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Abstract: - Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional 

public key cryptosystems, has become a very attractive choice in wireless mobile communication technology 

and personal communication systems. In this research, the ECC encryption engine has been implemented in 

Field Programmable Gate Arrays (FPGA) for two different key sizes, which are 131 bits and 163 bits. The 

cryptosystem, which has been implemented on Altera’s EPF10K200SBC600-1, has taken 5945 and 6913 logic 

cells out of 9984 for the key sizes of 131 bits and 163 bits respectively with an operating frequency 43 MHz, 

and performs point multiplication operation in 11.3 ms and 14.9 ms for 131 bits and 163 bits implementation 

respectively. In terms of speed, the cryptosystem implemented on FPGA is 8 times faster than the software 

implementation of the same system. 

. 

Key-Words: - Encryption, ECC, FPGA, Synthesis, Hardware 

 

1 Introduction 
The Internet revolution in the last decade has 

enabled the success of e-commerce or electronic 

commerce over the world. The initial idea of e-

commerce involves the conducting of business 

communication and transaction over remote 

computers. However, with the advent of new 

technology, e-commerce may no longer be limited 

to the use of computers, but involves small devices 

such as PDA, mobile phones, palmtop, and 

smartcard. The emergence of electronic commerce 

over the small devices implies that there is a greater 

need for faster and more secure transaction. 

Conventional public key cryptosystem such as RSA, 

Elgamal, and DSA may no longer be flexible to be 

implemented on these small, memory constrained 

devices. This is due to the fact that these 

cryptosystems require a relatively long key length 

(> 500 bits) to be intractable [1]. 

The candidate remains is the Elliptic Curve 

Cryptosystem (ECC), which was first proposed in 

1985 by N. Koblitz [2] and V. Miller [3].  ECC can 

be built with relatively shorter operand length of 

130-200 bits as compared to RSA, which needs 

operands of 500-1024 bits [4]. This attractive 

feature makes ECC applicable in hardware-

constrained environments such as hand phones and 

smartcards. Moreover, ECC is proven to be secured 

against known attacks as there are no sub-

exponential time algorithms to attack cryptosystems 

in this group [5]. ECC is currently standardized by 

IEEE standards committee [6]. 

ECC has short key length with high 

cryptographic strength as compared to RSA, DSA 

and Elgamal [7,8,9]. There is no known Index 

Calculus Algorithm attack to the setting of ECC, 

while the RSA suffers from differential attack [10]. 

ECC hardware implementation use lesser transistor. 

Currently implementation of 155 bits ECC has been 

reported which uses only 11,000 transistors as 

compared to RSA 512-bits implantation, which used 

50,000 [11]. ECC is considered to be more secured 

than RSA. The largest size broken of ECC is 108 

bits, which approximately needed 65,000 times as 

much as effort as breaking DES. Moreover, 

factoring of 512 bits RSA took only about 2% of the 

time required to break 108 bits ECC [11]. ECC 

provides enhanced security since the underlying 

curve can be freely chosen which allows a frequent 

change of the encryption function [12]. ECC 

provides wide variety of application such as key 

exchange, privacy through encryption, sender 

authentication and message integrity through digital 

signatures [12].  

It is well recognized that hardware 

implementation of cryptographic ciphers provides 

better security and performance than software 

implementation [13]. However, the development 
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cost is higher and the flexibility is reduced as 

compared to software implementation. 

The Field-programmable gate arrays (FPGA) 

offers a potential alternative to speed up the 

hardware realization [14-16]. From the perspective 

of computer-aided design, FPGA comes with the 

merits of lower cost, higher density, and shorter 

design cycle [17-18]. It comprises a wide variety of 

building blocks. Each block consists of 

programmable look-up table and storage registers, 

where interconnections among these blocks are 

programmed through the hardware description 

language [19-21]. This programmability and 

simplicity of FPGA made it favorable for 

prototyping digital system. FPGA allows the users 

to easily and inexpensively realize their own logic 

networks in hardware. FPGA also allows modifying 

the algorithm easily and the design time frame for 

the hardware becomes shorter by using FPGA [22-

23]. 

In this study, a unified framework for FPGA 

realization of ECC is designed by means of using a 

standard hardware description language VHDL for 

two different key sizes. The use of VHDL for 

modeling is especially appealing since it provides a 

formal description of the system and allows the use 

of specific description styles to cover the different 

abstraction levels (architectural, register transfer and 

logic level) employed in the design [24-26]. In the 

computation of method, the problem is first divided 

into small pieces, each can be seen as a submodule 

in VHDL. Following the software verification of 

each submodule, the synthesis is then activated. It 

performs the translations of hardware description 

language code into an equivalent netlist of digital 

cells. The synthesis helps integrate the design work 

and provides a higher feasibility to explore a far 

wider range of architectural alternative [27-28]. The 

method provides a systematic approach for 

hardware realization, facilitating the rapid 

prototyping of the Elliptic Curve Cryptography 

system. The performance of the system is 

investigated and compared to others implementation 

as well. 

 

 

2. Background on Elliptic Curves 
Initially, elliptic curves have been used in the field 

of number theory to devise efficient algorithm for 

factoring integers and primality proving. The use of 

elliptic curve in the field of cryptography was 

proposed by N. Koblitz [2] and V. Miller [3] in 

1985. 

An elliptic curve is an equation of the form:  
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From the above equations, the elliptic curves can 

be split into 2 classes, namely supersingular and 

non-supersingular curves.A supersingular elliptic 

curve is the set of solutions to the equations: 
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A non-supersingular curve is the set of solutions to 

the equations: 
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where  06 ≠a . 

Since non-supersingular curve provides a far 

greater security than supersingular curve [29], non-

supersingular curve has been chosen for this 

research. By studying this kind of equation over 

various mathematical structures, such as real 

number, a ring or a field [30], elliptic curve over a 

finite field has been considered. This is because 

calculations over the real numbers are slow and 

inaccurate due to round-off error and cryptographic 

applications require fast and precise arithmetic [30].  

 

 

2.1 Elliptic Curves Over Binary Fields 

GF(2
n
) 

Finite Field or Galois Field is a set of finite number 

of elements, denoted as GF(q). It shall be noted that 

GF(q) is a finite field consisting of q elements. For 

example, GF(2
2
) consists of 2

2 
elements ( 00, 01, 10, 

11). Every element in GF(2
n
) can be represented as 

a polynomial A(x) = anx
n-1

+…..+a0 with coefficients 

}1,0{∈ia . An elliptic curve with the underlying 

field GF(2
n
) is formed by choosing the curve 

coefficients a2 and a6 within GF(2
n
) (only condition 

is that a6 is not 0).  

 

2.1.1 Galois Field Arithmetic 
Generally, there are 3 important arithmetic 

operations over the binary Galois Field (GF(2
n
)), 

which includes Addition, Multiplication and 

Inversion.  

 

Addition: Addition in GF(2
n
) is a simple operation. 

Addition of 2 elements, C(x) = A(x) + B(x), is 

performed by bitwise XORing the coefficients of 

the two polynomials, as follows:  
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where )2( n
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Multiplication: The multiplication of 2 finite fields 

elements A(x), B(x) )2( n
GF∈  can be performed as 

follows:  

),(mod)()()( xPxBxAxC ×=    (5) 

where P(x) is the irreducible polynomial of the field 

GF(2
n
).  

 

Inversion: Inversion is the most time consuming 

operation in Galois Field. The result is ‘1’ for the 

multiplication operation between a field element and 

its inverse performed. The algorithm to get the 

inverse of an element:     

                                  

)(mod)()( 1
xPxAxB

−
=     (6) 

 

)(mod)()(1 xPxBxA ×≡     (7)  

 

 

2.2 Elliptic Curve Discrete Logarithm 

Problem (ECDLP) 
At the foundation of every public key cryptosystem 

is a hard mathematical problem that is 

computationally infeasible to solve. The discrete 

logarithm problem is the basis for the security of 

many cryptosystems including the Elliptic Curve 

Cryptosystem. More specifically, the ECC relies 

upon the difficulty of the Elliptic Curve Discrete 

Logarithm Problem (ECDLP). In particular, for an 

elliptic curve E, the elliptic curve discrete logarithm 

problem (ECDLP) is given Q, P ∈  E, find the 

integer, k, such that [31], 

 

Q = kP                  (8) 

 

In fact, the security of the elliptic curve 

cryptosystem is based on the presumed intractability 

of this problem. At present, the difficulty of the 

discrete logarithm on elliptic curve is orders of 

magnitude harder than others cryptosystems. This 

feature has made the Elliptic Curve Cryptosystem 

more powerful than others. 

 

 

2.3 Elliptic Curve Cryptography 
The elliptic curve discrete logarithm problem can be 

used as the basis for various public key 

cryptographic protocols such as key exchange, 

digital signatures, and encryption. In this project, the 

encryption process is considered only. In this 

section, the encryption protocol for Elliptic Curve 

Cryptography is given.  

 

2.3.1 Encryption  
System Setup: A Galois finite field GF(2

n
) is chosen 

on an elliptical curve with a point P lying in GF, n 

denotes the order of P. GF, P and n is made public. 

 

Secret Key Generation: 
• Generate a random number k ∈  n-1 

• Compute Q = kP 

• Point Q is made Public. 

• k is made private or secret key. 

 

Encryption Process: 

(Suppose Alice sends a message m to Bob) 

• Look up Bob’s Public Key: Q 

• Represent the message m as a pair of the 

field elements (M1, M2), M1 ∈  GF, M2∈

GF. 

• Select a random integer a, such that  

a ∈  n-1. 

• Compute the point (X1, Y1) = aP. 

• Compute the point (X2, Y2) = aQ. 

• Calculate C1 = X2 × M1 and C2 = Y2 × M2. 

• Transmit the data C = (X1, Y1, C1, C2) to 

Bob. 

 

2.3.2 Decryption 
(Bob gets the text message C from Alice) 

• Compute the point (X2, Y2) = k (X1, Y1), 

using its private key k. 

• Recover the message by calculating M1 = 

X2
-1 

× C1 and M2  = Y2
-1

 × C2. 

 

 

3. Design Overview 

Figure 1 shows the top level design of the elliptic 

curve encryption engine. It consists of three major 

functional blocks, which are arithmetic operation 

block, control block, storage block. The arithmetic 

operation block is used to perform the arithmetic 

operation such as point doubling and point addition. 

The control block is used to control the arithmetic 

operation block in order to perform the encryption 

process. Lastly, the storage block is used to store the 

intermediate result from the arithmetic operation as 

well as the coefficients of the elliptic curve. 

 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS M. B. I. Reaz, J. Jalil, H. Husian, F. H. Hashim

E-ISSN: 2224-266X 84 Issue 3, Volume 11, March 2012



 

Fig. 1: The top level design of the cryptosystem

 

 

3.1 The Design Hierarchy  
 

 

Fig. 2: The design hierarchy of elliptic curve 

cryptosystem 

  

 

Figure 2 shows the design hierarchy of the 

elliptic curve encryption engine. The entire design 

process is divided into three levels. The low level 

defines the 3 basic finite field arithmetic operations, 

which are field addition, inversion and 

multiplication. By combining these operations, one 

can realize the operations of point doubling and 

point addition. The highest level of operation is 

point multiplication, which is the core operation in 

of the system.  

 

Point multiplication algorithm: The task of point 

multiplication is to compute kP, where 

positive integer and P is a point on the elliptic 

curve. This operation, as mentioned earlier, forms 

the basis of public key cryptography using elliptic 

curve. The standard method for point mu

is the double-and-add algorithm as given in [31]. In 

this algorithm, all the bits in binary representation of 

k except the first one are traversed from left to right. 

For each ‘0’, a point doubling operation will be 

performed, and for each ‘1’, a point doubling 

followed by a point addition operation will be 

performed. Since for a random n bit number 

average of n/2 bits is ‘1’, the total number of 

 

1: The top level design of the cryptosystem 

 

2: The design hierarchy of elliptic curve 

Figure 2 shows the design hierarchy of the 

elliptic curve encryption engine. The entire design 

process is divided into three levels. The low level 

defines the 3 basic finite field arithmetic operations, 

which are field addition, inversion and 

n. By combining these operations, one 

can realize the operations of point doubling and 

point addition. The highest level of operation is 

point multiplication, which is the core operation in 

The task of point 

, where k is a 

is a point on the elliptic 

curve. This operation, as mentioned earlier, forms 

the basis of public key cryptography using elliptic 

curve. The standard method for point multiplication 

add algorithm as given in [31]. In 

this algorithm, all the bits in binary representation of 

k except the first one are traversed from left to right. 

For each ‘0’, a point doubling operation will be 

, a point doubling 

followed by a point addition operation will be 

bit number k, a 

bits is ‘1’, the total number of 

operations for a complete point multiplication is 

about n doublings and n/2 addition. 

 

 

3.2 Results and Discussion
Results were gathered from Quartus II after the 

synthesis process. Since two

have been implemented, which are 131 and 163, the 

results for both fields are given so that a comparison 

can be made. The results are presented in terms of 

maximum operating frequency and number of logic 

cells (LC) required. The devi

implementations is EPF10K200SBC600

family FLEX10KE.  

Table 1 shows the synthesis result from the top 

level of the Elliptic Curve Cryptosystem. For 131 

bits key, the required area is 5945 logic cells with a 

maximum operating frequen

163 bits key, 6913 logic cells are required with a 

maximum frequency of 43.38 MHz. From this 

result, it shows that to increase the security of the 

system from 131 bits to 163 bits, an additional of 

about 1000 logic cells are required. 

speed of the system (maximum frequency) does not 

degrade much with the increase size of the key.

 

 

Table 1: The synthesis result of the final design

 

Key 

Length 

(bits) 

Area 

(LC) 

 

Clock 

Period 

(ns)

131 5945/9984  

(59.8%) 

21.8

163 6913/9984 

(69.2%) 

23.0

 

 

3.3 Timing Simulation 
3.3.1 Encryption  

The timing simulation for encryption process is 

shown in Figure 3 and 4. The “encryption” port is 

used to determine which operation to be performed. 

When it is ‘1’, the encryption process was carried 

out. Conversely, when it is ‘0’, the decryption 

process is executed. For encryption process, the 

input parameters are P = 

and the original message is (

encryption process, the encrypted data is:

 

(4B24C3FB55749194B24C3FB5574919424,586C9

34F00F2E57BFF2EAA89E8B02E53B,1999D47

2D947B7EDE10F8F83631D21,77D3A7D446D15B

295791566A912F91D79) 

operations for a complete point multiplication is 

addition.  

esults and Discussion 
Results were gathered from Quartus II after the 

Since two different key lengths 

have been implemented, which are 131 and 163, the 

results for both fields are given so that a comparison 

can be made. The results are presented in terms of 

maximum operating frequency and number of logic 

cells (LC) required. The device chosen for all 

implementations is EPF10K200SBC600-1 from 

Table 1 shows the synthesis result from the top 

level of the Elliptic Curve Cryptosystem. For 131 

bits key, the required area is 5945 logic cells with a 

maximum operating frequency of 45.87 MHz. For 

163 bits key, 6913 logic cells are required with a 

maximum frequency of 43.38 MHz. From this 

result, it shows that to increase the security of the 

system from 131 bits to 163 bits, an additional of 

about 1000 logic cells are required. However, the 

speed of the system (maximum frequency) does not 

degrade much with the increase size of the key. 

Table 1: The synthesis result of the final design 

 

Clock 

eriod 

(ns) 

Maximum 

Operating 

Frequency(MHz) 

21.8 45.87 

23.0 43.48 

 

The timing simulation for encryption process is 

shown in Figure 3 and 4. The “encryption” port is 

used to determine which operation to be performed. 

When it is ‘1’, the encryption process was carried 

out. Conversely, when it is ‘0’, the decryption 

is executed. For encryption process, the 

 (1, 2), Q = 2P = (6, D) 

and the original message is (A, B). After the 

encryption process, the encrypted data is: 

4B24C3FB55749194B24C3FB5574919424,586C9

34F00F2E57BFF2EAA89E8B02E53B,1999D47494

2D947B7EDE10F8F83631D21,77D3A7D446D15B
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Input:   

P = (1, 2), Q = 2P = (6, D), plain message = (A, B), 

secret key, a = 6 

 

Calculation: 

6P=(X1,Y1)=(4B24C3FB55749194B24C3FB557491

9424,586C934F00F2E57BFF2EAA89E8B02E53B) 

6Q=(X2,Y2)=(3C3C3758BDFB68A6D9B657E6B3F

8F8307,69A74E89C0FBB1049E82C20F67046712) 

C1=X2×M1 

      =3C3C3758BDFB68A6D9B657E6B3F8F8307×A 

   =1999D474942D947B7EDE10F8F83631D21      

C2=Y2×M2 

    =69A74E89C0FBB1049E82C20F670467126 × B 

    = 77D3A7D446D15B295791566A912F91D79 

 

Output:  

Encrypted data=(X1, Y1, C1, C2)   

=(4B24C3FB55749194B24C3FB5574919424,586C

934F00F2E57BFF2EAA89E8B02E53B,1999D4749

42D947B7EDE10F8F83631D21,77D3A7D446D15

B295791566A912F91D79). 

 

3.3.2 Decryption 

For decryption process, the timing simulation is 

shown in Figure 5 and 6. To decrypt the encrypted 

message form during encryption simulation, the 

decryption simulation is performed. From this 

simulation, the original message, which is (A, B) is 

recovered.  

 

Input:  

Encrypted message (X1, Y1, C1, C2) =                       

(4B24C3FB55749194B24C3FB5574919424,586C9

34F00F2E57BFF2EAA89E8B02E53B,1999D47494

2D947B7EDE10F8F83631D21,77D3A7D446D15B

295791566A912F91D79). 

Decryption key, n = 2  

 

Calculation:   

(X2, Y2) = 2(X1, Y1) = 

(3C3C3758BDFB68A6D9B657E6B3F8F8307,  

  69A74E89C0FBB1049E82C20F670467126) 

X2
-1

 = 407288F2DF187A49DC4E01F56E0ED720D 

Y2
-1

 = 55ACCBB167058CC9869E3AF1E945804EF 

M1 = X2
-1

 × C1 = A 

M2 =
 
Y2

-1
 × C2 = B 

 

Output:   

(M1, M2) = (A, B) 

 

 

 

3.4 Performance Analysis 

The timing requirement for various elliptic curve 

operations is listed in Table 2. This timing 

requirement is measured by assuming that the 

system is operating on maximum frequency. This 

means that the clock period for 131 bits key system 

is 21.8 ns and 163 bits key system is 23.0 ns. It is 

noted that the timings presented in Table 2 are only 

average value because different point on elliptic 

curve will yield slightly different value.  

From the result, the time required to compute a 

131 bits point multiplication is about 11.3 ms. This 

is estimated by assuming that the number of ‘1’ and 

‘0’ in the secret key are the same. For 163 bits 

implementation, it requires about 14.9 ms to 

perform the same operation. This is about 8 times 

faster than software implementation, where an 

average of 123 ms is required to compute 176 bits 

multiplication.  

 To estimate the throughput of the 

cryptosystem, the following formula can be used: 

 

speed encryption

sizeskey 2×
=Throughput    (9) 

 

 

Table 2: Times for various elliptic curve operations 

 

Key 

length 

(bits) 

Operations Average 

Timing 

131 Finite field addition 40.0 ns 

Finite field multiplication 3.38 µs 

Finite field inversion 47.8 µs 

Point addition 53.3 µs 

Point doubling 59.9 µs 

Point multiplication 11.3 ms 

Encryption 22.6 ms 

Decryption 11.4 ms 

163 Finite field addition 45.0 ns 

Finite field multiplication 3.57 µs 

Finite field inversion 50.5 µs 

Point addition 56.3 µs 

Point doubling 63.2 µs 

Point multiplication 14.9 ms 

Encryption 29.8 ms 

Decryption 15.9 ms 

 

It is noted that the estimation takes into 

consideration that in each encryption process, 2 

pieces of data can be encrypted using coordinate x 
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and y, which have size equivalent to the system key 

sizes.  

By using the above estimation, the throughput of 

131 bits implementation is 11.6 kbits / s and for 163 

bits implementation is 10.9 kbits / s. 

 

 

4 Conclusion 
Hardware implementation of Elliptic Curve 

Cryptography encryption engine has been shown in 

this paper. The system is designed using VHDL, and 

implemented on a FPGA, EPF10K200SBC600-1 by 

Altera. For 163 bits key length, the system operates 

at a frequency of 43 MHz and performs the point 

multiplication operation in 14.9 ms. This is much 

faster than the software implementation, where 

about 120 ms is required for the same operation.   

The cryptosystem is implemented in 2 different 

key lengths, 131 bits and 163 bits. From the 

synthesis result, increasing form 131 bits to 163 bits 

it only requires an additional of about 1000 logic 

cells in the FPGA, without degrading much on the 

timing performance. However, the security is gained 

by increasing 131 bits to 163 bits which is indeed 

the most attractive feature of elliptic curve 

cryptography.   

In summary, it is shown that elliptic curve 

cryptosystem can be efficiently implemented on a 

commercial FPGA, resulting in very flexible 

implementation with increased speed performance 

over the software solution. 
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Fig. 3: Timing simulation for encryption process (part 1) 
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Fig. 4: Timing simulation for encryption process (part2) 

 

 

 

 

 

 

 
 

Fig. 5: Timing simulation for decryption process (part 1) 
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Fig. 6: Timing simulation for decryption process (part 2) 
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