
Elliptic Curve Cryptoprocessor with Hierarchical Security 
 

ALAAELDIN AMIN,  TURKI F. AL-SOMANI 
Computer Engineering Department  Computer Engineering Department 

King Fahd University of Petroleum & Minerals  Um-UL-Qura University 
Dhahran, 31261, Saudi Arabia  Makka, Saudi Arabia 

amindin@kfupm.edu.sa  tfsomani@uqu.edu.sa 
 
 
Abstract: - This paper describes an elliptic curve scalar multiplication method which is resistant to power analysis 
attacks. The proposed method confuses both the private key bit values and positions. Even with correct leaked 
information on the type of operations performed, associating that with a particular key bit value or position is 
almost impossible. Resistance to side channel attacks is provided at several levels. At the top level, the secret key 
is segmented into a number of randomly sized segments processed in random order. At the segment level, each 
segment is encoded randomly using ܰܨܣ or binary encodings. Further, at the segment level, the inspection 
direction of segment bits for binary-encoded segments is randomly assigned either in ܤܵܯ-to-ܤܵܮ or ܤܵܮ-to-ܤܵܯ. Furthermore, at the individual segment bit level, zero bits can randomly trigger a dummy PADD operation. 
In addition to improved security, this results in an average saving of 50% over the number of dummy PADDs in 
the Double-and-Add-Always algorithm. Such hierarchical multi-level scheme causes the relation between the 
private key and possible leaked information to be quite confused resulting in a higher system security with 
minimal overhead for both speed and area. 
 
 
Key-Words: - Elliptic Curve Cryptosystems, Side Channel Attacks, Normal Basis, Non Adjacent Form, Public 
Key Cryptography. 
 

1 Introduction 
Elliptic Curve Cryptosystems (ECC) [1], [2]  have 

been gaining increased popularity because of their 
shorter keys and higher security level. With much 
shorter key sizes, they represent a viable alternative 
to earlier public key cryptosystems such as the 
Rivest-Shamir-Adleman (RSA) [3] and ElGamal [4]. 

Several software ECC implementations have been 
reported in recent years [5]. However, software 
implementations, are both slow and with limited 
security for private keys compared to hardware 
implementations. Accordingly, efficient and secure 
hardware implementations of ECC have been the 
subject of active research [6], [7], [8], [9].  

An elliptic curve over a finite field (ݍ)ܨܩ is 
defined by the set of (ݔ	,  points satisfying the (ݕ
elliptic curve equation together with the “point at 
infinity” (O) [1]. The (ݔ	,  coordinates of elliptic (ݕ
curve points are elements of	(ݍ)ܨܩ, where ݍ =  ௠݌
with ݌ being a prime number. Such set of points 
forms an abelian group, with point addition (PADD) 
being the group operation and the “point at infinity", 
O, the additive identity element of the group. A  
PADD operation of two elliptic curve points ଵܲ and ଶܲ is defined such that the result is a 3rd point R on 
the curve (ܴ = ܲ1 + ܲ2). Adding two elliptic curve 

points ଵܲ and ଶܲ  such that ଵܲ = ଶܲ = ܲ results in the 
point doubling operation (PDBL)		ܴ = 2ܲ.  

The Scalar Product (SP) of an elliptic curve point ܲ by a scalar ݇ is a major operation for ECC. 
Computing the SP (݇ܲ) in ECC is analogous to 
modulo- exponentiation in the multiplicative group 
of integers. To compute ݇ܲ a sequence of double-
and-add operations is performed based on the binary 
representation of the ℓ-bit scalar ݇ = 	 (݇௟ିଵ, … , ݇଴) 
which is typically a private key. A good survey of 
reported methods for computing the SP may be found 
in [10]. Power analysis attacks [11] on ECC can 
seriously compromise security these devices. Simple 
Power Analysis (ܵܲܣ), attempts to gain key 
information through observing a single trace of the 
device power dissipation while Differential Power 
Analysis (ܣܲܦ) attempts that using multiple such 
traces [11]. In addition to classical ܣܲܦ attacks 
several other recent attacks have been reported, e.g. ܴ݂݁݅݊݁݀	ܲݎ݁ݓ݋	[13] ݇ܿܽݐݐܣ ݈ܾ݃݊݅ݑ݋ܦ ,[15](ܣܼܲ) ݏ݅ݏݕ݈ܽ݊ܣ ݎ݁ݓ݋ܲ ݋ݎܼ݁ [20] ,[14] (ܣܴܲ) ݏ݅ݏݕ݈ܽ݊ܣ 
and ݏ݅ݏݕ݈ܽ݊ܣ ݎ݁ݓ݋ܲ ݈ܽ݅ݐ݊݁ݎ݂݂݁݅ܦ ݐ݅ܤ-ݏݏ݁ݎ݀݀ܣ 
 Analysis of power traces can possibly .[22] (ܣܲܦܣ)
distinguish PADD from PDBL operations. 
Coron [17]  has shown that the instructions of an SPA 
resistant Algorithm must be independent of the data 
being processed, i.e. no data-dependent branch 
instructions should be used. This may be achieved by 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alaaeldin Amin, Turki F. Al-Somani

E-ISSN: 2224-266X 135 Volume 13, 2014



performing both the PADD and PDBL operations 
every iteration. The result of addition, however, is 
committed only when ݇௜ = 1 and dropped 
when		݇௜ = 0. Such "ݏݕܽݓ݈ܣ-݀݀ܣ-݀݊ܽ-݈ܾ݁ݑ݋ܦ" 
approach may be implemented by scanning the key 
bits   either from the most to the least significant bit 
 or from the least to the (Algorithm 1) (ܤܵܮ-to-ܤܵܯ)
most significant bit (ܤܵܮ-to-ܤܵܯ) (Algorithm 2). 
This scheme, however, is only resistant to SPA 
attacks while being vulnerable to ܣܲܦ attacks.  

Algorithm 1. The ݏݕܽݓ݈ܣ-݀݀ܣ-݀݊ܽ-݈ܾ݁ݑ݋ܦ Algorithm (ܤܵܯ-to-ܤܵܮ) 
 P, k ࢚࢛࢖࢔࢏   .0
1.   ܳ[0] 	= 	ܲ 
 ࢕ࢊ	0	࢕࢚ l − 2  ࢓࢕࢘ࢌ	݆	࢘࢕ࢌ   .2
       2.1.    ܳ[0] 	= 	2ܳ[0] 
       2.2.    ܳ[1] 	= 	ܳ[0] 	+ 	ܲ 
       2.3.    ܳ[0] 	= 	ܳ[ ௝݇] 
 ࢘࢕ࢌ	ࢊ࢔ࢋ      
 ([0]ܳ) ࢚࢛࢖࢚࢛࢕   .3

 
Algorithm 2. The ݏݕܽݓ݈ܣ-݀݀ܣ-݀݊ܽ-݈ܾ݁ݑ݋ܦ Algorithm (ܤܵܮ-to-ܤܵܯ) 

 P, k ࢚࢛࢖࢔࢏   .0
1.   ܳ[0] 	= 	ܲ 
2.   ܳ[1] 	= 	ܱ 
 ࢕ࢊ l − 1 ࢕࢚	0	࢓࢕࢘ࢌ	݆	࢘࢕ࢌ   .3
       3.1.      ܳ[2] 	= 	ܳ[0] 	+ 	ܳ[1] 
       3.2.      ܳ[0] 	= 	2ܳ[0]  
       3.3.      ܳ[1] 	= 	ܳ[1 + ௝݇	] 
 ࢘࢕ࢌ	ࢊ࢔ࢋ      
 ([1]ܳ) ࢚࢛࢖࢚࢛࢕   .4

To protect against ܣܲܦ attacks, the following 3 
countermeasures were suggested [17]:  

1. Randomizing the private exponent: If #ܧ is the 
number of elliptic curve points, compute the SP ܳ = ݇ܲ as follows:  
• An m-bit number d is randomly selected.  
• Compute		݇′ = ݇ +   .ܧ#	݀
• Compute the point ܳ = ݇′ܲ, where ܳ = ݇ܲ 

since #ܲܧ=O.  
2. Blinding the Point ܲ through adding a secret 

random point ܴ whose SP ܵ = ܴ݇ is known, e.g. 
through precomputation. Then the point ݇(ܴ +ܲ)	is computed then ܵ = ܴ݇ is subtracted to 
get		ܳ = ݇ܲ.  

3. Randomizing the used Projective Coordinates: 
Point (ܺ, ܻ, ܼ) in projective coordinates actually 
represents a class of points ൫ߣ௖ܺ, ,ௗܻߣ  ൯ forܼ	ߣ
different values of λ ≠ 0 in the finite field.  
Enhanced version of these countermeasures was 

proposed in[25], [17] which uses an elliptic curve 

isomorphism, thereby transposing the computation 
into another curve through a random morphism. 
These countermeasures, however, add computational 
overhead while still being vulnerable to some of the 
more recent ܣܲܦ attacks. For example, the first two 
countermeasures proposed by Coron fail to protect 
against ݈ܾ݀݃݊݅ݑ݋	݇ܿܽݐݐܽs. The 3rd countermeasure, 
however, protects against ݈ܾ݀݃݊݅ݑ݋	݇ܿܽݐݐܽs as do 
randomized exponentiation algorithms[19]. A 
random blinding point ܴ  should be updated randomly 
to protect against	݈ܾ݀݃݊݅ݑ݋	ݏ݇ܿܽݐݐܽ. Such updating 
should not be regular. Likewise, Smart [19] proposed 
a defence against ݂݀݁݊݅݁ݎ	ݎ݁ݓ݋݌	ܣܴܲ ݏ݅ݏݕ݈ܽ݊ܽ 
attacks. The zero-value point attack (ܼܲܣ) can be 
considered as extension to ܴܲܣ attack [15]. In ܴܲܣ 
attacks, the attacker uses a special point with a 
coordinate of zero value. In a ܼܲܣ attack, an attacker 
utilizes an auxiliary register which might take a value 
of zero in the definition field. For protection against ܼܲܣ and ܴܲܣ attacks, the secret key k or the base 
point P should be randomized. The ܲܫܴܤ 
countermeasure [21] uses an initial random point R.  
First ݇ܲ + ܴ is computed then ܴ is subtracted to 
obtain ݇ܲ causing no special point or zero-value 
register during operations causing it to be resistant 
against both ܼܲܣ and ܴܲܣ attacks. A hardware-
based countermeasure using Randomized Register 
Renaming (ܴܴܴ) was proposed [23] against address-
bit [16] (ܣܲܦܣ) ܣܲܦ. Several countermeasures 
against ܣܲܦܣ attacks were proposed [16], but those 
double the computing time. The randomized 
addressing (ܴܣ) countermeasure, uses an approach 
which is similar to ܴܴܴ without requiring special 
hardware [24]. In	ܴܣ, randomized register addresses 
are used for each scalar exponentiation. This causes 
register addresses to be randomized with subsequent 
randomized side channel information. 

This paper describes an efficient method for 
elliptic curve scalar multiplication with hierarchical 
protection scheme against power analysis attacks. 
The rest of the paper is organized as follows: 
Section 2 gives the details of the algorithm and the 
adopted protection schemes at each level. Section 3 
analyzes the time, space and security aspects of the 
algorithm while Section 4 describes the hardware 
implementation of the proposed algorithm and 
discusses obtained results with conclusions provided 
in Section 5. 
 
 
2 Scalar Multiplication with 

Hierarchical Protection 
The scalar multiplication algorithm proposed here 
provides hierarchical resistance against power 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alaaeldin Amin, Turki F. Al-Somani

E-ISSN: 2224-266X 136 Volume 13, 2014



analysis attacks at several levels. Even with correctly 
leaked information on the type of operations being 
performed are leaked, using such information to infer 
a particular key bit value or position is quite 
infeasible. The main idea is to confuse both the 
values and positions of the private key bits. 

Several power analysis attacks countermeasures 
are hierarchically introduced at different levels. This 
makes it quite hard for attackers to associate leaked 
information with specific bit value or position.  

At the top level, the key is segmented into a 
random number of randomly sized segments that are 
processed in a random order. At the segment level, 
each segment is encoded randomly using ܰ[25] ܨܣ 
or binary. Further, the direction of bit inspection for 
binary-encoded segments at the segment level is 
assigned randomly either in ܤܵܯ-to-ܤܵܮ or ܤܵܮ-to-ܤܵܯ. Furthermore, at the level of individual segment 
bit, zero bits can randomly trigger a dummy PADD 
operation. In addition to improved security, this 
results in an average saving of 50% over the number 
of dummy PADDs in the ݈ܾ݁ݑ݋ܦ − ܽ݊݀ − ݀݀ܣ  algorithms (Algorithms 1 and 2). It is ݏݕܽݓ݈ܣ−
important to point out that even though each of the 
above-mentioned measures may be individually 
vulnerable, the security of our proposed method 
comes from all these measures combined together. 
 
 
2.1 The Top-Level  
The security measures at the top level are meant to 
cause confusion in the positions of the private key 
bits. The key is divided into a number of segments. 
Both the number of these segments and their sizes are 
randomized. Furthermore, the order in which the 
segments are processed is also randomized. Resulting 
points are then assimilated into the required SP (݇ܲ). 

One precomputed point is associated with each 
segment to maintain its significance. A different key 
segmentation is generated frequently enough to 
improve resistance to power attacks. Resistance to 
power analysis attacks improves with larger number 
of segments (more permutations). This, however, 
requires more precomputed points and more PADD 
operations resulting in increased area and delay 
overhead. Let the number of segments equal u; thus:  ݇ = 	݇(௨ିଵ)	||	݇(௨ିଶ)|| … ||݇(ଵ)||݇(଴) 
Computing the SP is done as follows: ݇ܲ = 	 ൫݇(௨ିଵ)	||݇(௨ିଶ)|| 	…	||݇(ଵ)||݇(଴)൯ܲ 
 = ൫2௦௜௭௘(௨ିଵ)	݇(௨ିଵ) +	2௦௜௭௘(௨ିଶ)	݇(௨ିଶ) +⋯																	+ 	2௦௜௭௘(ଵ)	݇(ଵ) +	݇(଴)൯ܲ 
 = ൫2௦௜௭௘(௨ିଵ)ܲ൯݇(௨ିଵ) + ൫2௦௜௭௘(௨ିଶ)ܲ൯݇(௨ିଶ) +											…		+ ൫2௦௜௭௘(ଵ)ܲ൯݇(ଵ) + (ܲ)݇(଴) 

 = ௨ܲିଵ݇(௨ିଵ) +	 ௨ܲିଶ݇(௨ିଶ) + ⋯+ ଵܲ݇(ଵ) +	 ଴ܲ݇(଴) 
where precomputed point Pi is associated with 
segment ݇(௜), P0 =P, and the size of segment j is ݁ݖ݅ݏ(௝) = ൫∑ ௝ିଵ௜ୀ଴(௜)݇	ݐ݊݁݉݃݁ݏ	݂݋	݁ݖ݅ݏ ൯ 

Given that P0 =P, (u−1) Pi points need to be 
precomputed and stored for u segments. Processing 
these segments yield curve points that are assimilated 
to produce the final SP		݇ܲ = ∑ ݇(௜) ௜ܲ௨ିଵ௜ୀ଴ . 

Sizes of different segments (݁ݖ݅ݏ(௝)) may be 
either equal or different. Equal sizes yield simpler 
designs, but different size segments provide higher 
security. Randomizing the order of segments yields a 
new pseudo key k' having the same segments as those 
of k but in a different order. Further, each segment 
of k' ൫݇′(௜)൯ must be associated with two other 
parameters; one is its corresponding precomputed 
point ( ௜ܲ), and another is its length in bits	൫ܮ(௜)൯. 
Thus, if the key k is segmented as		݇ =	݇(௨ିଵ)	||	݇(௨ିଶ)|| … ||݇(ଵ)||݇(଴), the obtained 
pseudo key after randomization is ݇ =݇ᇱ(௨ିଵ)||	݇′(௨ିଶ)|| … ||݇′(ଵ)||݇′(଴) where ݇′(௝)	 is a 
triplet defined by:  ݇′(௝) = 	 ൫݇(௜)	, ௜ܲ 	,  ൯ (1)(௜)ܮ

where, in general, i ≠ j. 
If the base point ܲ  is changed or the segments number 
or sizes are changed, a new set of precomputed ௜ܲ 
points should be generated. 
 
 
2.2 The Segment Level  
Two countermeasures are used at the segment level. 
The first is meant to confuse segment bit values. In 
this case, each segment is randomly encoded to in 
either ܰ[25] ܨܣ or binary.  ܰܨܣ encodings use 
binary signed digit (ܦܵܤ) representation with key bit 
values of 0, 1 or 1ത where 1ത designates a (−1). With 
an average of one-third the total number of bits, ܰ  ܨܣ
codes enjoy the least number of nonzero bits of any ܦܵܤ representation. Every integer has a unique ܰܨܣ 
code whose length is, in general, larger than the 
equivalent binary representation by 1 bit. 
Algorithm 3 converts a binary encoded key (݇) into 
its equivalent ܰܨܣ code. The second measure 
confuses the private key bit positions. If a given 
segment is binary-encoded, the direction of bit 
inspection is selected randomly either in ܤܵܯ-to-ܤܵܮ or the ܤܵܮ-to-ܤܵܯ. Thus, even in case an 
attacker makes a correct guess that some bit belongs 
to a particular segment, its exact position within the 
segment is still confused adding another level of 
resistance. 

 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alaaeldin Amin, Turki F. Al-Somani

E-ISSN: 2224-266X 137 Volume 13, 2014



Algorithm 3. Efficient ܰܨܣ encoding algorithm ࢙࢚࢛࢖࢔ࡵ: Unsigned l -bit Binary Code k. ܨܣܰ :࢚࢛࢖࢚࢛ࡻ(k). 1.      N = 0 ;     k’l = 0. 2.      ࢘࢕ࢌ		݆	 = ௝ = (N + kj ) mod 2 2.2.           if  ݇’௝’݇           .2.1 ࢕ࢊ	l − 1  ࢕࢚		0	 = 1 and  ݇’௝ାଵ = 1  then 2.2.1.             ݇’௝ = 1 2.2.2.              N = 1 2.3.           else 2.3.1.              N = N . ௝݇ 3.      if  N = 1  then  ݇’௝ =  (’k) ࢚࢛࢖࢚࢛ࡻ      .4 1
 
 
2.3 The Bit Level  
At this level, more confusion is added to the private 
key bit values. In the ݈ܾ݁ݑ݋ܦ − ܽ݊݀ − ݀݀ܣ  algorithms (Algorithms 1 and 2), PDBL and ݏݕܽݓ݈ܣ−
PADD operations are performed every iteration 
irrespective of the value of the key bit being 
processed (݇௜). For these algorithms, if ݇௜ = 1, the 
results of PDBL and PADD are committed, otherwise 
PADD result is ignored and only the PDBL result is 
committed. 

In spite of being simple to implement, the ݈ܾ݁ݑ݋ܦ − ܽ݊݀ − ݀݀ܣ −  algorithms make ݏݕܽݓ݈ܣ
the SP resistant only to SPA but not to ܣܲܦ attacks. 
Further, the extra dummy PADDs cause this 
approach to suffer from excessive delay overhead.  

At the bit level, we have adopted another 
resistance measure through randomly performing 
dummy PADD if ݇௜ = 0. Thus, based on the value of 
a random Boolean parameter r, a dummy PADD may 
be performed if ݇௜ = 0	and ݎ = 1. 

Algorithm 4 shows the SP procedure ܵܲ_ܰܨܣ for ܰܨܣ-encoded keys (or segments) which performs 
random dummy PADDs for zero key bits. In this 
algorithm, the ܰܨܣ bits are generated but rather the 
corresponding point operations, i.e. point addition or 
subtraction, are performed. For example, step 2.2.1 
performs a point subtraction without need to generate 
the actual value of corresponding key bit value (1ത). If 
the ܰܨܣ code has one more bit than the equivalent 
binary representation, the PADD operation at step 4.1 
is performed. For binary-encoded keys (or segments), 
algorithms 5 and 6 show the the ܤܵܯ-to-ܤܵܮ and ܤܵܮ-to-ܤܵܯ SP procedures (ܵܲ_ܮܯ and ܵܲ_ܯܮ	respectively) which perform random dummy 
PADDs for zero key bits. In all of the three 
algorithms, PDBL is always performed while 
PADDs are performed depending on the values of ݇௜ 
and the random variable ݎ.  

Algorithm 4. ܰܨܣ SP Procedure with Random 
Dummy Point Additions. 

Procedure: ܵܲ_ܰܨܣ(k , P , l) ࢙࢚࢛࢖࢔ࡵ:  k: Unsigned Binary Code, P: elliptic 
curve point, and l: Size of k in bits. ࢚࢛࢖࢚࢛ࡻ: Elliptic Curve Point which is equal to 
the SP ݇ܲ. 1.      N = 0 ;    ܳ[0] = ܲ; 		ܳ[1] = 	݆  ࢘࢕ࢌ      .2 .ܱ = 	݆’݇          .2.1 ࢕ࢊ l − 1  ࢕࢚	 0	 = 	 (ܰ	 +	 ௝݇	)	݉݀݋	2.2 2.          if  ݇’௝ = 1 and  ௝݇ାଵ 	= 	1  then 2.2.1.           ܳ[2] 	= ܳ[1]	– ܳ[0] 2.2.2.           ܰ	 = 	1 2.3.          else 2.3.1.           ܰ	 = 	ܰ. ௝݇ 2.3.2.           if (݇’௝ = 1  or   ݎ = 1) then   ܳ[2] 	= ܳ[1] 	+ 	ܳ[0] 2.4.          ܳ[0] 	= 	2ܳ[0] 2.5.          ܳ[1] 	= ܳ[1 +	݇’௝] 3.      if  ܰ = 1  then  ܳ[1] 	= ܳ[1] 	+  ([1]ܳ) ࢚࢛࢖࢚࢛ࡻ      .4 [0]ܳ

Example  
Fig. 1 illustrates the flow of events in the proposed 
scalar multiplication procedure for a 16-bit key 
example  k=1001_1000_1011_0111. First, the key is 
randomly segmented into a number of segments. Let 
the number of segments be four, thus:  ݇ = 	݇(ଷ)	||	݇(ଶ)	||݇(ଵ)||݇(଴)  (2) 
where, ݇(଴) = (଴)ܮ ,11 = 2, P0=20P ݇(ଵ) = (ଵ)ܮ ,01101 = 5, P1=22P  ݇(ଶ) = (ଶ)ܮ ,001 = 3, P2=27P  ݇(ଷ) = (ଷ)ܮ ,100110 = 6, P3=210P  

Next, the segments are randomly re-ordered 
forming a new randomized pseudo key ݇′ as follows:  ݇′ = 	݇ᇱ(ଷ)	||	݇ᇱ(ଶ)	||݇ᇱ(ଵ)||݇ᇱ(଴),		  where, ݇′(଴) = ൫݇(ଷ) , ଷܲ , ൯ ݇′(ଵ)(ଷ)ܮ = ൫݇(ଵ) , ଵܲ , ൯ ݇′(ଶ)(ଵ)ܮ = ൫݇(ଶ) , ଶܲ , ൯ ݇′(ଷ)(ଶ)ܮ = ൫݇(ଶ) , ଶܲ ,  ൯(ଶ)ܮ

The following step randomly selects either a ܰܨܣ or a binary encoding for each segment. In this 
example, we assume that only ݇′(଴) (originally		݇′(ଷ)) 
is ܰܨܣ encoded while the other segments are binary-
encoded. The binary-encoded segments are then 
randomly assigned a direction of inspection (ܤܵܯ-
to-ܤܵܮ or ܤܵܮ-to-ܤܵܯ). Here, we assume that ݇′(ଷ) 
and ݇′(ଶ) are assigned the ܤܵܯ-to-ܤܵܮ direction 
while ݇′(ଵ) is assigned the ܤܵܮ-to-ܤܵܯ inspection  

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alaaeldin Amin, Turki F. Al-Somani

E-ISSN: 2224-266X 138 Volume 13, 2014



Algorithm 5. Binary ܤܵܯ-to-ܤܵܮ SP with 
Random Dummy Point Additions. 

Procedure: ܵܲ_ܮܯ(k , P , l) ࢙࢚࢛࢖࢔ࡵ: k: Unsigned Binary Code, P: elliptic 
curve point, and l: Size of k in bits. ࢚࢛࢖࢚࢛ࡻ: Elliptic Curve Point which equals the SP kP.. 1.   Q[0] = P . ݇(l -1)  /∗ ݇(l -1) = leftmost bit of ݇ ∗/	2.   ࢘࢕ࢌ		݅		࢓࢕࢘ࢌ  l − 2  ࢕࢚		0	࢕ࢊ 

       2.1.      ܳ[0] 	= 	2ܳ[0] 
       2.2.      if (݇௜ = 1  or   ݎ = 1) then 
                                               ܳ[1] 	= 	ܳ[0] 	+ 	ܲ 
       2.3.      ܳ[0] 	= 	ܳ[݇௜] 
 ([0]ܳ) ࢚࢛࢖࢚࢛ࡻ   .3 ࢘࢕ࢌ	ࢊ࢔ࢋ      

direction. Then the proper algorithm is invoked to 
compute the partial SP for each segment. Thus, 
Algorithm 5 is invoked for segments ݇′(ଷ) and	݇′(ଶ), 
Algorithm 6 is invoked for segment	݇′(ଵ), and 
Algorithm 4 is invoked for segment	݇′(଴). During the 
execution of these algorithms, when a zero bit is 
encountered in the bitwise inspection of segments, a 
dummy PADD is performed if the binary random 
variable (r) equals 1 as clarified in step 4 of Fig. 1. 

Algorithm 6. Binary ܤܵܮ-to-ܤܵܯ SP with 
Random Dummy Point Additions. 

Procedure: ܵܲ_ܯܮ	(k , P , l) ࢙࢚࢛࢖࢔ࡵ:  k: Unsigned Binary Code, P: elliptic 
curve point, and l: Size of k in bits. ࢚࢛࢖࢚࢛ࡻ: Elliptic Curve Point which equals the SP kP. 1.   ܳ[0] 	= 	ܲ  2.   ܳ[1] 	=  l − 1  do  ࢕࢚		0	࢓࢕࢘ࢌ		݅  ࢘࢕ࢌ   .3  ܱ	

       3.1.       if (݇௜ = 1  or   ݎ = 1) then ܳ[2] 	= 	ܳ[1] 	+ 	ܳ[0]  
       3.2.       ܳ[0] 	= 	2ܳ[0] 
       3.3.       ܳ[1] 	= 	ܳ[݇௜ + 1] 
 ([1]ܳ) ࢚࢛࢖࢚࢛ࡻ   .4 ࢘࢕ࢌ	ࢊ࢔ࢋ      

 
 
2.4 Scalar Multiplication 
The pseudo-code of the proposed SP algorithm with 
hierarchical security is shown in Algorithm 7. The 
key is divided into u segments with associated (u−1) 
precomputed points. Precomputed points are 
calculated by repeated PDBL operations as shown in 
Step 2. Each segment ݇(௜) is associated with a 
precomputed point ௜ܲ (step 3). Up to step 3 may be 
performed off line and the outcome results can be re-
used more than once for the same k and P values. 

Algorithm 7.  Scalar Multiplication Algorithm 
with Multi-Level Security Measures. ࢙࢚࢛࢖࢔ࡵ  P: Base Point,  k: Private key,   u: # of 

segments, L(u−1), ..., L(1), L(0): Sizes of all segments ࢚࢛࢖࢚࢛ࡻ: kP 
1.  Initialization:   Q = P,   P0 = P. 
2.  /* Calculating the Pre-computed points:*/ 
݅		࢘࢕ࢌ  2.1      = ݑ		࢕࢚		1 −  ࢕ࢊ		1
݆		࢘࢕ࢌ		2.1.1              = (௜ିଵ)	ܮ			࢕࢚			0 −  ࢕ࢊ		1
                    2.1.1.1.				ܳ	 = 	2ܳ 
             2.1.2.  ࢘࢕ࢌ	ࢊ࢔ࢋ
             2.1. 3.  ௜ܲ = 	ܳ 
 ࢘࢕ࢌ	ࢊ࢔ࢋ .2.2     
3.  Associate each segment k(i) with a pre-

computed point Pi and size L(i). 
4.  /* Randomization Process */ 
• the order of segments is randomized resulting in 
a pseudo key: ݇′ = 	݇ᇱ(௨ିଵ)	||	݇ᇱ(௨ିଶ)	|| … ||݇ᇱ(ଵ)||݇ᇱ(଴) 
     with ݇′(௝) = 	 ൫݇(௜)	, ௜ܲ 	,  ,൯ where, in general(௜)ܮ

j ≠ i and i, j = 0, 1, ..., u − 1. 
• type of encoding for each segment is selected 

either as NAF or binary at random. 
• binary-coded segments bits randomly inspected 

either in ܤܵܯ-to-ܤܵܮ or ܤܵܮ-to-ܤܵܯ. 
• Initialize ܴ	 = 	݅		࢘࢕ࢌ  .5 ,ܱ	 = 	ݑ		࢕࢚		0	 −  ࢕ࢊ		1	
 ࢔ࢋࢎ࢚  (Binary-encoded Segment)  ࢌ࢏  5.1       
	ܳ  ࢔ࢋࢎ࢚  (ܤܵܮ-to-ܤܵܯ)  ࢌ࢏		.5.1.1              /* Alg. 5 */         (௜)′݇)ܮܯ_ܲܵ =
            5.1.2.  else Q = ܵܲ_ܯܮ(݇′(௜)) /* Alg. 6 */ 
       5.2.  else  Q = ܵܲ_ܰܨܣ(݇′(௜))   /* Alg.  4 */ 
       5.3.  ܴ	 = 	ܴ	 + 	ܳ 
ࢊ࢔ࢋ      ࢘࢕ࢌ
 (ܴ)࢚࢛࢖࢚࢛ࡻ  .6

The actual scalar multiplication process starts at 
step 4 where segments are randomly re-ordered, the 
encoding type of each segment randomly decided, 
and the binary-encoded segments direction of 
inspection is randomly picked. This is followed by 
the main scalar multiplication loop at step 5. Steps 
5.1.1 and 5.1.2 process binary-coded segments if the 
direction of inspection is ܤܵܯ-to-ܤܵܮ or ܤܵܮ-to-ܤܵܯ using algorithms 5 and 6 respectively. For 
segments designated for ܰܨܣ encoding, Algorithm 4 
is invoked at step		5.2. A segment is processed in the 
same manner as the key is. To compute the final SP, 
the points resulting from individual processing of 
segments are accumulated (step		5.3)  in one point ܴ, 
for a total of (u−1) additional PADDs. 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alaaeldin Amin, Turki F. Al-Somani

E-ISSN: 2224-266X 139 Volume 13, 2014



 
Fig. 1: Scalar Multiplication with Hierarchical Security Flow of Events. 

3 Algorithm Analysis 
Even if a prospective attacker managed to distinguish 
between the PADD and the PDBL operations, the 
proposed hierarchical counter-measures makes it 
extremely difficult for attackers, given such 
information, to infer neither the value nor the position 
of key bits. The hierarchical resistance measures 
confuse prospective attackers as to the exact key bit 
positions due to:  
1. The random order of segment processing,  
2. The randomly assigned number, and generally 

unequal sizes of segments,  
3. The randomly assigned direction of inspection for 

binary-encoded segments, and  
4. The segments sizes that may appear larger by one 

bit when these segments are ܰܨܣ-encoded.  
In addition, prospective attackers cannot 

ascertain definite values for key. A key bit value that 
appears to an attacker as 1, may actually be one of 
four possible values; (i) a value of 1 in a ܰܨܣ-
encoded segment, or (ii) a value of 1ത in a ܰܨܣ-
encoded segment, or (iii) a true binary 0 value but 
with a dummy PADD operation randomly 
performed, or  (iv) a true binary 1 value. Likewise, a 

bit that appears to have a 0 value, may be (i) a ܰܨܣ-
encoded 0, or (ii) a true binary 0 value. 

The use of multiple precomputed points (Pi) for 
segments effectively blinds the original base point ܲ 
particularly when the number of segments or their 
sizes are changed frequently enough. 

With different encodings for different segments 
and different random dummy point adds performed 
with zero key bit values coupled with the different 
processing order and direction of these segments, 
multiple runs of the proposed scalar multiplication 
algorithm will result in different power traces 
uncorrelated with other runs. With different 
uncorrelated power traces for different runs, the 
possibility of mounting successful ܣܲܦ attacks 
seems quite unlikely. 

Protecting against ܼܲܣ and ܴܲܣ requires that 
either the secret key ݇ or the base point ܲ be 
randomized. For the proposed SP algorithm, both 
effects are present since the base point P appears to 
be blinded and the private scalar k appears to be 
randomized as detailed earlier. Accordingly, the 
proposed hierarchical protection algorithm is secure 
against ܴ  ݈ܾ݃݊݅ݑ݋݀ is achieved since ݇ܿܽݐݐܽ ݈ܾ݃݊݅ݑ݋݀ Furthermore, resistance to the .ܣܼܲ		and ܣܲ

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alaaeldin Amin, Turki F. Al-Somani

E-ISSN: 2224-266X 140 Volume 13, 2014



 apply to the double-and-add algorithm only ݏ݇ܿܽݐݐܽ
in the ܤܵܯ-to-ܤܵܮ direction[13]. Our proposed 
scalar multiplier is designed to perform a randomized 
mix of either the	ܤܵܯ-to-ܤܵܮ or the ܤܵܮ-to-ܤܵܯ of 
the double-and-add algorithm at the segment level. 
Moreover, randomization techniques used at each 
level of this hierarchical protection scheme cause any 
correlation between register addresses and the secret 
key very difficult to establish. Thus, the proposed 
algorithm is resistant to ܣܲܦܣ attacks. 

With the random encodings, 
ଵଷ of the bits of ܰ -ܨܣ

encoded segments (on the average) have non-zero 
values as compared to half the bits for binary- 
encoded segments. For an m-bit private scalar 
multiplier k, on the average, half the bits are binary 
encoded while the other half is ܰܨܣ-encoded. Thus, 
on the average, binary encoded bits require 

௠ସ  

PADDs, while ܰܨܣ encoded bits require only 
௠଺  

PADDs. Accordingly, an average of 
ହଵଶ݉ PADDs are 

performed for the segments 1′ݏ and the 1ത′ݏ. At the 
lowest (bit) level, a 0 bit value may trigger a dummy 
PADD. Since segment encodings may be either ܰܨܣ 

or binary, 
଻ଶସ݉   dummy PADD (on the average) are 

performed. Thus, the average total number of PADDs 

is 
଻ଶସ݉ ≅ 0.7݉. The added random dummy PADDs 

in the dummy point add algorithms (Algorithms 4, 
5 and 6) increase the degree of confusion, however, 
they also do increase the number of PADDs and 
accordingly the total delay overhead. In spite of the 
possibly significant added delay overhead, this 
approach is quite attractive compared to the ݈ܾ݁ݑ݋ܦ − ܽ݊݀ − ݀݀ܣ −  algorithms ݏݕܽݓ݈ܣ
(Algorithms 1 and 2). 

Assimilating the final SP result incurs additional 
(u−1) PADDs. Accordingly, an average of (0.7݉ ݑ+ − 1) PADDs are performed by our proposed 
algorithm. 

For an m-bit private scalar multiplier k, m PDBL 
operations are performed. Neglecting pre-
computations, the proposed scalar multiplier with 
hierarchical security, thus, requires m PDBL 
operations and an average of (0.7m+u−1) PADD 
operations. With  u ≤ 0.1m  for large values of m, the 
performance of the proposed algorithm is better than 
the ݈ܾ݁ݑ݋ܦ − ܽ݊݀ − ݀݀ܣ −  algorithm, the ݏݕܽݓ݈ܣ
Random Initial Point method (BRIP) [21], the 
Modular Scalar Randomization (MSR) [29] which all 
require m PDBL operations and m PADD operations. 
The performance of the proposed algorithm is also 
better than the three methods presented in [12] . 

If the base point ܲ or the segment sizes / number 
are changed, a new set of precomputed points ܲ ௜ must 

be generated. Calculating the precomputed points Pi 
requires ൫݉ −  ൯ PDBL operations. Assuming(௨ିଵ)ܮ
an average length for the (u-1)th segment, the average 
number of PDBL operations needed to calculate the 

precomputed points becomes ቀ݉ − ௠௨ቁ. While a 

larger number of segments u provides higher 
security, it also results in additional area and delay 
overhead. Increasing u will increase the number of 
precomputed points to be stored (u−1) and would also 
increase the delay overhead since additional (ݑ − 1) 
PADDs are needed to assimilate the partial results 
into the final SP (݇ܲ). In addition, an increased 
number of segments increases the average number of 
PDBL operations required to calculate the 
precomputed points. 
 
 

4  Implementation and Results 
To evaluate the area and delay overhead caused by 
the hierarchical security measures adopted by our 
proposed SP algorithm, two ܥܥܧ processors have 
been designed, modelled in VHDL, and synthesized 
onto a Xilinx		xc2v8000 FPGA chip. The two 
processors differ only in the SP algorithm used. One 
of the processors is non-secure (ܥܥܧேௌ) using a 
simple double and add SP algorithm, while the other 
is a strongly secure processor (ܥܥܧௌௌ) implementing 
the SP algorithm with our proposed hierarchical 
security measures (Algorithm 7). The VHDL models 
are parameterized to allow investigating different 
architectural parameters of the synthesized 
cryptoprocessors. The main definable parameters 
include the elliptic curve equation coefficients ܽ and ܾ,  the underlying ܨܩ(2௠) field parameter m, the 
base point ܲ, the secret key ݇, and the segment sizes 
and number for the strongly secure ܥܥܧௌௌ 
cryptoprocessor.  

 
Fig. 2: The proposed architecture 

The elliptic curve Diffie-Hellman protocol was 
selected for the encryption/decryption process. Both 
processors use optimal normal basis (ONB) over ܨܩ(2௠). The basic units (Figure 2) of these 
processors include: (i) main controller, (ii) data 
embedding unit, (iii) the PADD and PDBL units, and 
(iv) the field arithmetic units (adder, multiplier and 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alaaeldin Amin, Turki F. Al-Somani

E-ISSN: 2224-266X 141 Volume 13, 2014



inverter).  To embed the plaintext into a random 
curve point on the in the encryption process, a data-
embedding unit is used. 

PADD and PDBL operations use the projective 
coordinate system of Lopez-Dahab [26] where (ݔ	, (ݕ 	= 	 (ܺ/ܼ	, ܻ/ܼଶ). In the Lopez-Dahab 
coordinate system, PADD and PDBL operations 
require 14 and 5 field multiplications respectively. 
Field squaring for optimal normal basis 
representation is a simple cyclic shift operation while 
field addition is simply a bitwise XOR operations 
requiring a single clock cycle for either operation. 
Field multiplication, however, is more complex and 
is crucial for efficient computations. We adopted the 
Sunar–Koc multiplier [27]  because of its low space 
and time complexities. Because of the limited FPGA 
resources, a sequential implementation of the Sunar–
Koc multiplier was used to save on the limited 
resources of		FPGAs. 

For encryption/decryption, a single field 
inversion is needed as we are using projective 
coordinates. We have adopted the Itoh and Tsujii 
inverter [28] since it requires only O(log2(m)) 
multiplications. For fair comparison, the same field 
operation algorithms, e.g. multiplication and 
inversion were used for both cryptoprocessors 
 The only architectural .(ௌௌܥܥܧ		ேௌ andܥܥܧ)
difference is to warrant the implementation of the two 
different SP algorithms in addition to the extra 
storage requirement of the		ܥܥܧௌௌ to hold the 
necessary precomputed points. Thus, performance 
difference and area overhead are due to the difference 
in the adopted SP algorithms independent of field 
operations or the adopted coordinate system. 

The two cryptoprocessors have been synthesized 
on the same Xilinx	FPGA	(xc2v8000) with values of ݉ = 14, 30, 65, 90 and 173 bits. Due to the limited FPGA resources, and the inability to use much higher 
values of m, some impractically small values of ݉, 
e.g. 14	and 30, have been used to provide more 
points on the area and delay curves that may establish 
trends for these parameters. The strongly secure 
processor ܥܥܧௌௌ has been also investigated for a 
number of segments ݑ	 = 	2, 3, and 4. The used 
number of FPGA slices is used as an estimate of the 
area the processor occupies on the designated FPGA. 
Since more precomputed points need to be stored, the ܥܥܧௌௌ is expected to have larger area for larger 
number of segments. The delay and area overhead 
figures of the ܥܥܧௌௌ processor are normalized with 
respect to ܥܥܧேௌ reference cryptoprocessor. Thus, 
the delay and area overhead of the ܥܥܧௌௌ processor 
are given by: 

	ℎ݁ܽ݀ݎ݁ݒܱ	ݕ݈ܽ݁ܦ = 	 ா஼஼ೄೄ	஽௘௟௔௬ா஼஼ಿೄ	஽௘௟௔௬ ,   and     ܽ݁ݎܣ	ݎ݁ݒܱℎ݁ܽ݀	 = 	 ா஼஼ೄೄ	஺௥௘௔ா஼஼ಿೄ	஺௥௘௔ , 

Synthesis results are shown in Table 1 and the 
normalized area-delay overhead values of the ܥܥܧௌௌ 
for various values of m and u are plotted in Fig. 3. 
The figure shows that, for the same number of 
segments u, an increased field size ݉   reduces both 
the area and delay overheads since the number of 
additional PADD operations and precomputed points 
storage become less significant. For a given field 
size, the number of segments can be chosen within a 
certain range of acceptable area and delay costs. 
Increasing the number of segments u result in higher 
resistance to power analysis attacks at the expense of 
more delay and area overheads. 
 
 

5 Conclusion 
The described elliptic curve SP method uses a 
combination of hierarchical security measures at 
different levels to improve resistance against power 
analysis attacks. At the top level, the secret key is 
segmented into a random number of segments of 
random sizes to confuse key bit values and positions. 
At the lower segment level, segments are processed 
in a randomized order. In addition, segments are 
randomly encoded either in ܰܨܣ or in binary. In 
addition, at the segment level, bits in binary-encoded 
segments are inspected randomly in either the ܤܵܯ-
to-ܤܵܮ or ܤܵܮ-to-ܤܵܯ direction. At the lowest bit 
level, each 0 bit value, may randomly trigger a 
dummy PADD operation. The hierarchical protection 
scheme adopted by this algorithm confuses both the 
private key bit values and positions.  Even if correct 
information regarding the type of operations being 
performed are leaked, associating that with particular 
key bit values or positions will be very difficult.  For 
u segments, additional (ݑ − 1) PADDs are needed to 
compute the SP. Likewise; additional (ݑ − 1) 
precomputed points need to be stored.  Larger 
number of segments yields higher level of security 
but would incur area and delay overheads. With m 
PDBL operations and an average of 0.7݉ + ݑ − 1 
PDBL operations, proper choice of u can be made 
through simulations to combine both security and 
low overhead. A VHDL model of the proposed secure 
elliptic curve cryptoprocessor employing the new 
scalar multiplication method has been developed and 
synthesized onto a Xilinx	xc2v8000	FPGA. Using 
this model, the overhead area and delay values 
resulting from introducing the proposed hierarchical 
security measures for several values of the number of 
segments have been estimated. Adequate security 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alaaeldin Amin, Turki F. Al-Somani

E-ISSN: 2224-266X 142 Volume 13, 2014



 
Fig. 3: The ܥܥܧௌௌ Cryptoprocessor Delay and Area Overheads. 

 
may still be attained even if partial utilization of the 
proposed hierarchical protection techniques is used 
(e.g. eliminating the randomization in either the 
segment direction or encoding). 

Table 1: ܥܥܧௌௌ Cryptoprocessor Synthesis Results. ܡ܉ܔ܍۲ ܡ܉ܔ܍۲ ܓ܋ܗܔ۱ ࢛ ࢓ ܉܍ܚۯ ܉܍ܚۯ
(ܛ܍܋ܑܔ܁) OH (܋܍ܛૄ) (ܢ۶ۻ)   OH 14 2 93.954 40.77 1.31 1873 1.169

14 3 93.954 43.30 1.39 1973 1.232
14 4 93.954 45.83 1.47 2002 1.249
30 2 74.172 205.79 1.27 3934 1.164
30 3 74.108 212.20 1.31 4110 1.216
30 4 74.108 218.44 1.35 4228 1.251
65 2 64.295 1037.29 1.25 9696 1.148
65 3 64.295 1052.10 1.27 10091 1.195
65 4 64.295 1066.91 1.29 10278 1.217
90 2 60.055 2091.88 1.24 13496 1.128
90 3 60.055 2113.56 1.26 14015 1.174
90 4 60.055 2135.24 1.27 14323 1.200
173 2 53.454 8492.52 1.24 31053 1.129
173 3 53.454 8538.62 1.25 31660 1.151
173 4 53.114 8639.67 1.26 32757 1.191

 
 
Acknowledgement 
The authors would like to acknowledge King Fahd 
University of Petroleum & Minerals and Um-UL-
Qura University for support. 
 
 

References: 
[1] N. Koblitz. Elliptic curve cryptosystems. 

Mathematics of Computation, vol. 48, pp. 203-
209, 1987. 

[2] V. Miller, “Use of elliptic curves in 
cryptography,” Advances in Cryptology, 
CRYPTO 85, pp.417-426, 1985. 

[3] R. Rivest, A. Shamir, L. Adleman. A method for 
obtaining digital signatures and public key 
cryptosystems. Communications of the ACM, 
Vol. 21, No.2, pp. 120-126, 1978. 

[4] T. El Gamal. A Public-Key Cryptosystem and a 
Signature Scheme Based on Discrete 
Logarithms. Advances in Cryptology: 
Proceedings of CRYPTO 84, Springer Verlag, 
pp. 10-18, 1985. 

[5] S. Khajuria and H. Tange, “Implementation of 
diffie-Hellman key exchange on wireless sensor 
using elliptic curve cryptography”, in Proc. 1st 
International Conference on Wireless 
Communication, Vehicular Technology, 
Information Theory and Aerospace and 
Electronic Systems Technology (Wireless 
VITAE’09), pp. 772-776, May 2009.  

[6] Kimmo Jarvinen, “Optimized FPGA-based 
elliptic curve cryptography processor for high-
speed applications,” Integration, the VLSI 
Journal, Volume 44, Issue 4, pp. 270-279, 2011.  

[7] K. Jarvinen and J. Skytta, “On Parallelization of 
High-Speed Processors for Elliptic Curve 
Cryptography,” IEEE Trans. on VLSI, Vol. 16, 
Issue 9, pp. 1162-1175, 2008.  

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.2 1.25 1.3 1.35 1.4 1.45 1.5

Delay Overhead

A
r
e
a
 
O
v
e
r
h
e
a
d

m=14

m=30

m=65

m=90

m=173

u=3

u=4

u=2

u=3

u=4

u=2

u=3

u=4

u=2

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alaaeldin Amin, Turki F. Al-Somani

E-ISSN: 2224-266X 143 Volume 13, 2014



[8] B. Ansari and M. A. Hasan, “High-Performance 
Architecture of Elliptic Curve Scalar 
Multiplication,” IEEE Trans. on Computers, 
Vol. 57, No. 11, pp. 1443-1453, 2008.  

[9] G. Meurice de Dormale and J.-J. Quisquater, 
“High-speed hardware implementations of 
Elliptic Curve Cryptography: A survey,” 
Journal of Systems Architecture: the 
EUROMICRO Journal, Volume 53, Issue 2-3, 
pp. 72-84, February, 2007.  

[10] D. Gordon, “A Survey of Fast Exponentiation 
Methods", Journal of Algorithms, 1998, pp. 
129-146. 

[11] Kocher, J. Jaffe and B. Jun “Differential Power 
Analysis", Advances in Cryptology: 
Proceedings of CRYPTO ’99, LNCS 1666, 
Springer-Verlag, (1999) pp. 388-397. 

[12] N. Zhang, Z. Chen and G. Xiao. Efficient 
Elliptic Curve Scalar Multiplication Algorithms 
Resistant to Power Analysis, Information 
Sciences, 177, pp. 2119-2129, 2007. 

[13] P. A. Fouque and F. Valette, “The doubling 
attack - why upwards is better than downwards", 
In Cryptographic Hardware and Embedded 
Systems - CHES ’03, LNCS 2779, pp. 269-280, 
Springer-Verlag, 2003. 

[14] L. Goubin, “A refined power-analysis attack on 
elliptic curve cryptosystems", In Public Key 
Cryptography - PKC’03, LNCS 2567, pp. 199-
210, Springer-Verlag, 2003. 

[15] T. Akishita and T. Takagi, “Zero-value point 
attacks on elliptic curve cryptosystem," In 
Information Security Conf - ISC ’03, LNCS 
2851, pp. 218-233, Springer-Verlag, 2003. 

[16] Kouichi Itoh, Tetsuya Izu, and Masahiko 
Takenaka “Address-Bit Differential Power 
Analysis of Cryptographic Schemes OK-ECDH 
and OK-ECDSA", Cryptographic Hardware and 
Embedded Systems: Proceedings of CHES 
’2002, LNCS 2523, Springer-Verlag, (2002) pp. 
129-143.  

[17] J. Coron, “Resistance against differential power 
a nalysis for elliptic curve cryp- tosystems," In 
Cryptographic Hardware and Embedded 
Systems - CHES ’99, LNCS 1717, pp.292-302, 
Springer-Verlag, 1999. 

[18] M. Joye and C. Tymen, “Protections against 
Differential Analysis for Elliptic Curve 
Cryptography," In Cryptographic Hardware and 
Embedded Systems - CHES ’01, LNCS 2162, 
pp.377-390, Springer-Verlag, 2001. 

 

[19] J. C. Ha and S. J. Moon, “Randomized signed-
scalar multiplication of ECC to resist power 
attacks," In Cryptographic Hardware and 
Embedded Systems - CHES ’02, LNCS 2523, 
pp. 551-563, Springer-Verlag, 2002. 

[20] N. P. Smart, “An analysis Goubin’s refined 
power analysis attack," Proc. of Cryptographic 
Hardware and Embedded Systems - CHES ’03, 
LNCS 2779, pp. 281-290, Springer-Verlag, 
2003. 

[21] H. Mamiya, A. Miyaji, and H. Morimoto, 
“Efficient countermeasure against RPA, ܣܲܦ, 
and SPA," In Cryptographic Hardware and 
Embedded Systems - CHES ’04, LNCS 3156, 
pp. 343-356, Springer-Verlag, 2004. 

[22] T. Messerges, E. Dabbish, and R. Sloan, 
“Investigations of Power Analysis Attacks on 
Smartcards", preprint, USENIX Workshop on 
Smartcard Technology, 1999. 

[23] D. May, H.L. Muller, and N.P. Smart, “Random 
Register Renaming to Foil PA", CHES 2001, 
LNCS 2162, pp. 28-38, Springer-Verlag, 2001. 

[24] Kouichi Itoh, Tetsuya Izu, and Masahiko 
Takenaka “A Practical Countermeasure against 
Address-Bit Differential Power Analysis", 
Cryptographic Hardware and Embedded 
Systems: Proceedings of CHES 2003, LNCS 
2779, Springer-Verlag, (2003) pp. 382-396. 

[25] Marc Joye and Christophe Tymen, “Compact 
Encoding of Non-Adjacent Forms with 
Applications to Elliptic Curve Cryptography", 
Public Key Cryptography, vol. 1992 of Lecture 
Notes, in Computer Science, pp. 353-364, 
Springer-Verlag, 2001. 

[26] Lopez, J. and Dahab, R., Improved Algorithms 

for Elliptic Curve Arithmetic in GF(2n). 
SAC’98, LNCS 1556, pp. 201-212, Springer-
Verlag, 1998. 

[27] Sunar, B. And Koc, C. K., An efficient optimal 
normal basis Type II multiplier. IEEE Trans. 
Comput., Vol. 50, No. 1, pp. 83–88, 2001. 

[28] T. Itoh and S. Tsujii, A fast algorithm for 

computing multiplicative inverses in GF(2m) 
using normal bases. Info. Comput., Vol. 78, 
No.3, pp. 171-177, 1988. 

[29] M. Ciet, M. Joye, (Virtually) Free 
randomization technique for elliptic curve 
cryptography, in: Proc. of ICICS-2003, LNCS, 
vol. 2836, Springer-Verlag, Berlin, pp. 348-359, 
2003. 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alaaeldin Amin, Turki F. Al-Somani

E-ISSN: 2224-266X 144 Volume 13, 2014




