
Circuits design of memory accessing system based on AXI interface

BING LI
School of Integrated Circuits

Southeast University
Sipailou No.2, Nanjing, Jiangsu Province, China

CHINA
Southeast University Chengxian College

Dongda Road No.6, Nanjing, Jiangsu Province, China
CHINA

XIAOLING WANG
School of Integrated Circuits

Southeast University
Sipailou No.2, Nanjing, Jiangsu Province, China

CHINA
YONG LIU

School of Integrated Circuits
Southeast University

Sipailou No.2, Nanjing, Jiangsu Province, China
CHINA

w123xl@126.com

Abstract: - This paper proposes a method for designing the DDR3 SDRAM (Double Data Rate3 Synchronous
Dynamic Random Access Memory) memory accessing system based on AXI (Advanced eXtensible Interface)
interface, which can achieve data transmission between SoC (System on-Chip) and off-chip SDRAM through
AXI interface complying with AXI protocol. The whole design has been accomplished by using Verilog
hardware description language, and the functional simulation has been done in Modelsim10.0a software tool.
Three different parameters, including bandwidth, delay and the size of buffer FIFO (First In First Out) have
been analysed in the proposed system. Through FPGA (Field Programmable Gate Array) on-board verification,
this DDR3 memory accessing system can operate at 200MHz well.

Key-Words: - AXI; DDR3 SDRAM; memory accessing system; Packets; memory performance; SoC

1 Introduction
Acting as a bridge between ARM processor and
DDR3 SDRAM, the proposed memory accessing
system allows on-chip system (SoC) to access off-
chip DDR3 SDRAM memories based on AXI
interface. As for SoCs who need a lot of off-chip
storage space, AXI compliant memory accessing
system is one of the most important design parts in
system [1]. In this paper, with the study of ARM’s
latest on-chip advanced extensible interface we
generate memory accessing commands through AXI
bus on SoC by imitating ARM processor.

Two main components constitute the memory
accessing system, including packets sending side
and packets receiving side, both of which are
implemented by Verilog HDL. Through the
proposed system the processor can access off-chip
DDR3 SDRAM. The parallel channel between

packets sending side and packets receiving side is
responsible for transmitting datum. Finally, we
finish accessing DDR3 SDRAM by invoking MIG
IP supplied by Xilinx to shorten the development
cycle of the whole system [2]. The memory
accessing system is functionally simulated by
Mentor Company’s software Modelsim10.0a and
analysed on different bandwidth, delay and
buffering size. Finally, we validate the DDR3
SDRAM memory accessing system on Xilinx FPGA
board to test its function and implementation. The
results of simulation and verification demonstrate
that the design reaches the expected design
objective, and it can operate steadily.

2 AXI Bus

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Xiaoling Wang, Yong Liu

E-ISSN: 2224-266X 165 Volume 13, 2014

The design scale is increasing faster and faster with
the rapid development of SoC in recent years. The
current mainstream on-chip AMBA (Advanced
micro-controller bus architecture) bus protocol for
SoC is released by ARM Company. It’s not only
just a kind of on-chip bus, but also an
interconnection system with interface modules.
AMBA bus interface has been widely used in
system level chip design based on the ARM
processor. AXI (Advanced eXtensible Interface) bus
protocol is the most important part of AMBA3.0
protocol, which was first introduced in 1996. The
first version of AXI was first included in AMBA3.0,
released in 2003. AMBA4.0, released in 2010,
includes the second version of AXI, AXI4 [3]. The
AXI specifications describe an interface between a
single AXI master and a single AXI slave,
representing IP cores that exchange information
with each other. Data can move in both directions
between master and slave simultaneously, and data
transfer sizes can vary. The key features of the AXI
protocol are [4]: separate address/control and data
phases; support for unaligned data transfers, using
byte strobes; uses burst-based transactions with only
the start address issued; separate read and write data
channels, that can provide low-cost Direct Memory
Access (DMA); support for issuing multiple
outstanding addresses; support for out-of-order
transaction completion; permits easy addition of
register stages to provide timing closure. The AXI
protocol includes the optional extensions that cover
signalling for low-power operation. Each of the
independent channels consists of a set of
information signals and VALID and READY
signals that provide a two-way handshake
mechanism. Both the read data channel and the
write channel also include a LAST signal to indicate
the transfer if the final data item in a transaction.

3 Memory Accessing System RTL
design
Fig.1 shows the proposed DDR3 memory accessing
system architecture. According to the function of the
system, the design is divided into two parts. There
are packets sending side and packets receiving side,
which will be implemented on FPGA chip
respectively, and communicating through a point-to-
point mode parallel channel. Packets sending side is
implemented on Xilinx ZYNQ-7000 series FPGAs
[5]. It receives memory accessing commands and
datum from ARM processor through AXI interface,
and then buffers the information before packing it in
accordance with parallel channel timing and sending

the packets out. The channel is in charge with
packets transmitting. Packets receiving side is
implemented on Xilinx Kintex7 series FPGAs [6]. It
accepts packets from the channel and buffers them
before unpacking. Then it translates the commands
and datum into standard memory commands, which
are only readable by DDR3 SDRAM. The packets
receiving side also packs the read-back datum from
DDR3 SDRAM and sends them back to ARM
processor eventually. On the whole, the accessing
process is finished.

DIMM

ZYNQ-7000

Dual
ARM
Cortex

A9

Packets
sending

side

Packets
receiving

side

Kintex7

Par al l el
channel

 Fig.1 Memory accessing system architecture

3.1 Parallel signals and packets
In the paper, we define a parallel point-to-point
mode channel through which the two parts
implemented on two FPGA chips can communicate
with each other. The channel interface protocol is
described as the following aspects:

• Few control signals, commands completely
enclosed in the packets.

• 64bit data width, high throughput.
• Full duplex transmission, peer-to-peer

communications.
Memory accessing system has nine

interconnection interface signals, which are shown
in Table 1.

Table 1 Parallel interface signals
Name Source description

CLK
Global Clock: all signals

synchronize with it

RST_N
Global Reset: when valid, any data

transmission will be aborted

DATA[63:0]
src

Data: 64bit, driven by
source, unidirectional

transmission

SRC_RDY_N
src Source ready to receive data

DST_RDY_N
dst Destination ready to receive

data

SOF_N
src Frame head: the first 64bit

data

EOF_N
src Frame tail: the last 64bit data

SRC_DSC_N
src Source interruption: cancel

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Xiaoling Wang, Yong Liu

E-ISSN: 2224-266X 166 Volume 13, 2014

Name Source description
the transmission when
detects any abnormal

DST_DSC_N
dst

Destination interruption:
refuse data caused by lacking

of buffer and etc.
Fig.2 shows the interconnection of memory

accessing system architecture. The figure illustrates
the topological connection between packets sending
side and packets receiving side. We can see from
Figure2 that both sides have source and destination.
Each transaction from the interconnection interface
is initiated by the source and receiving by the
destination. In the case when there are no errors or
interruptions, source and destination are ready. Then
packets can be sent by the source to the destination
at any time, and vice versa, the destination can send
back read data packets to the source. The sender
gives frame hand signal SOF_N and frame tail
signal EOF_N to identify start and ending of every
transaction.

RST _ N
CLK

SOF _ N
EOF _N

SRC_ RDY_N

DST_ RDY_N
SRC_ DSC_N

DST_ DSC_N

SOF_N
EOF _N

SRC_ RDY_N

DST_ RDY_N
SRC_ DSC_N

DST_ DSC_N

DATA[63:0]

DATA[63:0]

Packets
sending

side

Packets
receiving

side

Glb Glb

SRC

DST SRC

DST

Fig.2 Interconnection topologic of parallel interface
The memory accessing system command format

is the foundation of data packets transaction in
system. We set a fixed read and write granularity,
that’s 32 Byte. Read and write request packets
format is shown in Fig.3 and Fig.4 The fixed packet
width is 64bit, whose frame head is command,
including address, ID and read and write
identification. The 32bit address is in the high
address. The lowest one bit is the identification, “1”
stands for read and “0” stands for write. The 4bit ID
is placed in front of command identification.
Remainder of the low 32bit address is the system
reserved bits which is set to “0”. There is a total 32
Byte data divided into four consecutive 64bit wide
sequence following the command complied with
interface protocol. The packets sending side packs
consists of read/write commands and write data,
while the packets sending side packs consists of
read data and read control information.

Address(32bit) reserved ID(4bit) 1
Fig.3 Read command format

Data(64bit)

Address(32bit) reserved ID(4bit) 0

Data(64bit)

Data(64bit)

Data(64bit)

Fig.4 Write command format

3.2 Packets sending side RTL design
Fig.5 shows the architecture of the packets sending
side which consists of the following modules,
including AXI stimulus module, AXI write
receiving module, AXI read receiving module,
AXI read back module, asynchronous FIFOs,
channel sending module and channel receiving
module.

st i mul us

AXI
write

receive

AXI
read
back

AXI
read

receive

Write data/comd
FIFO

Channel
Sendi ng
modul e

Channel
Recei vi ng

modul e

Write label FIFO

Read label
FIFO

Read comd
FIFO

Read data FIFO

Read data label
FIFO

Fig.5 Architecture of packets sending side

3.2.1 AXI stimulus module
The function of AXI stimulus module is to generate
memory accessing commands imitating the ARM
processor, and send these commands to packets
sending side. The stimulus module generates a large
amount of read/write commands coping STREAM
testing tool [8]. There are five test points in five
modules. Copy: read large scales of data from a
piece of memory area, and then write back the data
to another piece of memory area. ADD: read large
scales of data from a piece of memory area, add two
of them, and then write the sum back to another
piece of memory area. SCALE: read large scales of
data from a piece of memory area, and then write
back the data multiplied by a multiplier named
scalar to another piece of memory area. TRIAD:
read large scales of data from a piece of memory
area, add two data (one of them is multiplied by a
multiplier named scalar), and then write back the
sum to another piece of memory area. GUPS:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Xiaoling Wang, Yong Liu

E-ISSN: 2224-266X 167 Volume 13, 2014

generate a random address for read operation, and
write back the read data from the random address
after multiplying it by a random multiplier named
scalar.

The five synthesizable stimulus modules can be
instantiated separately in the packets sending side.
They are in responsible for generating commands.

The stimulus module has five channel interfaces
linked to AXI write receiving module, AXI read
receiving module and AXI read back module. It
starts the operation status once the DDR3
initialization is completed. The stimulus module has
global clock signal, global reset signal and memory
initialization signal. Other signals are described in
the following paragraphs.

AXI write address channel: Output axi_wvalid
indicates that the channel is signaling valid write
address and control information. Input axi_wready
indicates that the slave is ready to accept an address
and associated control signals. Output axi_wid 4bit
write address ID which is the identification tag for
the write address group of signals. Output
axi_wadder is a 32bit address indicating the first
transfer in a write burst transaction. Output
axi_wlen is the burst length, which equals 7
according to 32Byte. Output axi_wsize is the burst
size which indicates the size of each transfer in the
burst, it equals 2 according to 32bit width (2^2=4,
4Byte =32bit). Output axi_wburst is the burst type,
which equals 2’b01 which indicates increasing type.
The remainder signals which have not been used in
this paper will be set to 0. AXI read address channel
is similar to AXI write address channel, so we will
not give unnecessary details.

AXI write data channel: Output axi_wd_valid
indicates that valid write data and strobes are
available. Input axi_wd_ready indicates that the
slaves can accept the write data. Output axi_wd_wid
is the 4bit write ID tag. Output axi_wd_data is the
32bit write data. Output axi_wd_strb is the 4bit
write strobe which indicates which byte lanes hold
valid data. Output axi_wd_last is write last signal
which indicates the last transfer in a write burst.
AXI read data channel is similar to AXI write data
channel except for input axi_rd_resp which is the
read response signal.

AXI write response channel: Input axi_wd_bid is
the 4bit response ID tag. Input axi_wd_bresp
indicates the status of the write transaction. Input
axi_wd_bvalid indicates that the channel is
signaling a valid write response. Output
axi_wd_bready indicates that the master can accept
a write response.

3.2.2 AXI write receiving module
The function of AXI write receiving module is to
link to write address channel, write data channel and
write response channel of AXI stimulus module. It
accepts id and write identify, and then put them
together to form a 32bit data, i.e. {{27 {1 'b0}},
AWID, 1' b0}. At the same time, it buffers the
newly formed data, 32bit address and write data in
the write data/command FIFO. The write command
label FIFO will be updated when all above is done.
The AXI write receiving module responses to
stimulus module once the data and associated
information in one burst transaction have been
buffered in FIFO. BRESP signal which equals to
2’b00 implies a successful transaction. When
response is done, the write label FIFO address
pointer will add 1 to indicate that the write data
FIFO now has data for read.

3.2.3 AXI read receiving module
The function of AXI read receiving module is to
link to read address channel of AXI stimulus
module. It accepts id and read identify, and then put
them together to form a 32bit data, i.e. {{27 {1
'b0}}, ARID, 1' b1}. At the same time, it buffers the
newly formed data and 32bit address in the read
command FIFO. The read command label FIFO will
be updated when all above is done. When all above
is done, the read label FIFO address pointer will add
1 to indicate that the read command FIFO now has
data for read.

3.2.4 AXI read back module
The function of AXI read back module is to link to
read data channel of AXI stimulus module. It
fetches data and address in the read data FIFO, and
then sends them to stimulus module. The
information includes read data, read address and
response. It can get the information from the read
data FIFO if the read data label FIFO is not empty
which indicates that there are at least a 32Byte burst
read data can be read. After reading 32Byte data
from the read data FIFO, the address pointer of read
data label FIFO will subtract 1 to indicate a 32Byte
data has been red.

3.2.5 Channel sending module
The function of channel sending module is link to
all kinds of FIFOs on the left side, to receive 32bit
data from them. On the other hand, it links to
parallel channel on the right side. In take the charge
of sending 64bit data to the parallel channel.
However, it firstly should get two 32bit data
together to form a 64bit data according to parallel
channel timing protocol. There are no priorities in

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Xiaoling Wang, Yong Liu

E-ISSN: 2224-266X 168 Volume 13, 2014

the process of sending operation. We apply a round-
robin method to get the read and write commands. If
a read transaction is undergoing then next will be a
write transaction if the associated FIFO is not
empty. This method is fair in the paper.

3.2.6 Channel receiving module
The function of channel receiving module is to
accept data from the parallel channel. It gets the
64bit data packets, divides them into two 32bit data
and put them into buffer FIFOs. The read data label
FIFO address pointer will add 1 to indicate there are
32Byte read data in the read data FIFO.

3.2.7 Asynchronous FIFOs
In order to make it convenient for the designer to
adjust clock frequency on both sides of the FIFO,
FIFOs in packets sending side are all asynchronous.
This will prevent any meta-stabilities [7]. All the
FIFO is 32 in width and 4K in depth. FIFOs in
packets receiving module has the same functions
with 64bit in width and 2K in depth.

3.3 Packets receiving side RTL design
Fig.6 shows the architecture of the packets receiving
module which has the following modules, including
parallel channel interface module, MIG interface
module, AXI_MIG and asynchronous FIFOs.

Channel
I nt er f ace

modul e

Write data
FIFO

MIG
Interface
module

Write comd
FIFO

Read comd
FIFO

Read data FIFO

Read data label
FIFO

AXI
MIG

Read comd keep FIFO

Fig.6 Architecture of packets receiving side

3.3.1 Channel interface module
The function of channel interface module is to
accept 64bit width packets from parallel, and then
unpacks them before buffering. It divides the
packets into write commands and read commands
according to the identification. Write data is sent to
write data FIFO while commands are sent to
command FIFO. All label FIFOs are been updated
after above actions. What’s more, channel interface

module also accepts data red from DDR3 SDRAM
and read address form read command keep FIFO,
and then it packs them into 64bit width packets
before sending them to the parallel channel.

3.3.2 MIG interface module
The function of MIG interface module is to link to
AXI_MIG through five AXI channels. It
communicates with AXI_MIG in accordance with
required timing. It also applies the round-robin
method to read write and read commands.

3.3.3 AXI_MIG
We generate the free IP core named AXI_MIG from
Xilinx ISE software tool with a license. It works
with DDR3 SDRAM directly. In this paper, we use
ISE14.2 core generator to generate a DDR3 physical
layer controller with AXI4 interface, which is
responsible for changing the AXI commands into
standard memory commands.

4 Test Results
In the paper, we choose Modelsim10.0a simulation
software from Mentor Company during the
functional simulation. This software supports PC,
hybrid platform of UNIX and LINUX. It supports
testbench in Verilog HDL language.

The process of simulation is described as
follows: packets sending module and packets
receiving module are instanced in the top module,
which also instances DDR3 SDRAM. The top
module generate global clock and reset signals from
FPGA board. Five stimulus modules are been tested
to cover most of the accessing cases.

As shown in Fig.7 in the end of this article, after
the DDR3 initialization, stimulus module writes a
piece of DDR3 area. The following accessing
commands will only limited to this area address
from 32’h0000_0000 to 32’h0000_4000.

As shown in Fig.8 in the end of this article, when
the write address reaches 32’h0000_4000, the
fill_done signal will be pull valid. The memory
accessing system starts sending large scales of
commands.

As shown in Fig.9 in the end of this article, once
there are read data back to stimulus module, the data
will be writing back to another part of DDR3 after
COPY or other operations. From the simulation
waveform we can see that the data read from DDR3
match what we write before.

Fig.10 in the end of this article shows the read
and write process of DDR3 SDRAM. The smallest
unit that can be process by DDR3 is 64Byte. We use
32Byte while another 32Byte is masked by strobe

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Xiaoling Wang, Yong Liu

E-ISSN: 2224-266X 169 Volume 13, 2014

signals. For write command: cs_n=0, RAS_n=1,
CAS_n=0, WE_n=0. And for read command:
cs_n=0, RAS_n=1, CAS_n=0, WE_n=1 [9].

In order to analyze the performance of the
memory accessing system, we vary three parameters
to recorder the simulation time. We use different
buffer size, channel frequency and channel delay to
test the design. The buffer size is varied by changing
the depth of FIFOs in packets receiving module.
The channel delay is varied by adding a delay-chain
in the channel, in the delay-chain one register has a
clock cycle delay. After analyzing the results we can
balance the three parameters to get a memory
accessing system with best performance.

Fig.11 shows the histogram of different parallel
channel frequency. From the histogram we can find
that with the decreasing of channel frequency, the
smaller buffer size is the longer simulation time.

Fig.11 Frequency vs. Simulate time

Fig.12 shows the histogram of different buffer
size. With fixed channel delay (set to zero), the
greater the channel delay, the longer simulation
time, the less influence on simulation time by buffer
size.

Fig.12 Buffer size vs. Simulate time

Fig.13 shows the histogram of different channel
delay. From the histogram we can find that when the
channel frequency is higher, the simulation time is
shorter. However, AXI_MIG will not afford the
throughput when the frequency is too high. So if we
add delay in the channel, it will ease data for
AXI_MIG.

Fig.13 Delay vs. Simulate time

In the end, the function of the memory accessing
system is implemented on FPGA board. The results
demonstrate that the design can work at 200MHz
with low rates of resource utilization listed in Table
2 and Table 3.

Table 2 Resource utilization sending side
Name Used

number
Total

number ratio

register
2841 437200 1%

Look-up-table
23394 218600 10%

RAM/FIFO
29 545 5%

IOBs
145 362 40%

BUFGs
3 32 9%

BSCANs
1 4 25%

PLLE2_ADVs
1 8 12%

Table 3 Resource utilization receiving side
Name Used

number
Total

number ratio

register
11080 508400 2%

Look-up-table
41928 254200 16%

RAM/FIFO
45 795 5%

IOBs
261 500 52%

BUFGs
5 32 15%

IDELAYE2
64 500 12%

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Xiaoling Wang, Yong Liu

E-ISSN: 2224-266X 170 Volume 13, 2014

Name Used
number

Total
number ratio

IDELAYCTRLs
2 10 20%

ISERDESE2s
64 500 12%

OSERDESE2s
114 500 22%

PHASER_IN_P
HYs 8 40 20%
PHASER_OUT
_PHYs 12 40 30%

BSCANs
1 4 25%

MMCME2_AD
Vs 1 10 10%

PHASER_REFs
3 10 30%

PHY_CONTRO
Ls 3 10 30%

PLLE2_ADVs
2 10 20%

Fig.14 (a) and (b) in the end of this article
show the logical circuits after synthesis in
ISE14.6 respectively.

5 Conclusion
A novel architecture of DDR3 memory accessing
system with AXI interface is proposed in this paper,
which consists of two main components, there are
packets sending side and packets receiving side. The
whole design is implemented in Verilog HDL.
Functional simulation and FPGA validation shown
from Fig.7 to Fig.10 demonstrate that the system
can work as expected. Three parameters are been
varied to analyse the performance of the memory
accessing system as shown from Fig.11 to Fig13.

The design can be improved in the future. For
example, more AXI_MIG can be instanced in the
design to extend the off-chip DDR3 capability. And
commands from ARM processor is limited in fact,
but in this paper the stimulus sends consecutive
commands without an upper limit. What’s more,
parallel channel can be replaced by series channel to
further improve the performance of the memory
accessing system.

References:
[1] J H Ahn, J Leverich, R Schreiber, N P Jouppi.

Multicore DIMM: An energy efficient memory
module with independently controlled
DRAMs[J]. IEEE Computer Architecture
Letters, January 2009, 8(1): 5-8.

[2] 7 Series FPGAs Memory Interface Solutions
User Guide[Z]. UG586 July 25, 2012.

[3] AXI Reference Guide[Z]. UG761 (v13.1)
March 7, 2011.

[4] AMBA AXI and ACE Protocol
Specification[Z]. ARM IHI0022D(ID102711),
2011.

[5] Zynq-7000 All Programmable SoC
Overview[Z]. DS190 (v1.2)August 21, 2012.

[6] Przybus B. Xilinx Redefines Power,
Performance, and Design Productivity with
Three New 28 nm FPGA Families: Virtex-7,
Kintex-7, and Artix-7 Devices[J]. Xilinx White
Paper, 2010.

[7] JEDEC Standard. JESD79-3E. DDR3 SDRAM
Specification[S]. Arlington USA: JEDEC Solid
State Technology Association, July 2010.

[8] Kim L S, Dutton R W. Metastability of CMOS
latch/flip-flop[J]. Solid-State Circuits, IEEE
Journal, 1990, 25(4): 942-951.

[9] McCalpin, John D. STREAM
benchmark[CP/OL]. 2007. http: //www.cs.
virginia.edu/stream //FTP/Code/stream.c.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Xiaoling Wang, Yong Liu

E-ISSN: 2224-266X 171 Volume 13, 2014

Fig.7 Write a piece of DDR3 area

Fig.8 Read commands start

Fig.9 Read data for writing back

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Xiaoling Wang, Yong Liu

E-ISSN: 2224-266X 172 Volume 13, 2014

(a) DDR3 read

(b)DDR3 write

Fig.10. DDR3 read and write operations

(a) Packets sending side

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Xiaoling Wang, Yong Liu

E-ISSN: 2224-266X 173 Volume 13, 2014

(b) Packets receiving side

Fig.14 Logic circuits of memory accessing system

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bing Li, Xiaoling Wang, Yong Liu

E-ISSN: 2224-266X 174 Volume 13, 2014

