
  

Analysis of Lyapunov Function Features for Some Strategies of the 

�etwork Optimization Problem 
 

ALEXANDER ZEMLIAK
1
, ALEXANDRA BYCHKOVSKA

2
 

1
Department of Physics and Mathematics 

Autonomous University of Puebla 

MEXICO 
2
Department of Linguistics 

National Technical University of Ukraine 

UKRAINE 

azemliak@yahoo.com 
 

 

Abstract: – General methodology for system design was elaborated by means of the optimal control theory 

approach. The problem of analog system design can be formulated in this case as a classical problem of the 

optimal control for some functional minimization. In this context the aim of the optimal control is to result to 

minimum point a cost function of the design process and to minimize the total computer time. The minimal 

time system design algorithm was defined as the problem of functional minimization. By this definition the 

aim of the system design process with minimal computer time is presented as a transition process of some 

dynamic system that has the minimal transition time. The optimal sequence of the control vector switch points 

was determined as a principal characteristic of the minimal-time system design algorithm. The conception of 

the Lyapunov function was proposed to analyze the behavior of design process. The special function that is a 

combination of the Lyapunov function and its time derivative was proposed to predict the design time of any 

strategy by means of the initial time interval analysis. 
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1 Introduction 
The problem of the computer time reduction of a 

large system design is one of the essential problems 

of the total quality design improvement. Besides the 

traditionally used ideas of sparse matrix techniques 

and decomposition techniques [1]-[5] some another 

ways were proposed to reduce the total computer 

design time [6]-[7]. The generalized approach for the 

analog system design on the basis of control theory 

formulation was elaborated in some previous works, 

for example [8]. This approach serves for the 

minimal-time design algorithm definition. On the 

other hand this approach gives the possibility to 

analyze with a great clearness the design process 

while moving along the trajectory curve into the 

design space. The main conception of this theory is 

the introduction of the special control functions, 

which, on the one hand generalize the design process 

and, on the other hand, they give the possibility to 

control design process to achieve the optimum of the 

design cost function for the minimal computer time. 

This possibility appears because practically an 

infinite number of the different design strategies that 

exist within the bounds of the theory. The different 

design strategies have the different operation number 

and executed computer time. As shown in [8] the 

potential computer time gain that can be obtained by 

the new design problem formulation increases when 

the size and complexity of the system increase. 

However it is realized only in case when the 

algorithm for the optimal strategy of design is 

constructed.  

 We can define the formulation of the intrinsic 

properties and special restrictions of the optimal 

design strategy as one of the first problems that 

needs to be solved for the optimal algorithm 

construction. 

 

2 Problem Formulation 
The design process for any analog system design can 

be defined in discrete form [8] as the problem of the 

generalized cost function ( )UXF ,  minimization by 

means of the equation (1) with the constraints (2): 
 

     
s

s

ss HtXX ⋅+=+1
      (1) 

 

  ( ) ( )1 0− =u g Xj j , j M= 1 2, , . . . , ,     (2) 
    

where �RX ∈ , ( )XXX ′′′= , , 
KRX ∈′  is the vector of  
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the independent variables and the vector 
MRX ∈′′  is 

the vector of dependent variables ( MK� += ), 

( )Xg j  for all  j presents the system model, s is the 

iterations number, st is the iteration parameter, 

1Rt s ∈ , H ≡ H(X,U) is the direction of the 

generalized cost function ( )UXF ,  decreasing, U is 

the vector of the special control functions 

( )U u u um= 1 2, , ... , , where uj ∈Ω; { }Ω = 0 1; . The 

generalized cost function ( )UXF ,  is defined as: 

 

      ( ) ( ) ( )UXXCUXF ,, ψ+=       (3) 

 

where ( )XC  is the non negative cost function of the 

design process, and ( )UX ,ψ  is the additional 

penalty function: 

 

     ( ) ( )∑
=

⋅=
M

j

jj XguUX
1

21
,

ε
ψ       (4)  

 

This formulation of the problem permits to 

redistribute the computer time expense between the 

solution of problem (2) and the optimization 

procedure (1) for the function ( )UXF , . The control 

vector U is the main tool for the redistribution 

process in this case. Practically an infinite number of 

the different design strategies are produced because 

the vector U depends on the optimization procedure 

current step. The problem of the optimal design 

strategy search is formulated now as the typical 

problem for the functional minimization of the 

control theory. The functional that needs to minimize 

is the total CPU time T of the design process. This 

functional depends directly on the operations number 

and on the design strategy that has been realized. The 

main difficulty of this definition is unknown optimal 

dependencies of all control functions u j
. 

 The continuous form of the problem definition is 

more adequate for the control theory application. This 

continuous form replaces Eq. (1) and can be defined 

by the next formula: 

 

    ( )dx

dt
f X U

i

i= , ,   i �= 01, ,...,       (5)       

 
 This system together with equations (2), (3) and 

(4) composes the continuous form of the design 

process. The structural basis of different design 

strategies that correspond to the fixed control vector 

includes 2
M

 design strategies. The functions of the 

right hand part of the system (5) are determined for 

example for the gradient method as: 

 

   ( ) ( )UXF
x

UXf
i

i ,,
δ
δ−= ,   i K= 1 2, , ... ,      (6)    

 

( ) ( ) ( ) ( ){ }Xx
t

u
UXF

x
uUXf i

s

i

s
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i

Kii η
δ
δ +−

−
+−= −

−
1

,, , 

i K K �= + +1 2, , .. . ,       (6') 

   

where the operator xδδ /  hear and below  means 

( )
( ) ( )δ

δ
ϕ

∂ ϕ
∂
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∂
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∑
1

, 

s

ix  is  equal to ( )x t dti − ; ( )η i X  is the implicit 

function ( ( )x Xi i=η ) that is determined by (2). 

 The control variables u j  have the time 

dependency in general case. The equation number j is 

removed from (2) and the dependent variable xK j+  is 

transformed to the independent when u j =1. This 

independent parameter is defined by the formulas (5), 

(6'). In this case there is no difference between 

formulas (6) and (6'). On the other hand, the equation 

(5) with the right part (6') is transformed to the 

identity 
dx

d t

dx

dt

i i= , when u j =0, because 

( ) ( ) ( ) iii

s

ii dxdttxtxxX =−−=−η . It means that at 

this time moment the parameter xi  is dependent one 

and the current value of this parameter can be 

obtained from the system (2) directly. This 

transformation of the vectors ′X  and ′′X  can be 

done at any time moment. 

 The function ( )f X U0 ,  is determined as the 

necessary time for one-step integration of the system 

(5). This function depends on the concrete design 

strategy. The additional variable x 0
 is determined as 

the total computer time T for the system design. It is 

necessary to find the optimal behavior of the control 

functions u j  during the design process to minimize 

the total design computer time.  

 The idea of the system design problem 

formulation as the functional minimization problem 

of the control theory is not depend of the 

optimization method. This idea was implemented for 

the designing of different networks [8]. It was shown 

that any optimization procedures can be embedded 

like the gradient method, the Newton method and 

Davidon-Fletcher-Powell method. 

 Now the analog system design process is 

formulated as a dynamic controllable system. The 

time-optimal design process can be defined as the 
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dynamic system with the minimal transition time in 

this case. So we need to find the special conditions to 

minimize the transition time for this dynamic system. 

 

3 Lyapunov function of optimization 

process 
On the basis of the analysis in previous section we 

can conclude that the minimal-time algorithm has 

one or some switch points in control vector where the 

switching is realize among different design strategies. 

As shown in [9] it is necessary to switch the control 

vector from like modified traditional design strategy 

to like traditional design strategy with an additional 

adjusting. Some principal features of the time-

optimal algorithm were determined previously. These 

are: 1) an additional acceleration effect that appeared 

under special circumstances [9]; 2) the start point 

special selection outside the separate hyper-surface to 

guarantee the acceleration effect, at least one 

negative component of the start value of the vector X 

is can be recommended for this; 3) an optimal 

structure of the control vector with the necessary 

switch points. The two first problems were discussed 

in [9-10]. 

 A Lyapunov function of dynamic system serves 

as a very informative object to any system analysis in 

the control theory. We suppose that the Lyapunov 

function can be used for the revelation of the optimal 

algorithm structure. First of all we can compare the 

behavior of the different design strategies by means 

of the Lyapunov function analysis.  

 There is a freedom of the Lyapunov function 

choice because of a non-unique form of this 

function. Let us define the Lyapunov function of the 

design process (2)-(6) by the following expression: 

 

   ( ) ( )∑ −=
i

ii axXV
2

     (7) 

 

where ia  is the stationary value of the coordinate ix , 

in other words the set of all the coefficients ia  is the 

main objective of the design process. The function 

(7) satisfies all of the conditions of the standard 

Lyapunov function definition for the variables 

iii axy −= . In fact the function ( ) ∑=
i

iyYV 2  is 

the piecewise continue. Besides there are three 

characteristics of this function: i) V(Y)>0, ii) V(0)=0, 

and  iii) ( ) ∞→YV  when ∞→Y . Inconvenience 

of the formula (7) is an unknown point 

a= ( )�aaa ,...,, 21 , because this point can be reached 

at the end of the design process only. We can use this 

form of the Lyapunov function if we already found 

the design solution someway. On the other hand, it is 

very important to control the stability of the design 

process during the optimization procedure. In this 

case we need to construct other form of the 

Lyapunov function that doesn’t depend on the 

unknown stationary point. 

 Let us define the Lyapunov function of the design 

process (2)-(6) by the following expression: 

       

        ( ) ( )[ ]r
UXFUXV ,, =       (8) 

 

       ( ) ( )
∑ 









∂
∂=

i ix

UXF
UXV

2

,
,       (9) 

 

where F(X,U) is the generalized cost function of the 

design process. The formula (8) can be used when 

the general cost function is non-negative and has zero 

value at the stationary point a. Formula (9) can be 

used always because all derivatives 
ixF ∂∂ /  are equal 

to zero in the stationary point a. 

  We can define now the design process as a 

transition process for controllable dynamic system 

that can provide the stationary point (optimal point of 

the design procedure) during some time. The 

problem of the time-optimal design algorithm 

construction can be formulated now as the problem 

of the transition process searching with the minimal 

transition time. There is a well-known idea [11]-[12] 

to minimize the time of transition process by means 

of the special choice of the right hand part of the 

principal system of equations, in our case these are 

the functions ( )UXf i , . It is necessary to change the 

functions ( )UXf i ,  by means of the control vector U 

election to obtain the maximum speed of the 

Lyapunov function decreasing. Normally the time 

derivative of Lyapunov function is non-positive for 

the stable processes. However we define more 

informative function as a relatively time derivative of 

the Lyapunov function VVW /
•

= . This function 

serves well to analyze a designing process. Below 

some practical examples were analyzed to support 

the ideas of developed methodology.  

 

4 �umerical results 
All examples were analyzed for the continuous form 

of the optimization procedure (5). Functions V(t) and 

W(t) were the main objects of the analysis and its 

behavior has been analyzed for different strategies 

that compose the structural basis of generalized 

methodology.  
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 First example corresponds to a simple nonlinear 

voltage divider in Fig. 1. 

 

 
 

Fig. 1.  Two-node nonlinear passive network. 

 
The nonlinear element has the following dependency: 

( )2

2101 VVbyyn −+= . The vector X includes five 

components: 1

2

1 yx = , 2

2

2 yx = , 3

2

3 yx = , 
14 Vx = , 

25 Vx = . Defining the components 321 ,, xxx  by the 

above formulas automatically results in positive 

magnitudes of the conductance, which eliminates the 

issue of positive definiteness for each resistance and 

conductance and makes it possible to carry out the 

optimization in the whole space of magnitudes of 

these variables without any limitations. The cost 

function ( )C X  has been determined by the formula 

( ) ( )2

15 mxXC −= , where 1m  is a beforehand-

defined output voltage of the divider. 

 This network is characterized by two dependent 

parameters (two nodal voltages) and the control 

vector includes two control functions: U= ( )21 ,uu . 

The structural basis of the design strategies includes 

four design strategies with the control vectors: (00), 

(01), (10), and (11). The functions ( )Xgj  are defined 

by the next formulas: 
 

( ) ( ) ( ) ( )( )
0

1

2

24

2

54054

2

141

=−

−+−−−≡

xx

xxayxxxxXg
 

      (10) 

( ) ( ) ( )( ) 02

35

2

540542 =−−+−≡ xxxxayxxXg  

 

The system (2) is transformed into the following one: 

 

      ( ) ( ) 0,,,,1 54321 =− xxxxxgu jj ,  j = 1,2. 

 

 The optimization procedure (1), (5) includes five 

equations. The Lyapunov function was calculated by 

formula (8) for r=0.5.  

 The results of the analysis of complete structural 

basis of different strategies of designing for network 

in Fig. 1 and initial point 10 =ix , i = 1,2,…,5 are 

shown in Table 1. 

 

Table 1. Data of complete structural basis of 

designing strategies. 

 

 

 The behavior of the functions V(t) and W(t) for 

the network in Fig. 1 is shown in Fig. 2. 

 

  
 

Fig. 2.  Behavior of the functions V(t) and W(t) for 

four design strategies during the design process for 

network in Fig. 1. 

 

 As we can see from Fig. 2 the functions V(t) and 

W(t)  can  give  an  exhaustive   explanation   for   the 

design process characteristics. A greater absolute 

value of the function W(t) corresponds to a more 

rapid decreasing of the function V(t). We can state 

that the greater absolute value of the function W(t) on 

initial part of the design process provoke the lesser 

computer time. On the other hand the function W(t) is 

a normalized derivative and for this reason it is very 

sensitive.  

 Another passive nonlinear network with three 

nodes (Fig. 3) was analyzed below. The vector X 

includes seven components: 1

2

1 yx = , 2

2

2 yx = , 

3

2

3 yx = , 4

2

4 yx = , 15 Vx = , 26 Vx = , 37 Vx = . 

The nonlinear elements have been defined by 

following dependencies: ( )2

21111 VVbay nnn −⋅+= , 

( )2

32222 VVbay nnn −⋅+= .  

N Control Iterations Total
vector number design

   time (sec)
1  (0 0) 406308         8.52 
2  (0 1) 455191         3.96 
3  (1 0) 226909         3.31 
4  (1 1) 451090         2.81 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alexander Zemliak, Alexandra Bychkovska

E-ISSN: 2224-266X 211 Volume 13, 2014



  

 
 

Fig. 3. Three-node nonlinear passive network. 

 
 The model of this network (2) includes three 

equations (M=3) and the optimization procedure (5) 

includes seven equations. This network is 

characterized by three dependent parameters and the 

control vector includes three control functions: 

U= ( )321 ,, uuu . In this case we have a system of 

seven equations playing the role of the optimization 

algorithm.  

 

( )UXF
xdt

dx

i

i ,
δ
δ−= ,  i = 1,2,3,4   

 

( ) ( ) ( ) ( ){ }Xdttx
dt

u
UXF

x
u

dt

dx
ii

i

i

i
i η

δ
δ +−−

−
+⋅−= −

−
4

4

1
,

 i = 5,6,7,      

 

where ( ) ( ) ( )∑
=

+=
3

1

2,
j

jj XguXCUXF .  

 

The network model can be expressed by three 

nonlinear equations: 

 

( ) ( ) ( )g X x x a b x x a b x x xn n n n1 1

2

2

2

1 1 6

2

5 1 1 6

2

6 1

2 0≡ + + + − + − =  

 

( ) ( ) ( )
( ) 07

2

722

6

2

722

2

611

2

35

2

6112

=+−

++++++−≡

xxba

xxbaxbaxxxbaXg

nn

nnnnnn

 

( ) ( ) ( )g X a b x x x a b x xn n n n3 2 2 7

2

6 4

2

2 2 7

2

7 0≡ − + + + + =  

  

This system can be transformed into the following 

one: 

 

( ) ( ) 0,,,,,,1 7654321 =− xxxxxxxgu jj ,j =1,2,3. 

 

 The structural basis of design strategies includes 

eight design strategies: 000, 001, 010, 011, 100, 101, 

110 and 111. The results of the analysis of complete 

structural basis of different strategies of designing for 

network in Fig. 3 and initial point 10 =ix , i = 

1,2,…,7 are shown in Table 2. 

 

Table 2. Data of complete structural basis of 

designing strategies. 

 

  

 The behavior of the functions V(t) and W(t) for 

this network is shown in Fig. 4. 

 

 
 

Fig. 4.  Behavior of the functions V(t) and W(t) for 

eight design strategies during the design process for 

network in Fig. 3. 

 
 As for previous example for the network in Fig. 3 

we also can conclude that the speed of decreasing of 

the Lyapunov function is inversely proportional to 

the design time. The minimal value of the Lyapunov 

function that corresponds to the maximum precision 

is in the limits from 1.210-5 for strategy 000 to 5.910-5 

for strategy 111. Anew we can see from Fig. 4 that a 

large absolute value of the function W(t) corresponds 

to a more rapid decreasing of the function V(t) and a 

smaller computer design time. The strategies 3, 4, 5, 

7 and 8 have a large value of the function W(t) during 

all design process till a small value of the function 

V(t). That is why these strategies have a relative little 

computer time. 

N Control Iterations Total
vector number design

   time (sec)
1  ( 0 0 0 ) 104961       5.721
2  ( 0 0 1 ) 270001       5.660
3  ( 0 1 0 ) 74428       1.652
4  ( 0 1 1 ) 80317       0.931
5  ( 1 0 0 ) 102500       2.534
6  ( 1 0 1 ) 253473       4.342
7  ( 1 1 0 ) 157583       2.633
8  ( 1 1 1 ) 246776       1.921
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 Other example corresponds to the passive 

nonlinear network with four nodes (Fig. 5).  

 

 
 

Fig. 5. Four-node nonlinear passive network. 

 

 

 The vector X includes nine components. Five 

components correspond to the admittances 

( )54321 ,,,, xxxxx , where 1

2

1 yx = , 2

2

2 yx = , 3

2

3 yx = , 

4

2

4 yx = , 5

2

5 yx = , and four parameters are the 

nodal  voltages ( )9876 ,,, xxxx , where 16 Vx = , 

27 Vx = , 38 Vx = , 49 Vx = , The nonlinear elements 

are defined as: ( )2

21111 VVbay nnn −⋅+= , 

( )2

32222 VVbay nnn −⋅+= . The control vector U  

includes nine components ( )921 ,...,, uuu . The 

model of circuit (2) includes 4 equations and 

functions ( )Xg j  are defined by the next system:  

 

( ) ( ) ( )[ ]( ) 076

2

7611

2

16001 =−−++−−≡ xxxxbaxxVyXg nn  
 
 

( ) ( )[ ]( )
( )[ ]( ) 087

2

87227

2

2

76

2

7611

2

12

=−−+−−

−−++≡

xxxxbaxx

xxxxbaxXg

nn

nn
 

 

( ) ( )[ ]( )
( ) 09

2

48

2

4

2

3

87

2

87223

=−+−

−−+≡

xxxxx

xxxxbaXg nn
 

 

( ) ( ) 09

2

5

2

48

2

44 =+−≡ xxxxxXg  

 

 The optimization procedure (1) includes nine 

equations. The cost function C(X) of the design 

process is defined by the following form: 

( ) ( ) ( ) ( )2

287

2

176

2

09 kxxkxxkxXC −−+−−+−= . 

 The results of the analysis of complete structural 

basis of different strategies of designing for network 

in Fig. 3 are shown in Table 3. 

Table 3. Data of complete structural basis of 

designing strategies for network in Fig. 5. 

 

 The behavior of the functions V(t) and W(t) for 

the complete set of structural basis is shown in Fig. 6. 

 

 

(а) 

 

(б) 

Fig. 6.  Behavior of the functions V(t) and W(t) for all 

strategies of structural basis during the design 

process for network in Fig. 5. 

N Control Iterations Total
vector number design

   time (sec)
1   ( 0 0 0 0 ) 32371       5.441
2   ( 0 0 0 1 ) 31726       2.970
3   ( 0 0 1 0 ) 11598       1.263
4   ( 0 0 1 1 ) 21486       0.611
5   ( 0 1 0 0 ) 33846       3.574
6   ( 0 1 0 1 ) 41960       1.162
7   ( 0 1 1 0 ) 18223       0.491
8   ( 0 1 1 1 ) 37651       0.885
9   ( 1 0 0 0 ) 33136       3.572

10   ( 1 0 0 1 ) 61377       1.762
11   ( 1 0 1 0 ) 27278       0.834
12   ( 1 0 1 1 ) 11582       0.271
13   ( 1 1 0 0 ) 44656       1.257
14   ( 1 1 0 1 ) 46412       1.113
15   ( 1 1 1 0 ) 19478       0.330
16   ( 1 1 1 1 ) 41384       0.553
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We can see that the processor time of each 

strategy is inverse proportional of the absolute value 

of the function W(t). 

 In Fig. 7 there is a passive nonlinear network with 

five nodes. 

 

 
 

Fig. 7. Five-node nonlinear passive network. 

 

 The nonlinear elements have next dependencies: 

( )2

23111 VVbay nnn −⋅+= , ( )y a b V Vn n n2 2 2 4 2

2

= + ⋅ − . The 

vector X includes eleven components. The first six 

components are defined as: 1

2

1 yx = , 2

2

2 yx = , 3

2

3 yx = , 

4

2

4 yx = , 5

2

5 yx = , 6

2

6 yx = . The others components 

are defined as: 17 Vx = , 28 Vx = , 39 Vx = , 

410 Vx = , 511 Vx = . The control vector U includes 

eleven components too. The structural basis includes 

32 strategies. The mathematical model (2) of this 

circuit is defined on the basis of nodal method and 

includes five equations in this case. The optimization 

procedure includes eleven equations and it is based 

on formulas (1) and (5). The cost function C(X) is 

defined by the formula similar a previous example: 

( ) ( ) ( )[ ] ( )[ ]22

2

109

2

1

2

98

2

011 kkxxkkxxkkxXC −−+−−+−= . 

 The results of the analysis of some strategies of 

structural basis are shown in Table 4. 

 

Table 4. Data of complete structural basis of 

designing strategies for network in Fig. 7. 

 

 The behavior of the functions V(t) and W(t) for 

strategies corresponding the Table 4  is shown in  

Fig. 8.  

 

 
 

Fig. 8.  Behavior of the functions V(t) and W(t) for 

some strategies of structural basis during the design 

process for network in Fig. 7. 

 

 Anew we can state that processor time for each 

strategy is inverse proportional of absolute value of 

the function W(t). 

 Next example corresponds to the one-stage 

transistor amplifier in Fig. 9.  

 

 
Fig. 9. One-stage transistor amplifier. 

 

 The vector X includes six components: 1

2

1 yx = , 

2

2

2 yx = , 3

2

3 yx = , 
14 Vx = , 25 Vx = , 66 Vx = . 

The model of this network (2) includes three 

equations  (M=3) and the optimization procedure (5) 

includes six equations. The total structural basis 

contains eight different strategies. The control vector 

includes three control functions: U= ( )321 ,, uuu . The 

Ebers-Moll static model of the transistor has been 

used [13]. 

 The results of the analysis of complete structural 

basis of the design strategies are shown in Table 5. As 

for the previous example, Fig. 10 shows the behavior 

of the functions V(t) and W(t) for a time interval when 

the majority of the design strategies are finished. 

 

N Control Iterations Total
vector number design

   time (sec)
1   ( 0 0 0 0 0 ) 33456     14.121
2   ( 0 0 0 0 1 ) 10837       5.632
3   ( 0 0 1 1 0 ) 15490       5.164
4   ( 0 1 1 1 0 ) 35567       3.911
5   ( 0 1 1 1 1 ) 28360       2.415
6   ( 1 0 1 1 0 ) 20756       4.181
7   ( 1 1 1 1 0 ) 36049       3.460
8   ( 1 1 1 1 1 ) 29002       1.211
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Table 5. Data of complete structural basis of 

designing strategies for network in Fig. 9. 

 

 

 
 

Fig. 10.  Behavior of the functions V(t) and W(t) for 

some strategies of structural basis during the design 

process for network in Fig. 9. 

 

 The strategies with control vector 101 and 111 

have extremely large value of the relative derivative 

W(t) from the beginning of the design process and 

that is why the Lyapunov function is decreases very 

rapidly.  The relative design time is very small for 

two these strategies and it is equal to 0.00048 and 

0.00015 accordingly. The strategies with the control 

vector 001, 011 and 100 have the sufficient level of 

the function W during the analyzed interval and the 

relative design time is equal to 0.0054, 0.0061 and 

0.0114 accordingly. Nevertheless three other design 

strategies with the control vector 000, 010 and 110 

are not finished during the presented interval. 

 It occurs because the function W for these 

strategies decreases rapidly while the Lyapunov 

function had a relatively large value. After this the 

Lyapunov function decreases very slowly and the 

relative design time is equal to 1.0, 0.116 and 0.029 

accordingly.  

 Other example corresponds to the two-stage 

transistor amplifier in Fig. 11. 

 This network is characterized by five dependent 

parameters and the control vector includes five 

control  functions:  U = (u u u u u1 2 3 4 5, , , , ).   The  

 
 

Fig. 11. Two-stage transistor amplifier. 

 
structural basis consists of 32 design strategies. The 

results of the analysis of some design strategies from 

the structural basis are shown in Table 6. 

 

Table 6. Data of some strategies of structural basis for 

network in Fig. 11. 

 

 

 The behavior of the functions V(t) and W(t) for 

these strategies is shown in Fig. 12.  

 

 
 

Fig. 12.  Behavior of the functions V(t) and W(t) for 

some strategies for circuit in Fig. 11. 

 

 These graphs correspond to a time interval when 

the majority of the design strategies are finished. The 

strategies 6, 7, 8 and 9 have a large value of the 

N   Control   Iterations   Total design
  vector   number   time  (sec)

1   ( 0 0 0 ) 7683758 518,22
2   ( 0 0 1 ) 45900 2,42
3   ( 0 1 0 ) 1151505 60,14
4   ( 0 1 1 ) 47464 2,53
5   ( 1 0 0 ) 109784 5,87
6   ( 1 0 1 ) 4753 0,25
7   ( 1 1 0 ) 303579 14,83
8   ( 1 1 1 ) 4940 0,08

N    Control   Iterations  Total design
   vector   number   time (sec)

1   (0 0 0 0 0) 165962 299,56
2   (0 0 0 0 1) 337487 737,55
3   (0 0 1 0 0) 44118 68,87
4   (0 0 1 0 1) 14941 19,06
5   (0 0 1 1 1) 21971 22,03
6   (0 1 1 0 1) 4544 4,56
7   (1 0 1 0 1) 2485 1,65
8   (1 0 1 1 1) 7106 3,57
9   (1 1 1 0 1) 2668 1,32

10   (1 1 1 1 1) 79330 10,11
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relative derivative W(t) from the initial of the design 

process. This property provides extremely fast 

decreasing of the Lyapunov function. The design 

time for these design strategies is presented in Table 

2. We can see that just these strategies 6, 7, 8 and 9 

have the design time lesser than other strategies. The 

strategies 4, 5 and 10 have an average value of the 

function W in the initial part of the design process 

and these strategies have an average value of the 

design time. At last, the strategies 1, 2 and 3 have a 

large design time and just these strategies have a very 

fast decreasing of the function W during initial part of 

the design process. 

 The analysis of the three-stage amplifier of Fig. 

13 shows very similar results. 

 

  
 

Fig. 13. Three-stage transistor amplifier 

 
 The results of the analysis of three-stage amplifier 

are presented below in Table 7 and Fig. 14. Functions 

V(t) and W(t) were the main objects of the analysis 

and have been analyzed for some strategies that 

compose the structural basis of the general  

methodology. 

 

Table 7. Data of some design strategies for three-

stage amplifier 

 

 

 Fig. 14 shows the behavior of the functions V(t) 

and W(t) for some design strategies. These graphs 

correspond to a time interval when the majority of 

the design strategies are finished. 

 

 
 

Fig. 14. Behavior of the functions V(t) and W(t) for 

some strategies during the design process for network 

in Fig. 13. 

 

 The strategies 6, 7, and 10 have a minimal relative 

computer time because the function W(t) for these 

strategies has a relatively large negative value during 

a long time of the design process in spite of the large 

value of Lyapunov function V(t) in initial time 

interval. On the contrary, the function W(t)  has a 

relatively small value for  the strategies 1, 2 and 3. 

That is why these strategies have a large computer 

design time. We can state that the large absolute 

value of the function W(t) on initial part of the design 

process provoke the less computer time.  

We can state that the behavior of the Lyapunov 

function V and the relative time derivative W surely 

determine the design time. It means that it is possible 

be guided by means of these functions to predict the 

computer design time for any design strategy. We 

could analyzed the initial time interval of the 

functions V(t) and W(t) behavior for the different 

strategies and by this analysis we can  predict  the 

strategies that have a minimal computer design time. 

 

5 Conclusion 
The problem of the minimal-time design algorithm 

construction can be solved adequately on the basis of 

the control theory. The design process in this case is 

formulated as the controllable dynamic system. The 

Lyapunov function and its time derivative include 

the sufficient information to select more perspective 

design strategies from infinite set of the different 

design strategies that exist into the general design 

methodology. The special functions W(t) and S(t) 

have been proposed to predict the better design 

strategies with a minimal design time. There is a 

close relation between the computer time and the 

properties of the Lyapunov function of design 

N Control Iterations Total design
vector number time (sec)

1 ( 0 0 0 0 0 0 0 ) 2354289     420.18 
2 ( 0 0 1 0 1 0 1 ) 110889     117.15   
3 ( 0 1 1 1 0 0 0 ) 1075433     272.01  
4 ( 1 0 1 0 1 0 1 ) 102510       49.76   
5 ( 1 0 1 1 1 0 1 ) 107541       43.99 
6 ( 1 0 1 1 1 1 1 ) 38751       12.53   
7 ( 1 1 1 0 1 1 1 ) 43387       13.67  
8 ( 1 1 1 1 1 0 0 ) 185085     110.62   
9 ( 1 1 1 1 1 1 0 ) 147094       66.13  

10 ( 1 1 1 1 1 1 1 ) 52651         4.56   

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alexander Zemliak, Alexandra Bychkovska

E-ISSN: 2224-266X 216 Volume 13, 2014



  

process. These functions can be used as the principal 

tool to the time optimal design algorithm prediction. 

The successful solution of this problem permits to 

construct the minimal-time system design algorithm. 
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