
 A Hardware Architecture for Motion Compensated Video Frame Rate

Up-Conversion

HUONG HO

Communications Research Centre Canada

3701 Carling Ave., Ottawa, Ontario, K2H 8S2

CANADA

huong.ho@crc.gc.ca http://www.crc.gc.ca

Abstract: - A hardware architecture for motion compensated, video frame rate up-conversion (MC-FRUC)

applications is presented in this paper. The MC-FRUC architecture has been designed based on an advanced

motion estimation (ME) and motion compensated frame interpolation (MCFI) algorithm to achieve interpolated

frames with high level of quality. The proposed architecture is a flexible and highly parallel MC-FRUC that has

been designed to support frame rate-up conversion (FRUC) for high definition (HD) video at high frame rate.

The ME building block of the MC-FRUC circuit is a reconfigurable structure designed to support

reconfigurations for single or multiple reference frames. The MCFI building block performs frame interpolation

with the objective of minimizing of block artifacts, overlapping, and holes for the interpolated frames.

Hardware implementations for the MC-FRUC design were carried out on FPGA where the circuit high

performance FRUC capability has been validated.

Key-Words: - Frame rate up-conversion, Multi-frame motion estimation, Motion-compensated frame

interpolation, Hardware architecture, FPGA implementation, Reconfigurable.

1 Introduction
Motion compensated frame interpolation techniques

for FRUC applications have been the subject of

research in recent years [1-7]. For video applications

where large amounts of data need to be processed at

high speed, a hardware solution with the ability to

generate interpolated frames in real time is required.

Moreover, it is essential that the interpolated

pictures produced by the FRUC circuit have the

highest quality possible.

Recently, a number of FRUC hardware

architectures have been proposed in the literature [8-

11]. The architectures presented in [8-9] use digital

signal processors (DSP) for circuit implementations.

The FRUC design presented in [10] is a

reconfigurable circuit that can be configured to

perform frame interpolation based on different

frame interpolation (FI) techniques. The architecture

presented in [11] describes the design of the ME

engine where the details of the interpolation circuit

were not provided. The commonality of these

architectures is low hardware complexity. Design

issues associated with quality level of the

interpolated picture were not addressed in these

papers.

A number of semiconductor companies have also

introduced processors that support FRUC

applications to the market over the last few years

[12-18]. These companies claim that their circuits

support HD pictures. However, there is no detailed

data available regarding the quality of the

interpolated frames supported by these circuits.

In general, a motion compensated FRUC

architecture consists of two building blocks: the ME

and the MCFI. The ME generates motion vector

(MV) data that are used in the motion compensation

(MC) and the FI processes. The accuracy of the

MVs contributes to the quality of the interpolated

frame [19]. As a result, ME techniques that generate

accurate motion trajectories are needed for the

design of a motion compensated FRUC circuit.

Normally, ME design based on multiple

reference frames (MRF) offers more accurate

motion trajectories than ME techniques that use a

single reference frame (RF) [20]. Many ME

architectures proposed to support MRF have been

reported in the literature [21-25]. The architectures

proposed in [21],[24] support computation of MV

based on 4 RFs. The architecture proposed in [22]

supports sequential computation of MV for 5 RFs.

The architectures proposed in [23],[25] support

parallel computation for 2 RFs. A number of

reconfigurable ME architectures based on single

reference frame have also been proposed in the

literature [26-30]. These architectures support

reconfiguration for power aware applications [26],

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 43 Issue 2, Volume 11, February 2012

multiple video standards [27], or different ME

algorithms [28-30]. The one bit transform (1BT)

proposed in [21] performs block matching (BM)

computations based on 1-bit pixels while the

architectures illustrated in [22-23] perform BM

computations using the luminance component of the

pixel represented by 8-bit data. Motion estimation

based on low bit depth (1BT) or using only the

luminance value of the pixel leads to a reduction in

computational complexity at the expense of MV

accuracy. Furthermore, memory access schemes

needed to retrieve pixels from input frames for BM

computations have not been addressed by some of

these architectures. Off-chip memory access is the

dominant factor that affects the throughput

performance of ME circuits. On-chip data buffer

that supports fast retrieval of search window data is

essential to achieve a high throughput ME circuit

[31].

Many MCFI techniques propose the use of a

temporal filter [32] or an adaptive overlapped block

motion compensation [33] for frame interpolation.

The use of a median filter for MVs correction has

also been proposed to reduce the effect of artifacts

on the interpolated frame [34]. The MVs correction

technique proposed in [34] has been implemented in

hardware while [32-33] provided only software

simulation results of the interpolation algorithms.
In this paper, a MC-FRUC architecture that

supports frame rate-up conversion of HD video in

real-time at high frame rates is presented. The

proposed architecture consists of two building

blocks: the reconfigurable multi-frame motion

estimation (RMF-ME) and the MCFI. The RMF-

ME generates motion fields (MF) data based on an

advanced MRF motion estimation technique [5].

The MF data shifted out of the RMF-ME also

contains information on the occluded blocks that are

useful for holes and overlap detection. The accurate

motion estimation and information on occlusions

provided by these MFs contribute to the high quality

of the interpolated frame. The MCFI takes MF data

generated by the RMF-ME as inputs to compute for

the motion compensated interpolated frames. The

MCFI design incorporates the irregular-grid

expanded block weighted motion compensation

(IEWMC) and the block-wise directional hole

interpolation (BDHI) algorithms to achieve high

quality level for the interpolated pictures [6].

The paper is organized as follows. In section 2,

the design methodology that transforms the MC-

FRUC algorithm and system specifications into an

architecture represented by two main building

blocks, namely, the RMF-ME and the MCFI, is

described. Comparisons of peak signal noise ratio

(PSNR) performance of several video sequences

simulated based on the MC-FRUC technique to

other algorithms are also presented in this section.

In Section 3, the detailed architecture and design of

the MC-FRUC circuit and its building blocks are

illustrated. Hardware implementation results of the

RMF-ME and the MCFI designs and comparisons

of circuits throughput performance to other

architectures are presented in Section 4. Finally,

concluding remarks are presented in section 5.

2 Motion Compensated Video Frame

Rate Up-Conversion Design

Methodology
In this section, the design methodology for the main

building blocks of the MC-FRUC is described. The

illustrated technique is then used to evaluate several

video sequences for PSNR performances. The

PSNR data obtained are compared to results

presented by existed FRUC techniques.

2.1 Multi-Frame Motion Estimation With

Reconfigurability
The RMF-ME architecture proposed in this paper is

a reconfigurable ME architecture that can be

configured to perform ME based on single RF or

MRF. The BM engine of the RMF-ME circuit has

been designed based on a hierarchical block

matching (HBM) algorithm to reduce computational

complexity [5]. Compared to a full search

technique, HBM requires less BM error

computations but with comparable performance [35-

36]. The HBM algorithm performs BM

computations on input frames proceeding from

lower to higher resolution sequentially. The input

frames are first transformed into a pyramid

consisting of several images of different size. The

size of the images at lower level is four times

smaller than the image immediately above it. Based

on the result of performance simulations reported in

[5], accurate MV can be obtained using 2RFs with

the size of top-level image limited to 256x256

pixels. Similarly, the block size is set at 16x16 for

all levels of the pyramid where the search range is

limited to 6% of the image width for both horizontal

and vertical directions. Simulation results presented

in [5] also demonstrate that the errors of MVs based

on these criteria are much smaller than those

produced by full search or other hierarchical

algorithms. As a result, the maximum search

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 44 Issue 2, Volume 11, February 2012

distance at the top level image supported by the

RMF-ME is set at ±16.

The HBM process performs BM computations

on an image based on a pyramid structure illustrated

in Fig. 1b. Full search is performed on blocks at the

top-level image to obtain the coarse MF. For each

block it calculates the matching error for every

position within the configured search region and

searches for the position that has the smallest

matching error. The motion vector corresponding to

this position is assigned to the block. The matching

errors are measured by the sum of absolute

difference (SAD) value over the block. To obtain

accurate motion trajectories, the block matching

errors have been computed using both the

luminance and chrominance components of the

images. On the next levels of the pyramid, the

density of the motion vectors is increased. Since the

images at all pyramid levels are partitioned into

blocks of the same size, one block at level

4
L corresponds to four blocks at level

3
L and so on.

The MVs on the upper level are used as search

centers for the blocks on the lower level. Three MVs

of the adjacent blocks on the upper level are used as

search centers for each block on the lower level.

Thus the BM process will run three times on three

sets of candidate blocks for each block on the lower

level. The MV associated with the smallest

matching errors is selected as the final MV of the

block.

L4

L3

L2

L1

L-1

L-2Increase

b) Pyramid structure of input image

dn

a) Search distance d

for level L

n

 n

dn

L

Fig. 1. Reconfigurable for number of level L and

search distance nd

The images at levels
1

L
−
 and

2
L
−
 belong to the

iteration process where extra BM computations are

performed to obtain MVs with more accuracy. The

image at level
1

L
−
 is partitioned into 8x8 blocks and

the image at level
2

L
−
 is divided into blocks of 4x4.

The density of the motion vectors on levels
1

L
−
and

2
L
−
 is increased due to smaller block sizes. The BM

on each level of the iteration process also repeats

three times for the three sets of candidate blocks.

The maximum number of pyramid levels L

supported by the RMF-ME design is set to 4 plus 2

levels associated with the iteration process. Since

the top-level image is limited to 256x256 pixels, a

four level configuration is enough to support 1080P

images. The number of levels L is configurable to

enable the RMF-ME to support different video

formats. For a target video format and a target

search distance, the reconfigurability of L also

enables lower or higher number of levels to be

selected to reduce the computational complexity for

the BM process. For example, if the search distance

for a CIF video is set at [-16, +16], the RMF-ME

circuit can be configured with a 2 level pyramid
1

L

and
2

L . On the other hand, a 3 level pyramid

configuration is needed if the target search distance

is set at [-32, +32]. The two levels
1

L
−
 and

2
L
−
 in

the iteration process are also reconfigurable. To

achieve more accuracy for the MVs, both levels can

be selected. Otherwise, one MV per block of 8x8

pixels for video in the 720P or 1080P format is

adequate for FRUC applications [5]. The search

distance nd is also reconfigurable where it can take

values from 0 to 16.

a) NB F=1,N =1

e) NB F=1,N =2

g) NB F=1,N =3

c) NB F=3,N =1b) NB F=2,N =1

f) NB F=2,N =2

h) NB F=1,N =4

d) NB F=4,N =1

Fig. 2. Reconfiguration modes supported by the

RMF-ME

The RMF-ME supports BM computations for single

and multiple frames as depicted in Fig. 2. The RMF-

ME supports parallel computations of up to 4 macro

blocks (MB) and 4 RFs. The number of blocks
B

N

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 45 Issue 2, Volume 11, February 2012

and the number of frames
F

N can be configured in

real time.

2.2 Motion-Compensated Frame

Interpolation
The MCFI hardware architecture proposed in this

paper has been designed based on the algorithm in

[6]. This MCFI algorithm computes the interpolated

frames using MF data, which has been generated by

the RMF-ME, based on two adjacent frames. The

two generated intermediate frames 1IPFR and 2IPFR ,

based on these MFs, are located at the same time

instance as the frame to be interpolated which is

described in Fig. 3.

Previous CurrentInterpolated

t=0 t=1

.MFb

. MFf

Fig. 3. Generated Interpolated frames based on
b

MF

and
f

MF

The backward (
b

MF) and forward (
f

MF) MFs at

the input of the MCFI block contain the motion

information of blocks of 4x4 or 8x8 pixels that

originates from the current and previous frames,

respectively. The MCFI process consists of two

parts: the generation of interpolated frames and the

holes filling process where holes caused by

occlusions and motion estimation errors are filled.

The interpolation part generates interpolated frames

based on the irregular-grid expanded block

weighted motion compensation (IEWMC)

technique. The hole filling part combines the two

overlapped frames into one single frame. The pixels

located in the hole areas of the combined frame are

then constructed using the BDHI technique.

2.3 MC-FRUC Performance Evaluation
In this section, the performance of the MC-FRUC

technique is evaluated. The simulation was

performed on 3 video test sequences in CIF format

using 2 RFs. The RMF-ME has been configured

based on 2 RFs configuration as illustrated in Fig.

2f. The RMF-ME has also been configured to

support 2-level pyramid and 2 levels of iteration for

this simulation. The search range of [-16, 16] has

been configured for a fair comparison with the

algorithm proposed in [21]. The RMF-ME

calculates the block matching errors based on the

luminance and chrominance components of the

images.

In the experiment, each of the 3 test video

sequences has 31 frames. The even numbered

frames are first removed from the sequences and

then replaced by the interpolated frames. The

average PSNR of the interpolated frames were

calculated for each test sequence. Average PSNR

results obtained from the MC-FRUC technique and

the results of the 1BT algorithm reported in [21] are

listed in Table 1. The PSNR results obtained by the

1BT algorithm based on 4 RFs are used for this

comparison. As shown in Table 1, the PSNR values

obtained from the MC-FRUC are higher than the

results reported in [21] for the Mobile, Foreman and

Football sequences. The PSNR performance of the

1BT algorithm is still not comparable to the MC-

FRUC technique even if more than 4 RFs are used.

In fact, simulation results for 6, 8 and 10 RFs based

on the 1BT algorithm presented in [21] show PSNR

performance lower than the results generated by the

MC-FRUC for the Mobile, Foreman and Football

sequences based on 2 RFs.

Table 1

AVERAGE PSNR GAIN (DB) OF SEVERAL VIDEO SEQUENCES

RECONSTRUCTED BY MC-FRUC AGAINST THE 1BTALGORITHM

Sequences Average PSNR

RMF-ME

2 RFs

1BT [21]

4 RFs

Gain

Football 24.27 23.61 0.66

Mobile 25.80 24.45 1.35

Foreman 35.88 33.94 1.94

3 Motion-Compensated Video Frame

Rate Up-Conversion Circuit Design
In this section, the architecture and circuit design of

the MC-FRUC and its building blocks are described.

The top-level architecture of the MC-FRUC is

depicted in Fig. 4.

 MCFI
 INTERP.

 FRAME

MC-FRUC

INPUT

FRAMES

MFb

 RMF-ME

 FRAME
 1

 FRAME
 2

 FRAME
 3

YUV

YUV

YUV

MFf

Fig. 4. Architecture of the MC-FRUC circuit

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 46 Issue 2, Volume 11, February 2012

3.1 The RMF-ME Architecture and Circuit

Configurations
The RMF-ME design consists of three main

building blocks: the input buffer unit (IBU), the

spiral blocks matching unit (SBMU) and the control

unit (ME-CU). The block diagram of the RMF-ME

circuit is depicted in Fig. 5.

IBU

IBU

1

MV1

2

MV2

IBU

IBU

M
U
X

M
U
X

3

MV3

4

MV4

RMF-ME

ME-CU

Conf. Data(L,dn B F,N ,N)

1

2

7

8

Fig. 5. Architecture of the RMF-ME circuit

The IBUs are ping-pong input buffers, each of

which consists of two memory blocks (MEMB)

designed to store the block of input pixels on-chip

for BM computations. When one MEMB is

involved in the BM computations, the other is ready

to receive the next block of pixels shifting in from

the input frame. This ping-pong architecture allows

the RMF-ME circuit to perform BM computations

continuously without having to wait for the next

block of input pixels to be shifted in. The MEMBs

have been designed using block RAM (BRAM)

available on most FPGAs to allow simultaneous

retrieval of a large block of pixels of the candidate

block [25]. To reduce external memory access, the

entire search area of the current block is shifted in

and stored in the MEMB. At every clock cycle, each

MEMB shifts out 64 pixels to the SBMU. Thus, one

clock cycle is needed to shift out one candidate

block at levels
1

L
−
 and

2
L
−
. For other levels, a total

of four clock cycles is required to shift out one

single candidate block. This data reuse scheme

enables the RMF-ME to compute the SAD values of

one 16×16 candidate block in four clock cycles.
Since the maximum search distance at a pyramid

level is set at ±16, the MEMB is designed to be able
to hold the data of 48×48 pixels. As three colour
components of the pixel are involved in the BM

process, a total of 48x48+2(24x24) bytes are

required to store pixels data of the search area. Data

of the search area and the current block stored in the

MEMB has been replicated in sets of 96 RAM

blocks to allow fast pixel retrieval. This

arrangement enables the MEMB to shift out a block

of 8×8 data pixels in every clock cycle. The set of 8
IBUs allows the search area of 8 MBs to be stored

on chip for parallel BM computations. For the

parallel computation of 4 MBs as described in Fig.

2d, the 8 IBUs enable blocks of pixels of 4

candidate blocks and 4 current blocks to be shifted

out to the SBMUs simultaneously.

a) 16x16 MB

16

16

b) 8x8 or 4x4 MB

8

8

ADDR1ADDR4

MEMB

8x8

c) MEMB Access Scheme

Fig. 6. Data reuse scheme for a) 16×16 MB; b) 8×8

or 4×4 MB and the MEMB memory access scheme

The data reuse scheme proposed for the design of

the RMF-ME is depicted in Fig. 6a for a 16×16 MB
and in Fig. 6b for 8×8 or 4×4 MB. Figure 6c
describes the access scheme of the MEMB block.

The four SBMUs are the main computing

engines of the RMF-ME circuit. The SBMU

performs block matching error computations for a

block of 16x16, 8x8 or 4x4 pixels based on an array

of 4 processing elements (PE). Each PE unit

calculates the SAD value of a block of 4x4 pixels

before shifting it out to an adder tree where the SAD

values are accumulated. The SAD value generated

for the current candidate block is compared to the

value generated for the previous candidate block

and the one with smaller value is selected. This

process is continued until the SAD value for the last

candidate block has been calculated. The block

diagram of the SBME architecture is depicted in

Fig. 7.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 47 Issue 2, Volume 11, February 2012

Fig. 7. Architecture of the SBMU building block

The ME-CU is the central control of the RMF-ME.

It takes the configuration parameters and sends out

control signals to the IBUs, MUXes, the SBMUs,

and the input frames. The control signals sent to

SBMUs include the total number of candidate

blocks to be computed for each MV. The size of the

candidate block and the total number of pyramid

levels are also included in the set of control signals

sent to the SBMUs from the ME-CU. The control

signals sent to the input frames consist of the

location of the candidate blocks and the decimation

parameters of each level. The ME-CU routes the

input pixels to the IBUs based on the configured

number of blocks
B

N and the number of frames

F
N . Similarly, it routes the pixels of the candidate

block and the current block to the SBMUs based on

the values of
B

N and
F

N .

The RMF-ME can be configured to compute ME

based on one single reference frame, one candidate

block at a time. It also supports configuration for

parallel processing of up to 4 candidate blocks of a

single reference system as shown in Fig. 2b-2d.

These configurations enable the system to shift out

MV data at 1 2 , 1 3 , and 1 4 the number of clock

cycles compared to the system in Fig. 2a. The RMF-

ME supports multiple RFs configurations as

described in Fig. 2e-h. The 2, 3, and 4 RFs

configurations depicted in Fig. 2e, Fig. 2g, and Fig.

2h enable the RMF-ME to process 2, 3, and 4

candidate blocks, one for each RF, in parallel. The 2

RFs configuration depicted in Fig. 2f enables the

RMF-ME to process 4 candidate blocks, 2 for each

RF, simultaneously.

3.2 The MCFI Design
The MCFI design consists of two main building

blocks: The interpolation block (IP) and the hole

filling (HF) block. The IP block takes the motion

data contained in the fMF and the bMF motion

fields to generate the interpolated frames from the

two input frames. The HF block combines the two

interpolated frames and then performs the filling of

holes to construct the pixels located in the hole areas

of the combined frame. The top level of the MCFI

module is depicted in Fig. 8. The input frames,

interpolated frames and the combined frame are

assumed to be located on off-chip memory.

FR

 FR
IPCOMB

MFb

MFf

MCFI

FR

IP HF

 FRIP1

(PREV)

(CUR)

 FRIP2

Fig. 8. Top-level block diagram of the MCFI

architecture

The IP architecture consists of a bank of

IEWMC processors that are the main computing

engine of the interpolation process. The IEWMC

processors perform weighted motion compensation

on blocks of pixels extracted from the previous and

current frames based on the motion data contained

in the fMF or bMF motion field. The motion data

contained in the fMF (bMF) motion field represent

the motion estimated for blocks of pixels on the

current (previous) frame with respect to the previous

(current) frame. The IEWMC processors generate

two intermediate frames 1IPFR and 2IPFR that are

located at the same time instance as the frame to be

interpolated as shown in Fig. 3.

FR

MFb

MFf

IP

FR

IEWMC

IEWMC

IEWMC

IEWMC

FR

(PREV)

(CUR)

Fig. 9. Top level block diagram of the IP design

The IP design presented in this paper consists of

four IEWMC processors that perform the

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 48 Issue 2, Volume 11, February 2012

interpolation for four interpolated blocks of pixels in

parallel. Each pair of IEWMC processors generates

two interpolated blocks of pixels for the interpolated

frames 1IPFR and 2IPFR , respectively. The top-level

architecture of the IP building block is illustrated in

Fig. 9.

The IEWMC processor performs overlap block

motion compensation based on the IEWMC

algorithm [6] and its detailed architecture is shown

in Fig. 10.

Prev.

 Fr.

 MC

 FRIP

MF Addr
 Gen.

IEWMC

Bilinear Bilinear

B
U
F

1 2 B
U
F

1 2

Y,U,V E W

Wm

Cur.
 Fr.

B

U
F

1 2 B

U
F

1 2 B

U
F

1 2

Fig. 10. The IEWMC processor architecture

In Fig. 10, the weight matrix [mW] used in the

IEWMC process was predetermined using a bilinear

function and stored in on-chip memory. The size of

the [mW] matrix is equal to the size of the expanded

block of pixels, which is 12x12 pixels if the block

size is 4x4 or 16x16 pixels if the block size is 8x8.

The blocks of pixels read out of the previous, the

current, and the interpolated frames are stored in a

set of ping-pong buffers. The ping-pong buffering of

the input data enables faster computation of

interpolated data. The pixels of the previous and the

current frames shifted out from the ping-pong

buffers are fed to the bilinear modules where the

bilinear coefficients are generated. The motion

compensation (MC) block performs pixels

interpolation based on the data of the interpolated

frame shifted in from the ping-pong buffers and the

bilinear coefficients. Depicted in Fig. 10, E and W

represent the values of the weighted motion

compensation differences and the weight

accumulated from the IEWMC computations for

each block of pixels, respectively. These values are

used in the normalization process to calculate the

interpolated picture and the weight average of the

motion compensation differences (WAMCD). The

interpolated picture and the normalized WAMCD

values are then shifted to the HF block to be used in

the hole filling process.

 FRIP

Occlu
MUX

YUV EW

MC

MV

Prev.

Buf.
Cur.
Buf.

{MF

Fig.11. The bilinear and the MC circuits

The MC block is the heart of the IEWMC processor

and its detailed architecture as well as the

architecture of the bilinear blocks is described in

Fig. 11. The bilinear unit computes the bilinear

coefficients based on blocks of 2x2 pixels which are

the closest to the pixel to be interpolated. If the

location of the pixel to be interpolated is located in

an occluded area, the generated bilinear coefficient

based on a block of pixels from the current frame is

selected. Otherwise, the values shifted out of the

two bilinear blocks are combined to produce the

interpolated pixel instead. The motion compensation

difference is calculated as the difference between

two coefficients shifted out of the two bilinear units.

The interpolated pixel and the motion compensation

difference are weighted separately by a weighting

factor to generate the weighted pixel YUV and the

weighted motion compensation difference E. The

YUV pixel is then accumulated with the pixel

shifted into the MC from the interpolated frame.

Similarly, E is accumulated with the previously

calculated motion compensation difference and W is

accumulated with the weight values shifted into the

MC from the interpolated frame.

The two interpolated frames that have been

generated based on the motion fields bMF and

fMF are then shifted to the HF block to be

combined into a single frame. The pixels in the hole

areas of the combined frame that have been missed

by the IEWMC process are then constructed. The

HF architecture consists of the combine, the

gradient (GRAD), and the directional hole

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 49 Issue 2, Volume 11, February 2012

interpolation (DHI) building blocks is depicted in

Fig. 12.

FR
CUR

 FR
IPCOMB

HF

DHI

GRAD
Y,U,Vc

Ec
COM-

BINE

 FRIP1 B

U

F

B

U
F

1
2

B

U

F

B

U

F

1
2

B

U
F

B

U

F

1
2 B

U
F

B

U

F

1
2

 FRIP2

Fig.12.The HF building block

X
-1

YUVc

C

O

U

N

T GRAD

M

U

X

X
-1

YUVc
DHI

M

U

X

YUV

YUVc

Ec

+

YUVprev

YUVcur

Ec

Ec

Fig.13. The architecture of the GRAD and the DHI

circuits

The combination process combines two normalized

pictures and two WAMCD values to generate the

combined frame YUVc and the weight average

motion compensation differences Ec, respectively.

The GRAD block performs the computation to

determine the orientation of the edge and texture of

the holes. The linear interpolation process is then

performed by the DHI block to compute the pixel

value for each hole based on the computed

orientation. The detailed architectures of the GRAD

and the DHI building blocks are shown in Fig. 13.

4 Circuit Implementations Results
In this section, hardware implementation results of

the RMF-ME and the MCFI designs are illustrated.

Throughput performances of the RMF-ME design

are then used to compare to other ME designs. For

circuit implementations of the RMF-ME and the

MCFI designs, two’s complement number

representation and fixed-point arithmetic have been

used throughout. Hardware implementations for the

RMF-ME and MCFI designs have been carried out

using Xilinx’s XC6VSX315-3 FPGA device.

4.1 RMF-ME Circuit Implementation
For the RMF-ME design, the luminance and

chrominance components of the input pixels are

shifted into the circuit via a 24-bit data bus. The

pixels from all input frames are shifted into the

RMF-ME circuit in parallel. The intermediate result

of the SAD computation is represented by a 25-bit

data bus. The MV data and the block matching

errors are shifted out of the RMF-ME via the MV

buses. The MV and the block matching error are

represented by a 12-bit and 20-bit data bus,

respectively.

Table 2

RMF-ME CIRCUIT IMPLEMENTATION RESULTS

Logic Resources/

Clock Rates

RMF-ME

Used/Available

Slice Registers 16896 / 393600 (4%)

Slice LUT 54416 / 196800 (27%)

Block RAM

I/Os

640 / 704 (90%)

626 / 720 (86 %)

Clock Rate (MHz) 91

The FPGA implementation results illustrated in

Table 2 show that the RMF-ME operates at a clock

rate of 91 MHz. The performance of the RMF-ME

circuit configured for different video formats based

on a 91 MHz operating frequency is illustrated in

Table 3.

In Table 3, the performance of the RMF-ME for CIF

video has been calculated based on the configured

search distance of ±16. The performances for the

720P and 1080P video have been calculated based

on the search distances of ±64. Two levels of the

pyramid
1

L ,
2

L , and two iteration levels
1

L
−
and

2
L
−
have been configured for the CIF video. The

search distances for the four levels
2 1 1
, , L L L

−
and

2
L
−
are 6, 2, 1, and 0, respectively. Four levels of

pyramid,
1

L ,
2

L ,
3

L ,
4

L and one iteration level

1
L
−
have been configured to compute for the search

distance of ±64 for the 720P and 1080P video

frames. For this configuration, the search distances

for levels
4 3 2 1
, , , L L L L and

1
L
−
 are 7, 1, 1, 2, and 0,

respectively. Thus, the total number of clock cycles

needed to compute the CIF picture at one frame per

second (fps) based on the configuration depicted in

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 50 Issue 2, Volume 11, February 2012

Fig. 2a is 210K clock cycles. A total of 105K, 70K

and 52.5K clock cycles are required to support CIF

video at 1 fps based on the configurations depicted

in Fig. 2b, Fig. 2c, and Fig. 2d, respectively. The

number of clock cycles required to compute one

frame of 720P and 1080P video based on the

configuration depicted in Fig. 2a and a search

distance of ±64 is 1304K and 2942K, respectively.

Frame rate performances and the average number of

clock cycles required to process a single 16×16 MB
for 1, 2, and 4 RFs configurations are illustrated in

Table 3.

Table 3

PERFORMANCE OF RMF-ME CIRCUIT FOR DIFFERENT VIDEO

FORMATS AND CONFIGURATIONS
Video Formats

(Search Dist.)

Frame Rates (fps)/Average Clock. Cycles per MB

No. RFs = 1

(Fig. 2d)
No. RFs = 2

(Fig. 2f)
No. RFs = 4

(Fig. 2h)

CIF (±16) 1733 / 159 866 / 318 433 / 636

720P (±64) 280 / 90 140 / 180 70 / 361

1080P (±64) 123 / 90 62 / 180 31 / 361

The performance of the RMF-ME circuit configured

to support single RF compared to several existing

RME circuits is presented in Table 4. The circuit in

[28] is a 3-level hierarchical based design. The

circuit in [27] is a full search based design whereas

the architecture in [21] has been designed based on

the 1BT technique. The RMF-ME circuit configured

to compute 4 candidate blocks in parallel as

depicted in Fig. 2d has been used for this

comparison. At the configured search range of ±64,

the RMF-ME performs at higher throughput

compared to other circuits. In term of hardware

usage, the RMF-ME requires more resources than

the designs presented in [21] and [28]. This is due to

the fact that the RMF-ME design uses all three

colour components of the input pixels in the BM

process. Even though the RMF-ME design requires

more logic resource for circuit implementation, it

offers better video quality than the 1BT design as

illustrated in Table 1. There is no PSNR

performance reported by the architecture presented

in [27]. The authors in [28] did not provide any

PSRN data but chose to present the performance of

their algorithm based on the mean absolute

difference instead. Motion vector estimated with the

criteria of minimizing the motion compensation

difference might be very different from the true

motion vector [37]. As a result, this algorithm may

not be suitable for FRUC applications where dense

MFs and accurate motion trajectories are required.

The use of newer FPGA technology for circuit

implementation contributes to the RMF-ME high

throughput performance compared to other FPGA-

based designs as shown in Table 4. However, a

combination of the advanced HBM algorithm and

the highly parallel architecture used for circuit

implementation has also contributed to the high

throughput performance of the RMF-ME design. As

illustrated in Table 4, the number of clock cycles

required to process one single 16×16 MB by the
RMF-ME design is lower than the FPGA-based

designs in [21] and [28].

Table 4

PERFORMANCE COMPARISONS WITH OTHER SINGLE FRAME

ARCHITECTURES

Single

Frame

[28] [21] [27] RMF-ME

Tech. FPGA
XC3S1500-

5

FPGA
XC2VP30-

7

ASIC FPGA
XC6VSX

315T-3

Search

Range

±48,±24 ±16 ±16 ±64

No. of PEs 256 1024 528 256

Block sizes 16×16 16×16 All 16×16
8×8 4×4

Pixel Res. 8-bit 1-bit 8-bit 24-bit

720P (fps) /

Av. Clock.

Cycles per

MB

 189 / 282 30 / 1459 280 / 90

1080P (fps) /

Av. Clock.

Cycles per

MB

25 / 633 84 / 282 123 / 90

Performance comparisons of the RMF-ME design

with several existing RME circuits for multiple RF

configurations are presented in Table 5. The circuit

in [22] has been designed based on a subsample-by-

four over a search range of ±64 for 5 RFs. The

results of the design presented in [22] show only

hardware requirements and throughput performance

of the SAD computing unit. No information was

provided for the implementation of the line buffers

and the off-chip memory bandwidth usage, which is

a performance bottleneck in ME circuit designs. The

search ranges of the 1BT based design and the

design in [23] are set at ±16 and ±64, respectively.

The 1BT design used 4 RFs whereas the design in

[23] uses 2 RFs for circuit implementations. The

RMF-ME has been configured to compute for

search distances of ±64 for the 720P and 1080P

video. The performances of the RMF-ME circuit

configured for 2 and 4 RFs have been illustrated for

this comparison. The results presented in Table 5

show that the proposed design configured to support

2 RFs requires smaller number of clock cycles to

compute for a 16×16 MB compared to the designs
presented in [21-23]. The design in [21] with 4096

PEs supports higher frame rates compared to the

RMF-ME circuit with 256 PEs. However, the search

range supported by [21] is ±16 compared to the

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 51 Issue 2, Volume 11, February 2012

search range of ±64 supported by the RMF-ME

circuit.
Table 5

PERFORMANCE COMPARISONS WITH OTHER MULTI-FRAME

ARCHITECTURES

Multiple

Frames

[21] [22] [23] RMF-ME

Technology FPGA ASIC ASIC FPGA

Search

Range

 ±16 ±64 ±64 ±64

No. of PEs 4096 64 4096 256

Block sizes 16×16 All All 16×16
8×8 and 4×4

Pixel

Resolution

1-bit 8-bit 8-bit 24-bit

Num. Ref.

Frames

4 5 2 2 4

720P (fps) /

Av. Clock

Cycles per

16××××16 MB

189/282 84/512 140/180 70/361

1080P (fps) /

Av. Clock

Cycles per

16××××16 MB

84/282 118/512 30/512 62/180 31/361

Implementation results shown in Table 4 and

Table 5 demonstrate that FPGA-based MEs are

suitable for HD video applications. These

performance results show that FPGA-based ME

circuits perform at comparable frame rates

compared to the ASIC-based designs. Among the

FPGA-based designs illustrated in Table 5, the

RMF-ME architecture uses more logic resources for

circuit implementation. The higher level of

hardware usage required by the proposed

architecture is due to the fact that the RMF-ME

circuit uses 24-bit pixels for BM computation. The

1BT design [21] computes BM based on 1-bit pixels

whereas the ASIC-based designs [22-23] use 8-bit

pixels for BM computation. The trade-offs for

higher hardware cost is that the RMF-ME offers

higher video quality. Furthermore, the hardware

usage reported in [21] did not include the logic and

memory resources required by the binary conversion

of the input frames. This one-bit conversion process

involved the filtering of the input frames by a 17×17

multiband-pass filter kernel. The 1-bit frame is then

determined based on a comparison between the

filtered frame and the original frame [38]. If logic

resources used for the filtering of the input pixels

and extra memory used to store the filtered and the

1-bit frames were included, the overall hardware

requirement for the 1BT design would increase

significantly. Moreover, the 1BT design has been

implemented based on full search algorithm that

supports a search range of ±16. The BM

computational load of the 1BT design would

increase significantly for a search range larger than

±16. For applications that require a large search

range, the high computational load will make the

1BT more costly in terms of hardware usage. High

level of hardware usage can also affect the circuit

throughput performance, which makes it less

suitable for real-time video applications.

4.2 MCFI Circuit Implementations
The Xilinx’s XC6VSX315-3 device has also been

used for circuit implementation of the MCFI design.

For the MCFI circuit implementation, the data bus

for the input pixels of the input frames is 24-bit

wide. The input/output data bus of the interpolated

and the combined frames is 48-bit wide. The

coefficients of the weight matrix have been

predetermined and stored as a look up table using

on-chip distributed RAM (DRAM). A look up table

containing the pre-computed values of the 1/x

division has been used to implement the divisions

required by the normalization and the hole filling

process. This look up table is also stored in the

blocks of DRAM available on the FPGA. The use

of a look up table for division computations helps to

reduce required hardware resources, and eases the

throughput bottlenecks. The ping-pong buffers on

the IP and the HF designs have been implemented

using on-chip BRAM to speed up the interpolation

computations.

The implementation results for the IP and the HF

circuits are listed in Table 6 and Table 7,

respectively. The IP circuit shows an operating

frequency of 166 MHz and the maximum operating

frequency supported by the HF circuit is 84 MHz.

Since one motion vector represents the motion

estimated of an 8x8 block of pixels for HD picture,

a total of 135x240 vectors is required to support the

1080P video. Inside the IEWMC processor, each

block of pixels is expanded from 8x8 to 16x16.

Thus, a total of 256 clock cycles are required to

compute the weighted motion compensation for

each 8x8 block of pixels. To support an up

conversion of 1:2 rate at 30 frames per second (fps)

for 1080P picture; the IEWMC needs to compute a

total of
1080 1920

* *256*30
8 8

clock cycles or

249 MHz. Since the IP circuit generates two pairs of

interpolated pixels simultaneously, the required

frequency for the 1080P pictures is 125 MHz. Thus,

at 166 MHz operating frequency, the IP circuit

supports the frame rate required by the 1080P video

at 30 fps.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 52 Issue 2, Volume 11, February 2012

Table 6

IP CIRCUIT IMPLEMENTATION RESULTS

Logic Resources/

Clock Rates

RMF-ME

Used/Available

Slice Registers 4495 / 393600 (1%)

Slice LUT 16538 / 196800 (8%)

Block RAM 130 / 704 (18%)

I/Os 658 / 720 (91%)

Clock Rate (MHz) 166

Table 7

HF CIRCUIT IMPLEMENTATION RESULTS

Logic Resources/

Clock Rates

RMF-ME

Used/Available

Slice Registers 2300/ 393600 (1%)

Slice LUT 10099/ 196800 (5%)

Block RAM 74/ 704 (10%)

I/Os 309 / 720 (42%)

Clock Rate (MHz) 84

To support 1080P video at 30fps, the HF circuit

needs to perform a total of 1080x1920x30 clock

cycles or 63 MHz. With the operating frequency of

84 MHz, the HF circuit supports the 1080P video at

the required frame rate.

As illustrated in Table 2, Table 6 and Table 7,

the XC6VSX315-3 device has enough registers and

LUT resources to hold complete MC-FRUC design.

However, the requirements of on-chip memory and

I/Os for circuit implementation of the MC-FRUC

design have exceeded the device capacity.

Therefore, the RMF-ME, the IP and the HF building

blocks have been implemented on FPGA separately.

Implementation results of these building blocks

demonstrate the MC-FRUC circuit ability to support

high-resolution pictures at high frame rate.

5 Conclusion
In this work, a highly parallel and flexible MC-

FRUC hardware architecture has been designed and

implemented on FPGA. Simulation results show

that the MC-FRUC supports frame rate-up

conversion for HD video where high quality

pictures can be achieved. Due to the limit of on-chip

memory and I/O resources, one FPGA is required

for circuit implementation of each building block of

the MC-FRUC design. To reduce cost and power

consumption, the MC-FRUC can be implemented

on ASIC instead of a multi-FPGA system. However,

the high frame rates performance of the FPGA-

based implementation demonstrates that the MC-

FRUC circuit is also suitable for real-time HD video

applications.

References:

[1] S. J. Kang, K. R. Cho, and Y. H. Kim, “Motion

compensated frame rate up-conversion using

extended bilateral motion estimation,” IEEE

Trans. Consumer Electronics, Vol. 53, No. 4,

Nov. 2007, pp. 1759–1767.

[2] B. D. Choi, J. W. Han, C. S. Kim, and S.J. Ko,

“Frame rate up-conversion using perspective

transform,” IEEE Trans. on Consumer

Electronics, Vol. 52, No. 3, Aug. 2006, pp.

975–982.

[3] Y. T. Yang, Y S. Tung, and J. L.Wu, “Quality

enhancement of frame rate up-converted video

by adaptive frame skip and reliable motion

extraction,” IEEE Trans. on Circuits and

Systems for Video Technology, Vol. 17, No. 12,

Dec. 2007, pp. 1700–1713.

[4] A. M. Huang and T. Nguyen, “Correlation-

based motion vector processing with adaptive

interpolation scheme for motion-compensated

frame interpolation,” IEEE Trans. on Image

Processing, Vol. 18, No. 4, Apr. 2009, pp.

740–752.

[5] D. Wang, L. Zhang, and A. Vincent, “Motion-

compensated frame rate up-conversion – Part I:

fast multi-frame motion estimation,” IEEE

Trans. on Broadcasting, Vol. 56, No. 2, June

2010, pp. 133-141.

[6] D. Wang, A. Vincent, P. Blanchfield, and R.

Klepko, “Motion-compensated frame rate up-

conversion – Part II: New Algorithm for Frame

Interpolation,” IEEE Trans. on Broadcasting,

Vol. 56, No. 2, June 2010, pp. 142-149.

[7] R. Rodrigo, Z. Chen, and J. Samarabandu,

“Energy Based Video Synthesis,” Proc. of the

5th WSEAS International Conference on

Telecommunications and Informatics, May

2006, pp. 198-202.

[8] J. W. van de Waerdt, S. Vassiliadis, E. B.

Bellers, and J. G. Janssen, “Temporal Video

Up-Conversion on a Next Generation Media-

Processor,” Proc. of the 7th IASTED

International Conference on Signal and Image

Processing, Aug. 2005, pp. 434-441.

[9] E. B. Bellers, J. G. Janssen, and M. Penners,

“Efficient Architecture for Full HD 120 Hz

Frame Rate Conversion,” Proc. of the 2008

International Conf. on Consumer Electronics

ICCE’08, Jan. 2008, pp. 1-2.

[10] O. Tasdizen and I. Hamzaoglu, “A

Reconfigurable Frame Interpolation Hardware

Architecture for High Definition Video,” Proc.

of the 12th Euromicro Conference on Digital

System Design / Architectures, Methods and

Tools, 2009, pp. 714-719.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 53 Issue 2, Volume 11, February 2012

[11] Y. L. Lee and T. Nguyen, “Method and

Architecture Design for Motion Compensated

Frame Interpolation in High-Definition Video

Processing,” Proc. of the IEEE Int’l Symp. on

Circuits and Systems ISCAS’09, May 2009, pp.

1633-1636.

[12] Tensilica Inc, “Xtensa Microprocessor

Overview Handbook for Xtensa V (T1050)

Processor Cores,” 2002.

[13] Integrated Device Technology. [Online].

Available:

http://www.idt.com/go/HQVmotionSMART

[14] Imagination Technologies Ltd. [Online].

Available:

http://www.imgtec.com/powervr/powervr-frc

[15] Zoran Corp. [Online]. Available:

http://www.zoran.com/SupraFRC-301-High-

Performance-100

[16] Trident Microsystems. [Online]. Available:

http://www.tridentmicro.com/producttree/tv/dtv

/frc/frc-94x9q

[17] Toshiba Inc. [Online]. Available:

http://www.toshiba.com/taec/components/docs/

ProdBrief/07H02_TC90240XBG_Frme_ProdB

.pdf

[18] Teranex Systems Inc. [Online]. Available:

http://www.teranex.com

[19] T-H Tsai, H-G Chen, and H-Y Lin, “Frame

Rate Up-Conversion Using Adaptive Bilateral

Motion Estimation,” Proc. of the 8th WSEAS

International Conference on Applied Computer

and Applied Computational Science

ACACOS’09, May 2009, pp. 199-202.

[20] Y. Su and M-T. Sun, “Fast Multiple Reference

Frame Motion Estimation for H.264/AVC,”

IEEE Trans. on Circuits and Systems for Video

Technology, Vol. 16, No. 3, March 2006, pp.

447-452.

[21] A. Akin, G. Sayilar, and I. Hamzaoglu, “A

reconfigurable hardware for one bit transform

based multiple reference frame motion

estimation,” Proc. of the Conference on

Design, Automation and Test in Europe

DATE’10, March 2010, pp. 393-398.

[22] S. Warrington, S. Sudharsanan, and W-Y Chan,

“Architecture for Multiple Reference Frame

Variable Block Size Motion Estimation,” Proc.

of the IEEE Int. Symp. on Circuits and Syst.,

May 2007, pp. 2894–2897.

[23] C-Y Kao and Y-L Lin, “A Memory-Efficient

and Highly Parallel Architecture for Variable

Block Size Integer Motion Estimation in

H.264/AVC,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol.

18, No. 6, June 2010, pp. 866-874.

[24] T. Moorthy, P. Chen, and A. Ye, “A Scalable

Architecture for H.264/AVC Variable Block

Size Motion Estimation on FPGAs,” WSEAS

Transactions on Signal Processing, Vol. 7, No.

1, January 2011, pp. 23-33.

[25] Huong Ho, “Design and Implementation of a

Fast Multi-Frame Hierarchical Motion

Estimation Circuit,” Proc. of the 29th IEEE

International Conf. on Consumer Electronics

ICCE’2011, Jan. 2011, pp. 533-534.

[26] Y-N. Pan, D-Y. Shen, and T-H. Tsai,

“Reconfigurable Motion Estimation

Architecture Design on H.264/AVC for Power

Aware Mobile Application,” Proc. of the Int’l

SOC Design Conf. ISOCC’08, Nov. 2008, pp.

I246-I249.

[27] L. Lu, J. McCanny, and S. Sezer,

“Reconfigurable Motion Estimation

Architecture for Multi-standard Video

Compression,” Proc. of the IEEE Int’l Conf. on

App. Specific Systems, Architectures and

Processors, July 2007, pp. 253-259.

[28] O. Tasdizen, A. Akin, H. Kukner, and I.

Hamzaoglu, “Dynamically Variable Step

Search Motion Estimation Algorithm and a

Dynamically Reconfigurable Hardware for Its

Implementation,” IEEE Trans. on Consumer

Electronics, Vol. 55, No. 3, Aug. 2009, pp.

1645-1653.

[29] M. Ribeiro and L. Sousa, “A Run-time

Reconfigurable Processor for Video Motion

Estimation,” Proc. of the Int’l Conf. on Field

Programmable Logic and Applications FPL

2007, Aug. 2007, pp. 726-729.

[30] Konstantinos Babionitakis et al., “A real-time

motion estimation FPGA architecture,” J. Real-

Time Image Proc., Vol. 3, No. 1, March 2008,

pp. 3-20.

[31] J. C. Tuan, T. S. Chang, and Chein-Wei Jen,

“On the data reuse and memory bandwidth

analysis for full-search block-matching VLSI

architecture,” IEEE Trans. on Circuits and

Systems for Video Technology, Vol. 12, No. 1,

January 2002, pp. 61-72.

[32] G. Dane and Truong, Q. Nguyen, “Optimal

Temporal Interpolation Filter for Motion-

Compensated Frame Rate Up Conversion,”

IEEE Trans. on Image Processing, Vol. 15, No.

4, April 2006, pp. 978-991.

[33] Byeong-Doo Choi, Jong-Woo Han, Chang-Su

Kim, and Sung-Jea Ko, “Motion-Compensated

Frame Interpolation Using Bilateral Motion

Estimation and Adaptive Overlapped Block

Motion Compensation, ” IEEE Trans. on

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 54 Issue 2, Volume 11, February 2012

Circuits and Systems for Video Technology,

Vol. 17, No. 4, April 2007, pp. 407-416.

[34] Suk-Ju Kang, Dong-Gon Yoo, Sung-Kyu Lee,

and Young Hwan Kim, “Design and

Implementation of Median Filter based

Adaptive Motion Vector Smoothing for Motion

Compensated Frame Rate Up-Conversion,”

Proc. of the 13th IEEE International

Symposium on Consumer Electronics

ISCE’2009, May 2009, pp. 745-748.

[35] John C-H. Ju, Yen-Kuang Chen, and S.Y.

Kung, “A Fast Algorithm for Rate Optimized

Motion Estimation,” Proc. of the International

Symposium on Multimedia Information

Processing, Dec. 1997, pp. 472-477.

[36] M. Tun, K. Loo, and J. Cosmas, “Fast Motion

Estimation using Semi-Hierarchical Approach

for the Dirac Video Codec,” Proc. of the 8th

WSEAS International Conference on

Multimedia Systems and Signal Processing

MUSP’08, April 2008, pp. 273-279.

[37] Y-L Chan and W-C Siu, “An Efficient Search

Strategy for Block Motion Estimation Using

Image Features,” IEEE Trans. on Image

Processing, Vol. 10, No. 8, Aug. 2001, pp.

1223-1238.

[38] S. Ertürk, “Multiplication-Free One-Bit

Transform for Low-Complexity Block-Based

Motion Estimation,” IEEE Signal Processing

Letters, Vol. 14, No. 2, Feb. 2007, pp. 109–

112.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Huong Ho

E-ISSN: 2224-266X 55 Issue 2, Volume 11, February 2012

