functions, i.e., function expansion. In the function 

expansion of the FLNN, basis functions such as 

trigonometric, Gaussian, or other orthogonal 

polynomials are feasible. In this paper, the 

trigonometric function is adopted since it forms a 

more compact representation than the Gaussian basis, 

and the sine and cosine functions can be computed 

more quickly. Moreover, better performance results 

when the outer product term is taken into account in 

the function expansion [47]. Therefore, for a two-

dimensional input vector Txx ],[ 21 , the input 

variables are obtained using trigonometric functions 

and can be separated in the enhanced space 

 T
M ],,,[ 21   ),sin( , ),cos( ),sin( , ,1[ 22111 xxxxx 

Txxxx ] ),cos( ),sin( 2122  , where x1x2 is the outer 

product term. In the FLNN structure shown in fig. 2, 

a set of basis functions  and a fixed numbers 

weight parameters W represent fW(x). The theory 

behind the FLNN for multidimensional function 

approximation has been discussed in [47], [51]. Let 

 M

kkB
1

   be a set of basis functions to be considered 

as shown in Fig. 2. The FLNN comprises M basis 

functions   MM B ,,, 21  . The output of the FLNN 

is given by a linear sum of the jth node as 

mjM

H

MMjjjj

M
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,,1    and   8,2,1  ,         

      

)(ˆ

332211


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

  (16) 

where n , T
nxxx ],,,[ 21   is the input vector 

and T
MjjjjW ],,,[ 21    is the weight vector 

associated with the jth output of the FLNN. 
jĤ  

denotes the local output of the FLNN structure and 

the consequent part of the jth fuzzy rule in the 

RFLPFNN. Therefore, the matrix form of (16) can 

be expressed as 
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Fig. 3 Structure of recurrent functional-link-based Petri fuzzy-neural-network (RFLPFNN) 

 

 jj WĤ           (17) 

where T
n xxx )](,),(),([ 21    is the basis function 

vector which is the output of the functional 

expansion block. In the RFLPFNN, the 

corresponding weights of functional link bases do 

not exist in the initial state, and the amount of the 

corresponding weights of functional link bases 

generated by the online learning algorithm is 

consistent with the number of fuzzy rules. The 

details of the online learning algorithm will be given 

in subsection 3.3. 

 

3.2 Structure of Recurrent Functional-Link-

Based Petri Fuzzy-Neural-Network 

(RFLPFNN) 
This subsection describes the RFLPFNN, which uses 

a nonlinear combination of input variables (FLNN). 

Each fuzzy rule corresponds to a sub-FLNN, 

comprising a functional link. Fig. 3 represents the 

structure of the proposed RFLPFNN.  

The RFLPFNN model realizes a fuzzy IF-THEN 

rule in the following form: 

Rule j:               

IF 1
1x  is jA1

~
 and 1

2x  is j
A2

~
 ... and j

ix  is j
iA

~
... and j

nx  

is j
nA

~
  THEN  )(ˆ  M

M
MjjH         

 MMjjjj   332211   

M
M

Mj

N

k
k

o
ko

r

y 


 ..
1

     (18) 

where j
ix  and 

jĤ  are the input and local output 

variables, j
iA

~
 is the linguistic term of the 

precondition part with a Gaussian membership 

function, n is the number of input variables, 
Mj  is 

the connective weight of the local output, M  is the 

basis function of the input variables, M is the number 

of basis function, and the Rule j is the jth fuzzy rule. 

The connective weight o
k  is the output action 

strength of the oth output associated with the kth rule 

and k  represents the output of the rule layer. The 

operation functions of the nodes in each layer of the 

RFLPFNN model are described.  

The architecture of the proposed six-layer 

RFLPRFNN is shown in Fig. 3, which comprises the 

input layer (the i layer), membership layer (the j 

layer), Petri layer (the p layer), rule layer (the k 

layer), consequent layer (the l layer) and output layer 

(the o layer). The signal propagation and the basic 

function in each layer are introduced as follows. 

1) Layer 1- Input Layer: The nodes in layer 1 

transmit the input signals to the next layer. For every 

node i in the input layer, the net input and the net 

output can be represented as: 

11 )( ii xnnet  , 2 ,1)())((   1111  innetnnetfy iiii  (19) 

where )(1
1 tex m

 , )(1
2 tex m

  and 1
ix  represents the ith 

input to the node of layer 1, n denotes the number of 

iterations. 
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2) Layer 2- Membership Layer: Each node in this 

layer performs a membership function. The input of 

the membership layer can be represented by 
j

i
j

ii
j

i nnxnh  )1()()(        (20) 

where j
i  represents the weight of the self-feedback 

loop, )1( nj
i  indicates the output signal of layer 2 

in the previous time and is defined with Gaussian 

membership function as 
2
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where exp[] is the exponential function, j
i  and j

i  

(i = 1,…, ni; j = 1,…, nj), respectively, are the mean 

and standard deviation of the Gaussian function in 

the jth term of the ith input variable ix  to the node 

of this layer, nj is the number of linguistic variables 

with respect to each input.  

3) Layer 3- Petri Layer: The Petri layer of the 

RFLPRFNN is used to produce tokens and also 

makes use of competition learning laws to select 

suitable fired nodes as follows 


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where j
it is the transition and dth is a dynamic 

threshold value varied with the corresponding error 

to introduced later. 

4) Layer 4- Rule Layer: Each node k in layer 4 

(rule layer) is denoted by , which multiplies the 

incoming signals and outputs the result of the 

product. For the kth nodes: 
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From (22) and (24), we can obtain 
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where j
i  represents the jth input to the node of the 

rule layer (layer 4), k  represents the kth output of 

the rule layer; k
ji , the connective weights between 

the Petri layer and the rule layer. These weights are 

also assumed to be unity; and Nr is the total number 

of rules.  

5) Layer 5-Consequent Layer: Nodes in this layer 

are called consequent nodes. The input to a node in 

layer 5 is the output from layer 4 and the other inputs 

are nonlinear combinations of input variables from 

the FLNN 
jĤ  as shown in Fig. 3. For such node 
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where 
Mj  is the corresponding connective weight of 

the FLNN and M  is the functional expansion of 

input variables. The functional expansion uses a 

trigonometric polynomial basis function, given by 

)]cos()sin()cos()sin([ 222111 xxxxxx   for two-

dimensional input variables. Moreover, the output 

nodes of the FLNN depend on the number of fuzzy 

rules of the RFLPFNN model. 

6) Layer 6- Output Layer: Each node in this layer 

corresponds to a single output variable. The output 

node in layer 6 integrates all of the actions from 

layer 4 and 5 and acts as a center of area defuzzifier. 
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where the connective weight o
k  is the output action 

strength of the oth output and oy  is the output of the 

RFLPFNN and Nr is the total number of rules. 

The output of the RFLPFNN controller, 

)(tUy RFLPFNNC
qso  , can be rewritten as 

 T
RFLPFNNC

RFLPFNNC
qs EWU ),,,(    (30) 

where the tracking error vector E is the input of the 

RFLPFNN,   are the collections of the adjustable 

parameters ),,( o
k

j
iMj  ,   is the output vector 

),( Mk   and Tmm eeE ][    is the tracking error input 

vector to the RFLPFNN controller. 

 

3.3 Learning Algorithms of the Recurrent 

FLNN-based PFNN Model 
This section presents an online learning algorithm for 

constructing the recurrent functional-link-based Petri 

fuzzy-neural-network model. The proposed learning 

algorithm comprises structure learning and a 

parameter learning algorithms. Structure learning is 

based on the entropy measure used to determine 
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whether a new rule should be added to satisfy the 

fuzzy partitioning of input variables. Parameter 

learning is based on supervised learning algorithms. 

The backpropagation algorithm minimizes a given 

cost function by adjusting the link weights in the 

consequent part and the parameters of the 

membership functions. Initially, there are no nodes in 

the network except the input–output nodes, i.e., there 

are no nodes in the RFLPFNN model. The nodes are 

created automatically as learning proceeds, upon the 

reception of online incoming training data in the 

structure and parameter learning processes. 

 

3.3.1 Structure Learning Algorithm  

The structure learning algorithm is responsible for 

on-line rule generation. The first step in structure 

learning is to determine when to generate a new rule. 

The way the input space is partitioned determines the 

number of rules extracted from the training data, as 

well as the number of fuzzy sets in the universe of 

discourse for each input variable because one cluster 

in the input space corresponds to one fuzzy rule, in 

which j
i  represents the mean and j

i  represents the 

variance of that cluster, respectively. For each 

incoming pattern ix , the rule firing strength can be 

regarded as the degree to which the incoming pattern 

belongs to the corresponding cluster [52]. For 

computational efficiency, the degree measure can be 

calculated using the firing strength from (25) as 

)(,,1, tNjD jj        (31) 

where N(t) denotes the number of existing rules at 

time t and ]1,0[jD . According to the degree measure, 

the criterion for the generation of a new fuzzy rule 

and a new FLNN base for a new incoming data is 

described as follows. Find the maximum degree Dmax 

j
tNj

DD
)(1

max max


         (32) 

If DD max , then a new rule and a new FLNN 

base are generated, where ]1,0[D  is a prescribed 

threshold that decays during the learning process, 

thus limiting the size of the RFLPFNN. Once a new 

rule has been generated, the next step is to assign the 

initial mean and variance to the new membership 

function and the corresponding connective weight 

for the consequent part. Since the goal is to minimize 

an objective function, the mean, variance and weight 

are all adjustable later in the parameter learning 

phase. Hence, the mean, variance, and weight for the 

new rule are set as follows 

)()1( txi
tN

ij          (33) 

init
tN

ij   )1(         (34) 

]1,1[)1(  rtN
Mj        (35) 

]1,1[)1(  rtN
ij        (36) 

]1,1[)1(  rtN
ko        (37) 

where ix  is the new input and init  is a prespecified 

constant. The whole algorithm for the generation of 

new fuzzy rules and fuzzy sets in each input variable 

is as follows. No rule is assumed to exist initially. 

 

Step 1: IF ix  is the first incoming pattern THEN do 

    {Generate a new rule  

    with mean ii x1 , variance initi  1 ,  

    weight of feedback ]1,1[1  ri , 

    weight of consequent part ]1,1[1  rM , 

    weight ]1,1[  rko  

    where init  is a prespecified constant. 

    } 

Step 2: ELSE for each newly incoming ix , do 

    {Find j
tNj

DD
)(1

max max


  

    IF DD max  

    do nothing 

    ELSE 

    N(t+1)=N(t)+1 

    generate a new rule  

    with mean i
tN

ij x )1( , variance 

    init
tN

ij   )1( ,  

    weight of feedback ]1,1[)1(  rtN
ij , 

    weight of consequent part 

    ]1,1[)1(  rtN
Mj , 

    weight ]1,1[)1(  rtN
ko  

    where init  is a prespecified constant.} 

    } 

 

3.3.2 Parameter Learning Algorithm  

The parameter learning is based on supervised 

learning algorithm to adjust the connected weights in 

the consequent part, the feedback weights and the 

parameters of the membership functions using the 

backpropagation algorithm to minimize a given 

energy function. To describe the on-line parameter 

learning algorithm of the recurrent functional-link-

based Petri fuzzy-neural-network, first the energy 

function E  is defined as 

22 ][
2

1
][

2

1 m
r

m
r eE         (38) 

where )(tm
r  is the desired position command, )(tr  is 

the actual rotor position. In each training cycle, 

starting at the input variables, a forward pass is 

adopted to calculate the activity of the model output 
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)(tyo . The dynamic threshold value in (23) is tuned 

by the following relation: 

)exp(1

)exp(









E

E
dth




         (39) 

where  and  are positive constants. If the tracking 

errors become large, the threshold values will be 

decreased in order to fire more control rules for the 

present circumstances [46].  

When the backpropagation learning algorithm is 

adopted, the weighting vector of the RFLPFNN 

model is adjusted such that the error defined in (38) 

is less than the desired threshold value after a given 

number of training cycles. The learning algorithm 

based on the well-known backpropagation is 

described as follows. 

1) Layer 6: In the output layer (layer 5), the error 

term to be propagated is calculated as: 
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The weight is updated by the amount: 
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where   is the learning rate parameter of the 

connecting weights of the output layer. 

The weights of the output layer (layer 6) are 

updated according to the following equation. 
o
k

o
k

o
k tt   )()1(        (42) 

where t denotes the iteration number of the jth. 

2) Layer 5: In the consequent layer (layer 5), the 

error term to be propagated is calculated as: 
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According to (43), the weights in the FLNN are 

updated using the following equation. 
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where  is the learning rate parameter of the 

connecting weights of the FLNN. 

The weights of the consequent layer (layer 5) are 

updated according to the following equation. 

MjMjMj tt   )()1(        (45) 

3) Layer 4: In rule layer (layer 4), only the error 

term needs to be computed and propagated because 

the weights in this layer are unity. 
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4) Layer 3: In the Petri layer (layer 3), the error 

term is calculated as follows: 
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The update laws of j
i , j

i  and j
i  are given by:  
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               (50) 

where  ,  and  are the learning rate parameters 

of the mean and variance and the self-feedback loop, 

respectively. Moreover, they can updated as follows: 

)()()1( ttt i
j

i
j

i
j         (51) 

)()()1( ttt i
j

i
j

i
j         (52) 

)()()1( ttt i
j

i
j

i
j         (53) 

The exact calculation of the IM servo drive 

system Jacobian, *)6( // e
qsror iy   , in (40) can not 

be determined due to the uncertainties of the IM 

dynamics. To overcome this problem and to increase 

the online learning rate of the network parameters, 

the delta adaptation law is adopted as follows: 
mmm

o eke  )6(        (54) 
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(a) Experimental setup 

 
(b) Block diagram of the proposed DSP-based control system 

Fig. 4 DSP-based intelligent adaptive control system (IACS) using RFLPFNN for IM servo drive 
 

3.4 Robust Control System Design and Stability 

Analysis of the IACS  
In this section, the intelligent adaptive control system 

design and stability analysis is carried out. The 

proposed controller combines the merits of the 

PFNN, recurrent neural network and FLNN. The 

design of robust controller is necessary to 

compensate the minimum approximation error 

instead of increasing the rules of the RFLPFNN 

controller. From (11), (12) and (14), an error 

equation is obtained as follows: 

 RC
qs

RFLPFNNC
qsqsm UUUBEE  ˆ*    (55) 

where 











12

10

kk
is a stable matrix and 

T
mm BB ]0[ . To develop the robust controller, a 

minimum approximation error  is defined as 

follows: 
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(a) (b) 

Fig. 5 Dynamic response of the IM servo drive system for the reference position and subsequent loading of 12 N.m for 

both position controllers at Case (1) of parameter uncertainties. 

(a) Using PFNN position tracking controller (b) Using IACS with RFLPFNN position tracking 

controller 
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(a) (b) 

Fig. 5 (Continued) Dynamic response of the IM servo drive system for the reference position and subsequent loading of 

12 N.m for both position controllers at Case (1) of parameter uncertainties. 

(a) Using PFNN position tracking controller (b) Using IACS with RFLPFNN position tracking 

controller 

 

 

),,,( *****   EUU RFLPFNNC
qsqs    (56) 

where *  is the optimal weight vector achieves the 

minimum approximation error and  is the 

approximation error and is assumed to be bounded 

by   . * , *  and * are the optimal parameters 

of  ,   and  , respectively, in the RFLPFNNC. 

From (56), the error equation in (55) can be rewritten 

as follows: 
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where )ˆ(
~ *   and )ˆ(

~ *  . The weights 

of the RFLPFNNC are updated online to guarantee 

the closed-loop stability and perfect tracking 

performance. To achieve this goal, the linearization 

technique is used to transform the nonlinear output 

of PRFLPFNNC into partially linear form so that the 

Lyapunov theorem extension can be applied. The 

expansion of 
~

 in Taylor series is obtained as 

follows: 

U
TT

U

T

j

T

j
j

O

O











































































































































~~    

 ~~

~

~

~

~

ˆ

2

1

ˆ

2

1

2

1


  (58) 

where 

 


 
ˆ

21 )/()/()/(



T

j ,

 


 
ˆ

21 )/()/()/(



T

j , 

)ˆ(~ *   , )ˆ(~ *    and OU is a vector of 

higher order terms and assumed to be pounded by a 

positive constant. Rewriting (58), it can be obtained 

that 
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From (59) and (60), we can obtain 
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where the uncertain term 

U
TTTTT O*~~~~

    is assumed to be 

bounded (i.e.  ). According to (57) and (59)-

(61), the error dynamics can be represented as 

 
)~ˆ~ˆˆ~

(    

~

RC
qs

TTTTT
m

RC
qsqsm

UBE

UUBEE













             (62) 

Theorem: Consider the IM servo drive system 

represented by (11), if the intelligent controller is 

designed as (12), in which the adaptation laws of the 

RFLPFNN controller are designed as (63)-(65) and 

the robust controller is designed as (66) with the 

adaptive bound estimation algorithms given in (67) 

and (68). As a result, the stability of the intelligent 

adaptive control system can be guaranteed. 
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m
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where , , ,   and  are strictly positive 

learning rates, )sgn(  is the sign function, )(ˆ t  and 

)(ˆ t  are the on-line estimated values of the adaptive 

bounds )(t  and )(t . 

Proof: To minimize the error function and to 

derive the adaptation laws of  ,  ,  ,   and   

for the intelligent adaptive control system, a 

Lyapunov function is defined as: 
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where )ˆ(
~

   and )ˆ(~    are the estimated 

errors and nnP   is a symmetric positive-definite 

matrix, which satisfies the following Lyapunov 

equation [53], [54]. 
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where nnQ   is a given symmetric positive definite 

matrix, 0Q . By taking the derivative of the 

Lyapunov function (69) and using (62) and (70), it is 

obtained that: 
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Substitute (62)-(68) into (71), then 
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Since 0),~,
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function )(t  with respect to time yields: 
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In addition, since all variables in the right hand 

side of (56) are bounded, it implies E  is also 

bounded, then )(t  uniformly continuous [53]. By 

using Barbalat’s Lemma [53], [54], it can be shown 

that 0)(lim 
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. That is, 0)( tE  as t . As a 

result, the intelligent adaptive control system is 

asymptotically stable. Moreover, the tracking error 

of the system will converges to zero according to 

0)( tE .  
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Fig. 6 Dynamic response of the IM servo drive system for both position controllers at different Cases (1~4) of PU 

(a) Using PFNN position tracking controller (b) Using IACS with RFLPFNN position tracking 

controller 
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Fig. 6 (Continued) Enlarge dynamic response of the IM servo drive system for both position controllers at different 

Cases (1~4) of PU 

(a) Using PFNN position tracking controller (b) Using IACS with RFLPFNN position tracking 

controller 

 

4 Numerical Simulation and 

Experimental Results 
In order to investigate the effectiveness of the 

proposed tracking control scheme, the simulation and 

experimentation of the proposed IACS are carried 

out using MATLAB/SIMULINK package based on 

the control system shown in Figs. 1 and 4. The 

simulation and experimental results of the IM servo 

drive system are presented to verify the feasibility of 

the proposed IACS under various operating 

conditions. The threshold values, learning rates and 

the gains of the proposed control scheme are given as 

follows: D=0.35, dth=0.25, =0.75, =0.004, 

=0.005 =0.003, =0.3 k1=55 and k2=75. All the 

proposed threshold values, learning rates and control 

gains in the IACS are chosen to achieve the superior 

transient control performance in the simulation and 

experimentation considering the limitation of control 

effort, the requirement of stability and the possible 

operating conditions. When the threshold value dth=0 

is set, the performance of the PFNN control system 

is the same as the one of the FNN control system 

because all the control rules in the network structure 

are fired at this situation. Although the 

computational time can be gradually decreased by 

increasing the threshold value, the control 

performance also deteriorates little by little. 
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Therefore, we have to compromise between the 

control performance and computational complexity. 

The control performance in the dynamic threshold 

value of the RFLPFNN can be approximately 

determined as  =0.35 and =250 in (39). 

 

 

4.1 Numerical Simulation of the IM Servo Drive 

System  
All numerical simulations are carried out using 

Matlab/Simulink package. The control objective is to 

control the position of the IM servo drive system to 

track the reference model trajectory. To investigate 

the effectiveness and robustness of the proposed 

control system, four simulated conditions including 

parameter uncertainties (PU) and external load 

disturbance are considered. The mechanical time 

constant of the IM is given by )/( mmm J  .  

Case 1: 1.0r, 1.0m, TL=0–12 N.m 

Case 2: 0.5r, 0.5m, TL=0–12 N.m 

Case 3: 1.5r, 2.5m, TL=0–12 N.m 

Case 4: 1.5r, 5.0m, TL=0–12 N.m 

The dynamic performance of the IM servo drive 

due to reference model command under subsequent 

loading of 12 N.m for the PFNN controller alone at 

Case (1) of PU including the responses of the 

reference model and rotor position, the tracking 

position error, rotor speed, the tracking speed error, 

d-q axis current response and adaptive signals are 

predicted in Fig. 5(a), respectively. On the other 

hand, the dynamic performance of the IM servo drive 

using the IACS using RFLPFNN and robust 

controllers is shown in Fig. 5(b) at Case (1) of PU. 

The disturbance rejection capabilities have been 

checked when a load of 12 N.m is applied to the 

shaft at t = 2.5 sec and removed at t = 7.5 sec. The 

results obtained in Fig. 5 illustrate good dynamic 

performances, in command tracking and load 

regulation performance, are realized for both position 

tracking controllers. Improvement of the control 

performance by addition the proposed IACS can be 

observed from the obtained results in command 

tracking and load regulation characteristics. From 

these results shown in Fig. 5, the tracking position 

error and tracking speed error with the PFNN 

controller is larger than the ones using the IACS. 

To further verify the performance robustness of 

the proposed control schemes, four cases of PU and 

external load disturbance are considered, Cases 

(1~4), for comparison. The dynamic performance of 

the IM servo drive for both position controllers at all 

Cases of PU is predicted in Fig. 6. From the 

simulation results shown in Fig. 6(b), the tracking 

errors converges quickly and the robust control 

characteristics of the IM servo drive system using the 

proposed IACS under the occurrence of PU can be 

clearly observed. The proposed IACS provides a 

rapid and accurate response for the reference model 

under load changes within 0.5 sec compared with the 

PFNN position tracking controller which has 

sluggish recovery time of more than 1.0 sec at PU as 

shown in Fig. 6(a). Furthermore, the maximum 

tracking position errors at four cases of PU are 

approximately 0.6 rad, for the PFNN controller. On 

the other hand, the ones with the IACS at four 

examined cases of PU are approximately constants 

and equal 0.25 rad. Comparing the IACS with the 

PFNN controller, the tracking errors and regulation 

characteristics using IACS are much reduced. 

Therefore, the proposed IACS with RFLPFNN can 

yield superior control performance than the PFNN 

controller. As a result, the proposed IACS provides a 

rapid and accurate response for the reference model 

under load changes compared with the PFNN 

position tracking controller which has sluggish 

recovery time. Perfect tracking response and robust 

characteristics can still be kept with regard to PU and 

external disturbances as shown in Fig. 6(b). Thus, it 

can be verified that the proposed IACS at all cases of 

PU can satisfy the robustness, the accuracy 

requirements and is more suitable in the tracking 

control of the IM drive for industrial applications. 

 

 

4.2 Experimentation of the IM Servo Drive 

System  
The experimental setup for the IM servo drive 

system is shown in Fig. 4. A DSP control board 

dSPACE DS1102, which is based on a TMS320C31 

and TMS320P14 DSPs, is installed in the control 

computer which includes multi-channels of ADC, 

DAC, PIO and encoder interface circuits. Digital 

filter and frequency multiplied by four circuits are 

built into the encoder interface circuits to increase 

the precision of the position feedback signal and 

coordinate transformations. The sampling rate is 

chosen as 200s and hence, the carrier frequency of 

the PWM inverter is 5 kHz. The control interval of 

the position control loop is set at 1 ms. The current-

regulated PWM VSI is implemented using 

MITSUBISHI intelligent power module (IPM) using 

IGBT components with a switching frequency of 15 

kHz and driven by a six SEMIKRON IGBT drivers. 

The DC-link LC filter components are an inductor of 

iron powder core with 250H and a polypropylene-

film capacitor with 5F. The position acquisition has 

been performed with a 5000 pulses/revolution 

incremental optical encoder. Therefore, the output of 

the frequency multiplier circuit is 4×5000 

pulses/revolution which results high precision of the 

speed/position measurement.  
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Fig. 7 Experimental results of the dynamic response of the IM servo drive for the reference position and subsequent 

loading of 12 N.m for both position controllers: position response 4 rad/div, speed response 7.5 (rad/sec)/div, tracking 

position error 0.3 rad/div, tracking speed error 3 (rad/sec)/div, q-d axis current response 4 A/div, adaptive position signal 

2.5 rad/div, adaptive speed signal 10 (rad/sec)/div, time base for all traces 1 sec/div. at Case (1) of PU 
(a) Using PFNN position tracking controller (b) Using IACS with RFLPFNN position tracking 

controller 
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Fig. 7  (Continued)  Experimental results of the dynamic response of the IM servo drive for the reference position and 

subsequent loading of 12 N.m for both position controllers: position response 4 rad/div, speed response 7.5 (rad/sec)/div, 

tracking position error 0.3 rad/div, tracking speed error 3 (rad/sec)/div, q-d axis current response 4 A/div, adaptive 

position signal 2.5 rad/div, adaptive speed signal 10 (rad/sec)/div, time base for all traces 1 sec/div. at Case (1) of PU 

(a) Using PFNN position tracking controller (b) Using IACS with RFLPFNN position tracking 

controller 

 

To further verify the performance of the proposed 

control schemes applied to the IM servo drive in 

practical applications, some experimental results are 

provided here. The experimental results of the 

dynamic performance for the proposed PFNN 

controller due to reference model command under 

subsequent loading of 12 N.m at Case (1) of PU 

including the responses of the reference model and 

rotor position, the tracking position error, rotor 

speed, the tracking speed error, d-q axis current 

response and adaptive control signals are predicted in 

Fig. 7(a), respectively. On the other hand, the 

experimental results of the IM servo drive using the 

proposed IACS is shown in Fig. 7(b) at the same 

conditions. Furthermore, the disturbance rejection 

capabilities have been checked for both position 

controllers. The experimental results obtained in Fig. 

7 clearly illustrate good dynamic performances, in 

command tracking and load regulation performance, 

are realized for both position tracking controllers. 

Comparing the IACS with the PFNN controller, the 

tracking errors and regulation characteristics are 

much reduced using the proposed IACS. Therefore, 

the proposed IACS can yield superior control 

performance than the PFNN control scheme. As a 

result, the proposed IACS provides a rapid and 

accurate response for the reference model under load 

changes compared with the PFNN position tracking 

controller which has sluggish recovery time. 

Although the proposed IACS requires extra time to 

execute the computation operations and adaptive 

laws, it results in superior control performance than 

the PFNN controller. However, recent developments 

in microelectronics and very large scale integration 

(VLSI) have pushed the performance of DSPs to an 

unprecedented level with lower cost. Today, high-

performance DSPs can be used effectively to provide 

flexible environments with high execution rates for 

advanced control schemes. 

 
Table (2) 

Performance Measures of the 2DOF I-PDC under PU 

of IM Servo Drive (Simulation) 

Parameters 

Uncertainties 

Tracking Errors (rad) 

Maximum Average S.D. 

Case (1) 0.860900 0.016470 0.237300 

Case (2) 1.656000 0.020520 0.289900 

Case (3) 0.824600 0.019290 0.296300 

Case (4) 1.997000 0.017360 0.732000 
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(a) Simulation Results (b) Experimental Results 

Fig. 8 Dynamic response of the IM servo drive for the reference position and subsequent loading of 12 N.m using 

PFNN tracking position controller at Case (1) of PU 

Experimental Scales: position response 4 rad/div, speed response 7.5 (rad/sec)/div, tracking position error 0.3 rad/div, 

tracking speed error 3 (rad/sec)/div, q- axis current response 4 A/div, time base for all traces 1 sec/div. 

 

 

4.3 Comparison of Dynamic Performance in 

Simulation and Experimentation for the IM 

Servo Drive System 
In this section, the dynamic performance of the 

induction motor drive system is compared in 

simulation and experimentation. The dynamic 

performance of the IM servo drive system using 

PRFNNC is shown in Fig 8 (a) and (b) for simulation 

and implementation, respectively, at Case (1) of PU. 

While, the dynamic performance using IACS is 

illustrated in Fig. 9 (a) and (b) for simulation and 

implementation, respectively, at the same operating 

conditions. It is clear from Figs. (8) and (9) that the 

experimental results are very close to the simulation 

results, which confirm the precise dynamic response 

of the IM servo drive system. In addition, it is 

evident that the successful practical implementation 

of the PFNN controller and IACS with RFLPFNN 

and robust controller using DSP for IM servo drive 

system.  
 

Table (3) 

Performance Measures of the PFNNC under PU of IM 

Servo Drive (Simulation) 

Parameters 

Uncertainties 

Tracking Errors (rad) 

Maximum Average S.D. 

Case (1) 0.582600 0.002457 0.223400 

Case (2) 0.593100 0.002525 0.235800 

Case (3) 0.526300 0.002186 0.225100 

Case (4) 0.574800 0.002102 0.224000 
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(a) Simulation Results (b) Experimental Results 

Fig. 9 Dynamic response of the IM servo drive for the reference position and subsequent loading of 12 N.m using IACS 

tracking position controller at Case (1) of PU 

Experimental Scales: position response 4 rad/div, speed response 7.5 (rad/sec)/div, tracking position error 0.3 rad/div, 

tracking speed error 3 (rad/sec)/div, q- axis current response 4 A/div, time base for all traces 1 sec/div. 

 

 

 

4.4 Performance Measures of the IM Servo 

Drive System  
To measure the performance of the IM servo drive 

system, the maximum tracking error, TEmax, the 

average tracking error, TEmean and the standard 

deviation of the tracking error, Tsd, are defined as 

follows [2]: 

2
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where )]()([)( kkkT r
m
r   . 

The performance measures can be easily 

demonstrated using the TEmax and the TEmean. 

Moreover, the oscillation of the position tracking 

error can be measured using TEsd. To further 

investigate the improvement of the proposed IACS, 

the performance measures of the 2DOF I-PDC, 

PFNNC and IACS with RFLPFNN at the four cases 

of PU are compared and given in Fig. 10 for 

simulation. The same performance measures are 

compared and given in Tables (2, 3 and 4) for 

simulation. The performance measures at case (1) of 

parameters uncertainties in experimentation are 

shown in Fig. 11. Table (5) shows the maximum 
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tracking errors, average tracking errors and the 

standard deviation of the tracking errors at the 

nominal parameters of the IM servo drive system, 

case (1) in experimentation. From these results, one 

can easily observe that all values of TEmax, TEmean and 

TEsd have been successfully reduced by the proposed 

IACS with RFLPFNN. Therefore, the IACS 

possesses the best robust control characteristics and 

can control the IM servo drive system effectively. 
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Fig. 10 Performance measures of 2DOF I-PDC, PFNNC, 

and IACS for IM servo drive (Simulation) 

(a) TEmax  (b) TEmean  (c) TEsd 

 

 

 

Table (4) 

Performance Measures of the IACS with RFLPFNN 

under PU of IM Servo Drive (Simulation) 

Parameters 

Uncertainties 

Tracking Errors (rad) 

Maximum Average S.D. 

Case (1) 0.214100 0.002036 0.072060 

Case (2) 0.203100 0.002030 0.071800 

Case (3) 0.230900 0.002043 0.073500 

Case (4) 0.250400 0.002062 0.077170 

Table (5) 

Performance Measures of the of PMSM Servo Drive 

under Nominal Parameters (Experimentation) 

Controller Tracking Errors (rad) 

Maximum Average S.D. 

2DOF I-PDC 0.8901 0.018960 0.25120 

PFNNC 0.6032 0.002790 0.23580 

IACS 0.2423 0.002095 0.07421 
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Fig. 11 Performance measures of 2DOF I-PDC, PFNNC 

and IACS for IM servo drive (Experimentation) 

(a) TEmax  (b) TEmean  (c) TEsd 

 

5 Conclusion 
This paper proposed an IACS using RFLPFNN for 

IFOC-IM servo drive which guarantees the 

robustness in the presence of parameter uncertainties 

and load disturbances. The proposed IACS 

comprises a RFLPFNN controller and a robust 

controller. The RFLPFNN combines the merits of the 

PFNN, RFNN and FLNN. The RFLPFNN controller 

uses the FLNN to the consequent part of the fuzzy 

rules. The RFLPFNN model can automatically 

construct and adjust free parameters by performing 

online structure/parameter learning schemes 

concurrently. In the proposed control scheme, the 
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RFLPFNN controller is used as the main tracking 

controller to mimic an ideal control law and the robust 

controller is designed to compensate the difference 

between the ideal control law and the RFLPFNN 

controller. Moreover, an on-line parameter training 

methodology, which is derived based on the 

Lyapunov stability analysis and the back propagation 

method, is proposed to guarantee the asymptotic 

stability of the IACS for IM servo drive system and to 

increase the learning of the RFLPFNN. To relax the 

requirement for the bound of minimum approximation 

error, optimal parameter vector and higher order term 

in Taylor series, an adaptive control law is utilized to 

estimate these bounds. The theoretical bases of the 

proposed control scheme are derived in details. The 

simulated and experimental results due to reference 

model trajectory confirm that the proposed IACS 

grants robust performance and precise dynamic 

response regardless of load disturbances and IM 

parameter uncertainties. Finally, the main 

contribution of this paper is the successful 

development, application and implementation of the 

IACS with RFLPFNN and robust controller 

methodology to control the rotor position of the IM 

considering the existence of load disturbances and 

parameters uncertainties. 
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