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Abstract: - The subject of investigation is a copper bromide vapor laser, generating laser emissions in the 
visible spectrum (510.6 nm and 578.2 nm). A statistical model has been developed based on experiment data. 
The goal is to analyze the state of existing lasers and to predict the behavior of new laser sources. A second-
degree polynomial model has been developed to determine output laser generation in relation to 10 independent 
input laser characteristics. The model describes 96.7% of examined experiment data. An adequacy diagnosis 
has been performed on the obtained model. The model is applied to predict the output power of the laser source 
in relation to new data of the input characteristics. 
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1 Introduction 
Copper and copper compound vapor lasers continue 
to be the subject of active scientific research. This 
type of lasers are the most powerful sources in the 
visible spectrum (λ  = 510.6 and 578.2 nm). Their 
main advantages are the high quality of the laser 
beam and the ability to focus it onto a single spot of 
the order of a few microns. These lasers have a wide 
range of applications in various fields of medicine 
and medical research, in industry for the 
microprocessing of materials: drilling, cutting, 
labeling, and etching. They are widely used for 
scientific research - for isotopic separation of 
various chemical elements, in chemistry and 

physics, for the pumping of other types of lasers [1, 
2]. For this reason, they are subject to particular 
interest and rank among the 12 most 
commercialized lasers in the world. They are 
manufactured in many countries throughout the 
world - Russia, USA, China, England, Bulgaria, etc. 

The particular subject of consideration in this 
study is one of the subtypes of copper halide lasers - 
copper bromide (CuBr) vapor lasers generating in 
the visible spectrum. The use of copper halides 
gives significant advantages to this type of lasers 
when compared to pure copper lasers. The first of 
these advantages is that the operating temperature of 
the active laser tube is reduced by around 1000 оС 
as compared to pure copper lasers working at 
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temperatures of about 1500 oС. This allows the use 
of cheaper material for the manufacture of the laser 
tube - usually quartz.  Another advantage is that 
CuBr vapor lasers are cooled by air and do not 
require additional water- or another type of cooling. 
This makes operating CuBr vapor laser much easier. 
Simple insulation is used for the active laser volume 
- mineral- or glass-fiber wool. Another result of the 
lower operating temperature is the significantly 
reduced time for initial heating of the charge and 
time to operational readiness of the device in 
comparison to pure metal vapor lasers. Furthermore, 
it has been experimentally established that 
maintaining an optimal mode of operation at lower 
temperatures and the use of suitable design 
materials leads to a significantly longer service life 
of metal halide vapor lasers compared to that of 
pure metal vapor ones. 

The copper vapor laser is considered to have 
been thoroughly studied but the work on increasing 
laser output power continues to be topical because 
this would broaden its range of applications and 
commercial significance [1, 2]. 

In recent years on the base of the big amount of 
available experiment data on copper bromide laser 
different statistical models were developed. The aim 
of these studies is to derive the essential information 
about the direct relations between the input laser 
characteristics as geometrical design, applied 
electrical power, pressure of the neutral gas and 
others on the output laser characteristics as laser 
generation and laser efficiency. The main part of the 

obtained empirical models is presented in [3-7].  
More details are given below in section 4. 

In this study a new polynomial type regression 
model, based on all possible terms up to second 
degree is obtained. The model describes 96.7% of 
all examined data.  

The model is developed by using the IBM SPSS 
statistical software [8]. 
 
 
2 Subject of study 
The subject of investigation is a copper bromide 
vapor laser which is an original Bulgarian design 
developed at the Laboratory of Metal Vapor Lasers 
at the Georgi Nadjakov Institute of Solid State 
Physics of the Bulgarian Academy of Sciences, 
Sofia (see [1, 9-10]). A conceptual schematic of the 
laser source is given in Fig. 1. 

Neon is used as a buffer gas. In order to improve 
efficiency, small quantities of hydrogen are added 
[1]. Unlike the high-temperature pure copper vapor 
laser, the copper bromide vapor laser is a low-
temperature one, with an active zone temperature of 
500 °C. The laser tube is made out of quartz glass 
without high-temperature ceramics as a result of 
which it is significantly cheaper and easier to 
manufacture. The discharge is heated by electric 
current (self-heating). It produces light impulses 
tens of nanoseconds long. Its main advantages are: 
short initial heating period, stable laser generation, 
relatively long service life, high values of output 
power and laser efficiency. 

 

 
Fig. 1. Construction of CuBr laser tube: 1- reservoirs with copper bromide, 2- heat insulation of the active 

volume, 3- copper electrodes, 4- inner diaphragms, 5- tube windows. 
 
 

3 Experimental data 
We examine experimental data for various CuBr 
lasers, published in [1, 11] and included therein 
literature. By their geometry, the CuBr lasers under 
consideration are usually classified into three basic 
groups: small-bore lasers of inside diameter D<20 

mm, medium-bore lasers of diameter D=20 to 40 
mm and large-bore lasers of D>40 mm.  

The total number of data investigated in this 
paper includes n=387 experiments. 

The following 10 input laser characteristics 
(independent variables, predictors) are used: the 
inner diameter of the laser tube, D (mm); the inner 
diameter of the diaphragms, dr (mm); the active-
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volume length (distance between the electrodes), L 
(cm); the supplied electric power, Pin (kW); the 
electric power per unit length (with allowance for 
50% loss), PL = Pin /L (W cm–1); the electric pulse 
repetition frequency, PRF (kHz); the buffer gas 
(neon) pressure, PNe (Torr); the additional gas 
(hydrogen) pressure, PH2 (Torr); the equivalent 
capacitance of the capacitor battery, C (nF); and the 
temperature of the reservoir filled with CuBr, Tr 
(°C).  

The average output laser power (laser 
generation) Pout (W) will be considered as the main 
dependent variable. 
 
 
4 Analysis of the known parametric 
regression models of a CuBr laser  
The initial approach requires finding a linear 
regression relationship of the type: 
 

0 1 2 3 4

5 6 7

8 9 10

ˆ

2
Pout a a D a dr a L a Pin

a PH a PL a PRF
a PNe a C a Tr

= + + + +

+ + + +

+ + +

 (1) 

 
where , 0,1,...,10ia i =  are the regression 
coefficients (parameters) to be determined. 

The factor and regression analysis [3] performed 
showed that there is a high degree of correlation 
between the predictors and that an equation of type 
(1) is not statistically significant. For this reason, the 
factor analysis procedure was applied that grouped 
the independent variables in 3 factors. The factors 
included only 6 of the 10 predictors and are 
distributed as follows: F1 (D, dr, Pin, L), F2 (PL), 
and F3 (PH2). In accordance with the properties of 
factor analysis there is a high degree of correlation 
between the variables in each factor. Between the 
variables, grouped in different factors, there is no 
such correlation or it is very weak [12, 13].  

In this way, using factors as new independent 
variables a regression equation was obtained of the 
type: 

 

0 1 1 2 2 3 3P̂out b b F b F b F= + + + .  
This method is called principle component 

regression [3, 13]. The factor variables are linearly 
independent and through regression analysis the 
following linear relationship was established [6]: 
 

1 2

3

ˆ 40.598 29.717 4.155
12.941

Pout F F
F

= + +
+

 (2) 

 
Based on the analysis of the results from [6] and 

using the stepwise regression method with factor 
variables, polynomial models of second and third 
degree were also obtained in the following form: 
 

1 2
2

3 1

ˆ 38.283 28.090 4.866

11.992 2.336

Pout F F

F F

= + +

+ +
 (3) 

 
And 
 

2
1 2 3

3 2 3
3 3 1
2 3

2 3 2

ˆ 38.270 39.511 8.243

8.718 6.884 2.294

3.053 0.976

Pout F F F

F F F

F F F

= + +

+ + −

+ −

 (4) 

 
Table 1 shows that by increasing the order of 

nonlinearity, the accuracy of the results is improved. 
This is in accordance with the common polynomial 
theory of complex systems [14].  

It must be noted, that a disadvantage of the 
applied principle regression models (2)-(4) is that 
the actual physical variables are "hidden" behind the 
factor variables. Also the prediction of laser power 
requires the application of some specialized 
software and its skilled use. This makes the 
approach difficult for wider use. 

For this reason, the issue of developing nonlinear 
and polynomial parametric models containing 
explicitly the 10 independent variables is topical. 
For the first time such a second-degree polynomial 
model using the data described above in section 3 
was developed in [7]. The resulting regression 
equation is in the form: 
 

 
Table 1. Comparison of the statistical summary of polynomial regression models. 

Polynomial regression 
model 

R2 Std. error of the 
Estimate 

Linear model -eq. (2) 0.946 7.92540 
Second order model eq. (3) 0.950 7.63382 
Third order model eq. (4) 0.957 5.81272 
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ˆ 188.821 2.728 38.349
10.014 126,250 11.018 .
0.025 . 7.577 . 2.517 .
9.766 . 2 1.643 .

Pout dr Pin
PL C Pin C

Pin PRF C PL C dr
C PH Pin PL

=− + +
+ + +
− − −
+ +

 (5) 

 
The obtained second-degree regression model (5) 

is partial because out of all possible combinations 
only 6 of second degree were used: {Pin.C}, 
{Pin.PRF}, {C.PL}, {C.dr}, {C.PH2} и {Pin.PL}. 

The following statistical indexes were obtained: 
the coefficient of determination of the resulting 
model (5) is 2 0.973R =  and the standard error of 

the estimate is 5.3136, which is better than all 
currently known parametric models (see Table 1). 

In this paper we improve model (5) by 
developing a complete polynomial type model with 
terms up to the second degree.  

 
 

5 Complete second-degree polynomial 
model of laser generation  
 
 
5.1 Model construction 
The relationship is to be found in general form, 
which means that for Pout it can be of the type: 

  

 

0 1 2 3 4 5 6 2 7 8 9 10 11

12 13 14 15 2 16 17 18 19 20

21 22 23 2 24 25 26

ˆ .
. . . . . . . . .
. . . . . .

H

H

H

Pout b b D b dr b L b Pin b PL b P b Prf b Pne b C b Tr b D dr
b D L b D Pin b D PL b D P b D PRF b D Pne b D C b D Tr b dr L
b dr Pin b dr PL b dr P b dr PRF b dr Pne b dr C

= + + + + + + + + + + +

+ + + + + + + + +

+ + + + + + + 27 28

29 30 2 31 32 33 34 35 36 2

37 38 39 40 41 2 42 43

44 45 46 2 47 2

. .
. . . . . . . .

. . . . . . .
. . . .

H H

H

H H

b dr Tr b L Pin
b L PL b L P b L PRF b L Pne b L C b L Tr b Pin PL b Pin P
b Pin PRF b Pin Pne b Pin C b Pin Tr b PL P b PL PRF b PL Pne
b PL C b PL Tr b P PRF b P Pne b

+

+ + + + + + + +

+ + + + + + +

+ + + + + 48 2 49 2 50
2 2 2

51 52 53 54 55 56 57 58
2 2 2 2 2 2 2

59 60 61 2 62 63 64 65

. . .

. . . . .
H H

H

P C b P Tr b PRF Pne

b PRF C b PRF TR b Pne C b PneTr b C Tr b D b dr b L

b Pin b PL b P b PRF b Pne b C b Tr

+ +

+ + + + + + + +

+ + + + + + +

 (6) 

 
 
Equation (6) includes all 10 variables as first degree 
terms and all possible combinations of 10 second 
degree terms with repetition. A total of 66 unknown 
regression coefficients need to be defined: 

, 0,1,...,65ib i = . Of all unknown coefficients, only 
those which are statistically significant must be 
selected, in particular those with a significance 
Sig.<0.05 at usual level of significance 0.05. To this 
end a stepwise linear regression method was applied 
with the 65 predictors, given in (6). The stepwise 
procedure has the advantage of monitoring the level 
of significance of unknown coefficients. Each 
coefficient for which the condition Sig.< 0.05 is not 
fulfilled is removed from the equation and no longer 
participates in the regression analysis.  

Some of the results are presented in Table 2.  
It shows that in this case 12 steps were needed to 

calculate all statistically significant coefficients and 
to remove all the rest. The obtained regression 
coefficients of the model are statistically significant 
at level 0.001. 

The ANOVA showed that the overall model (7) 
is significant with Sig.=0.000.  The goodness of fit 
indices are as follows: the correlation coefficient is 
R=0.983 and the coefficient of determination is 
R2=0.967; Std. Error of the Estimate = 6.56416. 

Table 2 shows that save for the constant ( 0b ), of 
the 65 predictors in (6) only 10 statistically 
significant ones remain: dr.Pin, Pin.C, Pin, Pin2, 
L.PRF, PRF.C, D.PL, dr.C, D.PH2, and С. Of these 
only two are linear: Pin and C, all the rest are 
nonlinear. The formal approach employed once 
again confirms that the processes in the active laser 
volume exhibit strong nonlinear characteristics. The 
following unstandardized model equation is 
obtained for Pout:  

 

2

2

ˆ 18.308 0.686 . 7.567 .

27.569 4.362 0.006
0.274 . 0.030 . 0.612 .
0.259 . 18.093H

Pout dr Pin Pin C

Pin Pin L RF
PRF C D PL dr C
D P C

=− + −

+ − −
+ − −
+ +

  (7) 

 
Model equation (7) contains 8 of the 10 

independent variables: dr, D, L, Pin, PL, PRF, PH2, 
and C. It does not include PNe and Tr.  

This means those two quantities influence laser 
generation insignificantly and in future experimental 
studies their predetermined optimum values need to 
be used. 
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Table 2. Unstandardized (B) and standardized (Beta) coefficients obtained through stepwise regression 
procedure in SPSS. 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

95.0% Confidence 
Interval for B 

B Std. Error Beta 
Lower 
Bound 

Upper 
Bound 

12 (Constant) -18.308 5.291  -3.460 .001 -28.713 -7.904 
dr_Pin 0.686 0.086 1.793 7.947 .000 0.516 0.855 
Pin_C -7.567 2.013 -0.480 -3.759 .000 -11.526 -3.609 
Pin 27.569 5.322 0.984 5.181 .000 17.105 38.033 
Pin_2 -4.362 0.716 -0.874 -6.089 .000 -5.770 -2.953 
L_PRF -0.006 0.001 -0.295 -5.346 .000 -0.009 -0.004 
PRF_C 0.274 0.057 0.215 4.771 .000 0.161 0.387 
D_PL -0.030 0.006 -0.097 -5.411 .000 -0.042 -0.019 
dr_C -0.612 0.135 -0.523 -4.516 .000 -0.878 -0.345 
D_PH2 0.259 0.065 0.102 4.005 .000 0.132 0.385 
C 18.093 1.434 0.312 12.621 .000 15.275 20.912 

a. Dependent Variable: Pout 
 
 

The results from Table 2, column Beta, allows to 
write the so called standardized equation 

 

2ˆ 1.793 0.984 0.874

0.523 . 0.480

0.312 0.295 0.215

0.102 2 0.097

Pout drPin Pin Pin

dr C PinC

C LPRF PRFC

DPH DPL

= + −

− −

+ − +

+ −

 (8) 

 
In equation (8) the terms are included in 

descending order of the absolute value of their 
coefficients. In this equation the coefficients 
indicate the relative influence on Pout by the 
predictors they stand before. The application of 
equation (8) is discussed below.  
 
 
5.2 Application of the model 
The derived second-degree model will be applied 
for prediction of the values of Pout both for existing 
and future experiment.  
 
 
5.2.1 Prediction of the examined experiments  
Using model equation (7) it is possible to calculate 
the value of Pout for any experiment.  

Fig. 2 compares the results of using equation (7) 
for prediction Pout for all respective experiment 
data. It is apparent that the confidence interval for 
95% contains 96.7% of the experiment data. 

As a more detailed example in Table 3 some 
experiment  data cases are compared, including Pout 

(column 9) and calculated predicted values 
PoutPre(column 10) as per equation (7). 

Column 11 shows the relative error in percent for 
each row. The average relative error is 7.08%. The 
results once again show that the nonlinearity in the 
processes of the laser volume is strong and there is 
ample ground for the development of nonlinear 
models. 

 
 

5.2.2 Prediction of future experiment  
The next step is to predict the new values of Pout 
which have not been obtained by experiments. 
Equation (7) can be used to predict and develop new 
laser sources with higher output power. 

Some of the results are given in Table 4.  In 
order to determine the direction change for the 
values of 8 significant quantities, we need to 
analyze equation (7). Table 3 shows that improving 
output power requires an increase of quantities D, 
dr, L, Pin PH2 and a decrease of PL, PRF, and C.  
This means that these three quantities need to be 
reduced so as to increase Pout. The change of their 
values is shown in columns 5, 7, and 8, Table 4. The 
calculated value of laser output power is given in 
column 9. 

The change of laser characteristics С and PRF 
within 10% can lead to a change (in case of an 
increase) of Pout up to 20%. This once again shows 
the strong nonlinear relationship between Pout and 
on the input laser operating conditions. Such 
conclusions can only be drawn by developing 
nonlinear models.   
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Fig. 2. Comparison between experiment values of laser output power Pout and those calculated using second-

degree regression model (7), denoted by PoutPre. 
 
 
 
Table 3. Examples of comparison of the experiment values of laser output power Pout with PrePout, obtained 
using equation (7). 

D, 
mm 

dr, 
mm 

L, 
cm 

Pin, 
kW 

PL,   
W/cm 

PH2, 
Torr 

PRF, 
KHz 

C, 
pF 

Pout, 
W 

PoutPre, 
W 

δ, 
% 

1 2 3 4 5 6 7 8 9 10 11 
58 58 200 4 10.00 0.6 13 1.3 104 95.77 7.92 
58 58 200 5 12.50 0.6 15 1.3 108 110.52 2.34 
58 58 200 4.5 11.25 0.6 16 1.3 110 103.77 5.66 
58 58 200 4.5 11.25 0.6 17.5 1.3 112 103.44 7.64 
58 58 200 5 12.50 0.6 17.5 1.3 118 109.60 7.12 
58 58 200 5 12.50 0.6 17.5 1.3 120 108.20 9.83 
58 58 200 5 12.50 0.6 16.5 1.3 120 109.13 9.06 

 
 

 
Table 4. Values predicted for a "hypothetical experiment" using model equation (7).  

D, 
mm 

dr, 
mm 

L, 
cm 

Pin, 
kW 

PL,   
W/cm 

PH2, 
Torr 

PRF, 
KHz 

C, 
pF 

PoutPre, 
W 

1 2 3 4 5 6 7 8 9 
58 58 205 5.1 12.43902 0.6 16.0 1.30 111.73 
60 58 210 5.2 12.38095 0.6 15.5 1.28 113.67  
62 60 215 5.3 12.32558 0.65 15.0 1.25 122.68  
65 62 220 5.4 12.27273 0.65 14.8 1.20 131.91 
70 68 225 5.4 12.00000 0.7 14.0 1.18 151.80 
72 70 230 5.35 11.63043 0.7 13.5 1.15 159.19 
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5.2.3 Identification of the most important 
dependences and physical interpretation 
The input electrical power Pin is of the highest 
importance in equation (7). It participates a total of 
4 times, on its own and as a second degree, as well 
as in combination with two other independent 
variables. This means that Pin has the strongest 
influence on laser generation. Two of the items are 
positive and the other two - negative. This can also 

be concluded from equation (8) where Pin 
participates in the first three addends with the 
highest relative coefficients. 

In order to qualitatively consider the influence of 
Pin on Pout, we have assigned the following fixed 
values to the other independent variables: D=60 
mm, dr=58 mm, L=210 cm, PH2= 0.6 Torr, 
PRF=16 kHz, C=1.3 pF. The resulting relationship 
is given in Fig. 3.  

 

111
111.5

112
112.5

113
113.5

114
114.5

115
115.5

116

5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20 6.30 6.40 6.50

Pin, kW

P
ou

tP
re

, W

 
Fig. 3. Dependence of Pout on Pin at the following fixed values D=60mm, dr=58 mm, L=210 cm, PH2= 0.6 

Torr, PRF=16 kHz , C=1.3 pF. 
 
 

As expected, the relationship is once again 
nonlinear with a well-defined optimum value of Pin. 
The resulting graphic clearly reflects the physical 
processes occurring in the laser tube when the 
supplied electric power is increased. Initially its 
influence on the processes of laser generation is 
positive. This is due to the increased energy of the 
electrons and the population of the upper laser level. 
After a certain critical value the negative processes 
take over due to the overheating of the laser tube - 
thermo-ionizing instability of the gas discharge, 
thermo-chemical deterioration of the active 
compound, thermal population of the lower laser 
level. All this leads to decreased laser generation. 

 
 

5.3 Diagnosis of the model 
Any statistical model is adequate if the basic 
assumptions for its validity are met. In the case of 
multiple linear regression it is important to check 
the main theoretical requirements of the method [12, 
13].  

The main of these is the total behavior of the 
relationship, which can be linear or closed to linear 
with respect to the predictors. This is relevant by 
observing Fig. 2. The second rule is the multivariate 
normal distribution of the data. In our case this is 
difficult to check because of the very high 
dimension of the data cloud (65 predictors), and we 
assume this point is fulfilled.  

The adequacy diagnostic of the regression model 
also requires the consideration of the distribution of 
the residuals which are calculated as differences 
between the experimental and predicted values of 
the dependent variable. The theoretical assumption 
for the regressions is that these are random 
quantities with normal distribution. 

The histogram in Fig. 4 shows that the 
distribution of the standardized residuals for model 
(7), (8) is very close to normal with the average 
value close to zero, and a standard deviation of 
0.987, which is nearly 1. The validation of this basic 
assumption shows that the model is adequate and 
significant factors are missing [3, 13].  
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Fig. 4. Histogram of the standardized residuals of regression model (7) of Pout. 

 
 
6 Classification analysis of variables  
The derived regression model (7) indicates that out 
of a total of 65 predictors in the general equation (6) 
only 10 are statistically significant. The objective of 
this paragraph is to establish the degree of influence 
each of these quantities has on Pout. A partial 
answer to this question is given by the standardized 
equation (8). The value of the coefficients shows the 
relative participation of first and second degree 
items. We will use the procedures of classification 
analysis to investigate this influence in more detail.  
The goal of classification analysis is to classify the 
variables according to specific target groups [12]. 
 
 
6.1 Classification by factor analysis  
Factor analysis is a statistical procedure which is 
used to reduce the number of variables describing 
the object of investigation to fewer independent 
ones called factors. Generally, one factor groups 
together variables which correlate strongly. The 
variables from different factors exhibit a week 
correlation between each other. We can distinguish 
2 main objectives of factor analysis: 

• defining the relationships between variables 
(classification of variables)  

• reducing the number of variables needed to 
describe the data. 

In order to perform factor analysis and to generate 
the factors we have used the method of Principal 

Component Analysis (PCA). The rotation of factors 
was carried out by Promax method [13, 3]. 

By means of SPSS software and by following the 
general procedure of factor analysis [3] the ten 
significant predictors in model (7) have been 
grouped into 4 factors (components). It was found 
that this number of factors describes 96.783% of the 
total set of experiment data, as it is seen in Table 5.  

 
Table 5. Total variance explained for 4 factors. 

Comp
onent Initial Eigenvalues 

  Total 
% of 

Variance 
Cumulat

ive % 
1 6.737 61.250 61.250 
2 1.622 14.747 75.996 
3 1.505 13.684 89.680 
4 0.781 7.103 96.783 

 
The distribution of variables and their partial 

importance into factors is given in Table 6. The 
laser generation Pout has been added to these. As 
shown, 6 of the variables(D_PH2, dr_Pin, Pin, 
Pin_2, dr_C and Pin_C) together with Pout are 
included in the first factor. Therefore, these 
variables demonstrate a strong mutual correlation 
and exert the strongest influence on Pout. The 
remaining 4 variables (PRF_C, L_PRF, C, and 
D_PL) are distributed in the second, third, and 
fourth factor and respectively have a weaker 
influence on Pout. 
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Table 6. Grouping variables from equation (7) by 
factor with their corresponding factor loadings.a 

 
Variable 

Factor 

1 2 3 4 
Pout 1.022       
D_PH2 1.018       
dr_Pin 0.988       
Pin 0.958       
Pin_2 0.893       
dr_C 0.767       
Pin_C 0.727       
PRF_C   1.000     
L_PRF   0.797     
C     1.036   
D_PL       0.966 

aExtraction Method: Principal Component Analysis.  
Rotation Method: Promax with Kaiser 
Normalization. 
 
 
6.2 Classification by cluster analysis  
Cluster analysis is a multidimensional statistical 
procedure which involves the division or grouping 
of a given set of objects into similar groups (clusters 
or classes). All objects assigned to a given group 
must be similar according to a preset criterion. 
Elements from different groups must be different 
from one another. Also, the number of groups may 
be unknown beforehand, and there may be no 
known internal structure for each group [12].  

From many existing cluster analysis methods we 
have applied the hierarchical agglomerative method, 
which is appropriate for n<500. The analysis was 
carried out by standardized variable, assuming each 
variable as a point in n-dimensional vector space, 
n=387. In the beginning each point is considered as 
a single cluster. Then at each step the two more 
similar clusters are grouped in a new cluster and so 
on.  

In order to quantitatively assess the concept of 
similarity some kind of metrics (or distance) is 
introduced. The distance between two points is 
measured. The similarity or difference between 
clusters is determined by the distance between them. 
Two objects (clusters) are identical or similar when 
the distance between them is zero. The greater the 
distance, the less they are similar or identical. 

The most common distances used in cluster 
analysis are the usual Euclidean distance, squared 
Euclidean distance, Chebishev distance, etc. [3, 12]. 
The squared Euclidean distance between the vectors 
in n-dimensional vector space was used in our 
analysis. 

Another basic moment is the cluster method of 
combining two clusters in a new one. This depends 
on the chosen formula, defined a distance between 
two clusters, containing one or more points. In this 
analysis the average linkage between groups method 
was used [3, 12]. 

The following Table 7 shows the grouping of 10 
predictors from (7) and Pout in 2-5 clusters.  

 
Table 7. Cluster membership of model predictors 

and Pout in 2 to 5 clusters, obtained by Average 
linkage method and squared Euclidean distance. 

Variable 
5 Clus 

ters 
4 Clus 

ters 
3 Clus 

ters 
2 Clus 

ters 
dr_Pin 1 1 1 1 
Pin 1 1 1 1 
Pin_2 1 1 1 1 
Pout 1 1 1 1 
Pin_C 1 1 1 1 
dr_C 1 1 1 1 
D_PH2 1 1 1 1 
D_PL 3 3 1 1 
C 2 2 2 1 
L_PRF 4 4 3 2 
PRF_C 5 4 3 2 

 
Fig. 5 shows a dendrogram constructed using the 

cluster method Average linkage (Between groups) 
for 10 significant variables and Pout. It is observed 
that the bigger gap between clusters is in the 
rescaled region [10, 19]. This gives the best cluster 
solution of four clusters, respectively:  

 
Cluster 1: {Pin, dr_Pin, Pin_2, Pout,  

dr_C, Pin_C, D_PH2};  
Cluster 2: {L_PRF, PRF_C};  
Cluster 3: {D_PL};  
Cluster 4: {C}.  
 
This classification is the same as per factor 

analysis.  
 
 

6.3 Discussion on classification results 
The summary of equation (7) as well as the results 
from factor and cluster analyses indicate that the 
defining laser characteristic for the behavior of laser 
output power Pout is the supplied electric power 
Pin, on its own, in second degree form, as well as in 
second degree combinations with other independent 
laser characteristics. The second more important 
influence have the following characteristics: 
geometrical dimensions D and dr (inside diameters 
of  the tube  and  of  the  diaphragms,  respectively), 
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Fig. 5. Dendrogram from cluster analysis showing the influence if predictors in (7) on laser generation Pout. 
 
 the hydrogen pressure PH2 and the equivalent 
capacitance of the capacitor battery C.  

These results have to be taken into account in 
planning and guiding experiments in order to 
increase the average laser generation Pout of 
existing and future copper bromide lasers of the 
investigated type. 
 
 
7 Conclusion 
It is the first time a parametric nonlinear polynomial 
model of second degree has been developed for the 
output power of a CuBr laser by using 10 input laser 
characteristics. By applying the stepwise procedure 
a regression model is derived for 65 initial 
predictors. The model includes 8 out of a total of 10 
input independent variables. The adequacy of the 
developed regression model has been checked. It 
has been established that with regard to high-
powered lasers there is very good fit between 
experiment results and the predictions obtained 
using the model with an average relative error of 
7%. The influence of 8 significant variables on laser 
generation has been analyzed. It has been 
determined that the supplied electric power Pin has 
the strongest influence on laser generation. The 
developed regression model has been used to predict 
new, non-existent laser sources. This would reduce 
the time and costs needed for the development of 
laser devices with higher output generation.  
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