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Abstract—Introduction: The need for designing and developing personalized drugs for various diseases has become a 
challenging research topic at present. The individual variation towards susceptibility of a drug depends upon the 
genomic, epigenomic, metagenomic and environmental genomic factors. Areas covered: The ‘Single Nucleotide 
Variant (SNV)’ has been identified as the functional feature corresponding these factors. The need for personalized 
drug designing for the ERBB2 mutation related to Breast Cancer has been proposed by taking the South Asian (SA) 
population as the test sample. The SNVs corresponding to SA population for the ERBB2 mutation has been 
identified. The ‘convolution neural network-based deep learning technique’ (DeepCNN) has been used for 
computing the clinical significance of the SNVs, whose clinical significance values are unknown, using the 
functional variants as the attributes for the ethnic group. Expert opinion: The population has been classified into four 
groups based upon the probability of variants. The population-specific gene models and protein models have been 
designed. The potential molecules that control ERBB2 mutation specific to the South Asian population have been 
identified through docking/interaction score values 
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1. Introduction 

HE ‘triple negative breast cancer (TNBC)’ is a type of 
breast cancer characterized by its  unique level of 

metastasis and molecular pattern and with clinically negative 
response for expressions of estrogen and progesterone 
receptors and HER2 proteins (That is why it is known as triple 
negative breast cancer). The common suggested drugs for 
controlling the over expression of HER2 are Trastuzumab, 
Pertuzumab, Lapatinib, Neratinib and Afatinib[1]. However, 
in most cases of HER2 mutations, a very fast anti-cancer drug 
resistance is developed, making further treatment difficult [2]. 
However, Lapatinib has been suggested as a potential drug for 
controlling the ‘metastatic breast cancer (MBC)’ [3]. The 
Lapatinib has been identified as a dual ‘tyrosine kinase 
inhibitor’ against the mutations, HER1 (EGFR) and HER2 

(ERBB2) and is found to be useful especially for patients who 
develop resistance towards the common drugs, Trastuzumab 
and Taxanes [4], while taking along with endocrine therapies. 

The drug inhibits phosphorylation of the gene and prevents 
the signaling mutations ‘ERK1/2 and P13l/AKT’ by interacting 
with the 'ATP binding site' of the receptor [5]. It has been 
found that Lapatinib is sufficiently active while using it as a 
single drug or in combination with Trastuzumab, Capecitabine 
and Ixabepilone, especially on ‘Trastuzumab-resistant cell 
lines’ [6]. The prognosis and treatment strategies of breast 

cancer vary for different classes of the disease namely, 
metastatic, ductal carcinoma in situ (DCIS), invasive ductal 
carcinoma (IDC) and triple-negative breast cancer [7]. The 
ERBB2 amplification is found in most of the ‘invasive breast 
carcinomas’ resulted by stimulating growth factor signalling 
pathways such as P13K-AKT-mTOR pathway [8]. The HER2 
mutation is generally unaffected by most of the common 
drugs/ligands [9], which may give way to the propagation of 
the 'growth factor signalling pathways’, leading into 
unexpected outburst or continuation of the disease [10].  

However, the drug response, to a large extend, is found to 
vary from person to person. The ‘individual variation’ towards 
proneness of the disease as well as gene expression profile of 
the mutations suggests a pharmacogenomic approach in 
designing a drug molecule. This necessitates the need for 
assessing the involvement of genomic, epigenomic, 
metagenomic and environmental genomic factors to study the 
susceptibility of Lapatinib, its derivatives and the analogs of 
both [11].  

Among them, ‘genomic factor’ includes the populations-
wise variations associated with mutations and identifying their 
significant genomic variants (genomic markers) [12].  The 
epigenomics involves the variations within the DNA structure 
and histone proteins such as DNA methylation, histone 
modification and miRNA mediated modification without 
undergoing mutations leading to some functional alterations 
[13]. The metagenomic includes the analysis of the 
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involvement of associated microbes in altering the functions 
of DNA [14]. The environmental genomics includes the 
involvement of environmental factors in gene mutations [15]. 
In fact, identification of the genetic markers corresponding to 
these ‘omic factors’ is a significant step in Pharmacogenomics 
[16]. 

The ‘Single Nucleotide Variation (SNV)’ has been 
identified as the most suitable variant for incorporating 
individual variation [17-19]. However, the significance of 
each SNV for any ethnic group depends upon its occurrence, 
leading into the need for a ‘frequency-wise prioritisation and 
classification’ of the variants. The ‘CNN based deep learning 
technique’ (deep convolution neural network-DeepCNN) can 
be used as a useful platform for predicting the significance of 
the SNVs if they are unknown or not clinically computed [20]. 

The analysis of clinical trials suggests that the progression 
of the disease and death are found to be decreasing among 
patients from the US population while taking Lapatinib [21]. 
However, the effect of consuming Lapatinib among Indian 
population is not that profound or in some cases at least it is 
having the reverse effect [22].This is a clear case of variation 
of drug action among different ethnic groups.  The ‘South 
Asian (SAS)’ population has been chosen for the analysis as 
well as the drug action of Lapatinib, its derivatives and 
analogs.    

The Side effects are also reported as varying among patients 
in both the ethnic groups [23]. Hence there is a need to 
identify a new strategy to study the individual variation 
towards the drug susceptibility among the populations and 
design and develop a population-specific potential molecule to 
down-regulate ERBB2 mutation. 
 

2.  Materials and Methods 

An outline of the methodology adopted for the 
pharmacogenomic analysis has been included in 
Supplementary material 1. The details of which are included 
in the following sections. 

  

2.1 Genomics 

The genes related to breast cancer have been identified 
using Gene Cards and NCBI [24, 25]. Expression Atlas, a 
database with the data consisting of expression analysis of 
genes in various disease tissues has been used for collecting 
the microscopic images and computing the gene expression 
profile of TNBC [26]. The SNVs corresponding to genomics, 
epigenomics, metagenomics and environmental genomics for 
the gene ERBB2 have been identified for the SA population 
using the tool, ‘SNPNexus’ from the1000 genome project. The 
frequency of occurrence and the conservation score values for 
the above SNVs have been noted down [27]. 

 

 2.2 Functional analysis of  variants 

The functional analysis of SNVs has been carried out using 
the tools SIFT(measuring the effect of amino acid substitution 
on protein function based on sequence homology and the 
physical properties), POLYPHEN (finding the impact of 
amino acid substitutions on the structure and function of  
human proteins), Combined Annotation-Dependent Depletion 

-CADD (scoring the deleteriousness of single nucleotide 
variants as well as insertion/deletions variants in the human 
genome.),  Mutation Assessor (quantifying the functional 
impact of protein mutations), FATHMM (measuring the 
functional consequences of non-synonymous single nucleotide 
variants (nsSNVs) and non-coding variants.), FATHMKL 
(functional Consequences of Non-Coding and Coding Single 
Nucleotide Variants) and Pmut scores (pathological variants 
on proteins) [28]. Based upon the clinical significance values, 
the SNVs have been classified into four functional classes 
namely, class-1 (1.0-0.80), class-2 (0.79-0.60), class-3 (0.59 to 
0.40) and class-4 (0.39-0.00).  However, out of 60 SNVs 
identified for the gene, only 35 variants were having 
experimental clinical significance values. The clinical 
significance values of the remaining 25 SNVs have been 
predicted using deep CNN based deep learning technique 
following a multiclass classification strategy. Few of the 
SNVs with their functional significance score values have 
been included in (Table 1). The complete list of the SNVs has 
been included in the Supplementary material 2. 

 
Table 1. The SNVs with their functional significance score 
Where A (Freq. SAS), B (SIFT), C (Polyphene2), D (Pmut 

score), E (Conservation Score), F (FATHMM), G 
(FATHMMK), H (Raw Score), I (PHRED score) and J 
(Clinical significance) are the parameters of variants. 
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2.3 Classification of variants 

The SNVs have been added in the ERBB2 gene based upon 
their ‘clinical significance scores values (CSSV)’ generating 
four classes of model genes for the population namely, CSSV 
between 0.80 and 1.00 as class 1 (or probability of variation 
80-100%), CSSV between 0.60-0.79 as class 2 (or probability 
of variation 60.00-0.79%), CSSV between 0.40-0.59 as class 3 
(or probability of variation 40-59%) and CSSV between 0.00-
0.39 as class 4 (or probability of variation 0-39%). 
The DeepCNN model has been used to predict the CSSV of 
SNVs whose values are unknown or not yet clinically 
characterized [29]. The reported variants were considered as 
training set and the variants whose CSSV are unknown was 
included in the testing set. The model has been designed on 
python platform and has been optimized for 1000 epochs. 

 

2.4 Generation of Model 

The mutant gene models for each class of SNVs have been 
generated by inducing the variation into the original gene 
sequence across the population. The corresponding protein 
models have been generated by transcription and translation of 
the gene models using Expasy Translate [30] and homology 
modelling of the translated amino acid sequences through 
Swiss Model. The model structures have been evaluated 
through the GQME score,  LQE (‘Local Quality Estimate’)and 
‘global quality estimate-QMean’ (denoting the ‘degree of 
nativeness’), ‘Ramachandran plot’ (which gives the chemical 

stability of residues presentbased on the torsional angles - phi 
(φ) and psi (ψ) - of the amino acid residues) [31]. 
 

2.5 Docking Studies 

All the docking studies have been carried out using the 
CDOCKER algorithm [32] using Accelrys Discovery Studio. 
The parameters used are: Force Field: CHARMm, Fold 
Potential was set as False, Grid Extension: 8, Ligand Partial 
charge method: CHARMm, Final Minimization: Full Potential 
and the Sphere size was set to: -0.0493, 3.29459, 10.9589, 17. 
 

2.6 The design of personalized drugs 

The inadequacy of Lapatinib in binding with the model 
protein molecules as efficiently as ‘the control standard 
protein’, 1XKK suggests the requirement for designing new 
molecules specific to the model proteins or some derivatives 
of the drug-specific to the SAS population [33]. The 
‘structure-based pharmacophore mapping’ of the model 
proteins has been carried out using ZINCPharmer [34] to 
identify molecules in the ZINC database having 
complementary pharmacophoric similarity with the model 
proteins, which gave 385 molecules. 
The drug action of Lapatinib is due to the binding of the ‘-
NH-CH2-CH2-(SO2)CH3’ end with the ATP-binding domain 
of the protein. Further, the kinase domain of Lapatinib has 
been identified and modifications have been made within the 
domain by substituting 9 groups (Fig 1): -NH2, -CH3, 
CH3CH2OCO-, CH3(CH2)3OCO-, CH3(CH2)2OCO-, 
CH3SO2CH2CH2-, -CH(CH3)2  and  cyclohexyl as shown in 
(Fig 2), generating 9 Lapatinib derivatives [35]. 
 

 
 
Fig 1. Lapatinib  and its kinase domain. a. Lapatinib, b. 
Lapatinib with kinase domain highlighted with the -NH group 
repaced by (-CH2-NH2) and c. Lapatinib with a substitution in 
kinase domain-proposing substitutions in the -R group 
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Fig 2. The proposed derivatives of Lapatinib 
 
Moreover, 70 pharmacophoric analogs of these derivatives 
have been generated from Zinc database. Altogether, 
Lapatinib, 9 derivatives of Lapatinib, 70 pharmacophoric 
analogs of these derivatives and 384 structure based 
pharmacophoric analogs of model proteins, (a total of 464) 
have been taken for the docking studies. 
The molecules with high docking scores were further subject 
to Molecular Dynamic simulation and ADMETox screening to 
identify the potential drugs/analogs for SAS population to 
control ERBB2 mutation [36]. 
 

2.7 Evaluating docking studies by MD 

simulation of  ligand-target complex 

The stability of ligand-target complex has been studied by 
analysing the retention of ligand molecule in the functional 
domain of the target protein through Molecular Dynamic 
(MD) simulation. The simulation has been carried out with 
NVE ensemble using Molecular Operating Environment 
(MOE) where total number of particles in the system (N), 
volume of the system (V), as well as the total energy of the 
system (E) is kept constant [37]. This meets the kinetic 
requirement of the drug action and has been carried out. The 
molecules were further subjected to pharmacokinetic 
screening using SwissADME and ProToxII [38, 39], drug 
likeness and QSAR analysis using MOE [40]. 

3. Results 

3.1 Genomics  

 It has been identified that approximately1600 genes are 
directly or indirectly involved in causing breast cancer. Hence 
to study the influence of each mutation in causing the disease, 
a gene expression profile has been carried out from the 

microscopic images of the cancer cell line samples kept in the 
‘Expression Atlas. It has been found that TOP2A and ERBB2 
genes are highly expressed in breast cancer cell lines Fig 3. 
However, it is reported that the ERBB2 mutation is 
functionally more significant than TOP2A for causing 
metastatic cancer. Hence ERBB2 has been included in the 
analysis.  

 

 
 

Fig 3. The accuracy versus epoch (iteration) graph of the 
DeepCNN model 

 
The population analysis of ERBB2 variations showed that; 

314 SNVs were found in SAS, 318 SNVs in AMR, 257 in 
EUR, 485 SNVs in AFR and 239 variations among EAS 
populations.  There were 43 variations found commonly 
among all the 5 populations; rs2517959, rs2643194, 
rs1565923, rs2934967, rs2517960, rs2517951, rs34284966, 
rs4252639, rs2517961, rs2643195, rs148150809, rs2952156, 
rs148325095, rs188492389, rs34006795, rs2952157, 
rs2904765, rs111700892, rs2952155, rs11653998, rs2904766, 
rs2934971, rs4252608, rs111947409, rs55717377, 
rs35542329, rs1810132, rs115334808, rs2904768, 
rs79747793, rs4252624, rs2088126, rs185106091, 
rs12947247, rs4252627, rs1136201, rs35797841, rs4252596, 
rs113231716, rs903506, rs1058808, rs4252661 and 
rs2952158. 

 

3.2 Functional analysis and Classification of 

variants  

 During the analysis, 133 SNVs for AFR, 80 SNVs among 
AMR, 200 variants among EAS, 230 variants within EUR 
population and sixty SNVs for the South Asian (SAS) 
population of the gene ERBB2 have been identified to be 
involved in epigenomic and metagenomic modifications. 
Other than 25 SNVs out of a total of 60 for the SAS 
population, the CSSV of SNVs of all other populations has 
been reported. To include the CSSV values of the remaining 
25 SNVs of SAS population, the Deep-CNN based predictive 
model has been used, which shows a prediction accuracy of 
72.56% (Supplementary material 3).  

 
After the classification, for SAS population, 28 SNVs are 

found in ‘class1’ (with CSSV 0.80-1.00), 13 SNVs are in 
‘class-2’ (with CSSV 0.60-0.79), 14 SNVs are in ‘class-3’ 
(with CSSV 0.40-0.59) and the remaining 5 SNVs are in 
‘class-4’ (with CSSV 0.00-0.39) (Table 2). The SNVs 

 

 
Fig. 3 mapping nonlinear data to a higher dimensional feature space 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2021.18.6

Hima Vyshnavi A. M, 
P. K. Krishnan Namboori

E-ISSN: 2224-2902 54 Volume 18, 2021



 

 

included in ‘class-1’ are the most frequent and significant 
SNVs corresponding to susceptibility towards drug action 
among each population. Hence the ‘primary gene model’ to be 
designed should be for this class by adding the variants of 
these SNVs to the ERBB2 gene. The classification models for 
other populations have been included in the supplementary 
materials. 

 
Table 2. The SNVs after classification 

 
Mode

l 
Class 1 Class 2 Class 3 Class 4 

SAS rs376524
324, 
s144533
600, 
rs113619
125, 
s199668
084, 
rs425263
3, 
rs547041
600, 
rs527779
103, 
s566053
951, 
rs373824
622, 
s568793
816, 
rs531563
820, 
s574436
396, 
rs141116
145, 
s149210
045, 
rs425265
6,  
rs113620
1, 
rs377649
991, 
s539683
889, 
rs564064
363 

rs3765243
24, 
rs1445336
00, 
rs1136191
25, 
rs1996680
84, 
rs4252633
, 
rs5470416
00, 
rs5277791
03, 
rs5660539
51, 
rs3738246
22, 
rs5687938
16, 
rs5315638
20, 
rs5744363
96, 
rs1411161
45, 
rs1492100
45, 
rs4252656
,  
rs1136201
, 
rs3776499
91, 
rs5396838
89, 
rs5640643
63 

rs56558294
3, 
rs35466868
, 
rs1801201, 
rs18257260
4, 
rs14278337
1, 
rs19990536
4, 
rs56277394
8, 
rs54688684
5 

rs1931710
26, 
rs5546891
97, 
rs5348258
55,  
rs4252596
, 
 
rs2014707
25 

EAS rs251796
1, 
rs295215
8 

rs2517960
, 
rs1165399
8 
rs4252627
, 
rs903506 
rs1058808
, 

NIL rs1922133
66, 
rs1176417
71 
rs5693740
38, 
rs5622124
09 

rs2904765 
rs2517951
, 
rs2904766 
rs2517959
, 
rs5571737
7 

rs1825258
06 

AFR 

rs295215
6, 
rs208812
6 
rs295215
5, 
rs293497
1 
rs295215
7, 
rs156592
3 
rs264319
4 
,rs29521
58 
rs251796
1 

rs2643195
, 
rs2517954 

NIL rs5451224
42, 
rs5422802
23 
,rs531509
829, 
rs1880397
65 
,rs553800
936, 
rs5648680
50 
,rs547297
049, 
rs5700620
04 
,rs367611
030, 
rs5359597
08 
,rs548386
033, 
rs5637375
84 
,rs531034
426, 
rs5461721
66 
,rs529439
569, 
rs5582789
77 
,rs552970
665, 
rs5284513
67 

EUR 

rs251796
0, 
rs116539
98 

rs2517960
, 
rs1165399
8 
rs4252627
, 
rs903506 
rs1058808
, 
rs2904765 
rs2517951
, 
rs2904766 
rs2517959
, 

NIL rs2132141
, 
rs4252646 
rs4252647
, 
rs4252651 
rs4252652
, 
rs5357169
47 
rs1501659
42, 
rs4252660 
rs1483250
95, 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2021.18.6

Hima Vyshnavi A. M, 
P. K. Krishnan Namboori

E-ISSN: 2224-2902 55 Volume 18, 2021



 

 

rs5571737
7 
rs2904768
, 
rs1810132 
rs2952157
, 
rs2643195 
rs2934971
, 
rs1565923 
rs2934967
, 
rs2952156 
rs2088126
, 
rs2643194 
rs2952155
, 
rs2517961 
rs2952158 

rs1851060
91 
rs1832866
52, 
rs5654080
41 
rs1833734
85, 
rs5660671
22 
rs1177741
98, 
rs1402721
56 
rs1810587
40, 
rs5515110
55 
rs5358053
29, 
rs1510273
02 
rs1411161
45, 
rs5623094
75 
rs5401162
45, 
rs1851183
99 
rs1924866
70 
,rs143319
500 

AMR rs295215
5, 
rs251796
1 
rs295215
8 

rs5571737
7, 
rs2904768 
rs2904765
, 
rs2643195 
rs2517954
, 
rs2517956 
rs2517959
, 
rs2904766 
rs1810132
, 
rs2952156 

rs4252627, 
rs11653998 
rs903506, 
rs1058808 
rs2517955, 
rs2517960 
rs2517951 

rs5660540
09, 
rs5440007
28 
rs5777676
74, 
rs5626019
00 
rs5322125
27, 
rs1880397
65 
rs1917605
37, 
rs5321562
55 
rs3676110
30 

 

3.3 Generation of Model  

De By transcription and translation, sequences 
corresponding to protein models for SAS, AFR, AMR, EUR 
and EAS have been generated (Supplementary material 4). 
The four protein models of different gene classes for SAS 

population are as follows: 
>model 1 

RPPKVLGLQVMAVVCDGWEAVWCLGVCGLPYPLSVP
LSPGSIRDGWCGLPICLPPSGHLPDIHGAAGDTAYALWL
PLRPCPGKPQKPGLPGPAELVYADCQGMHLGSLQVSPE
QTPMSTRGMSYLEDVRLVHRDLAARNVLVKSPNHVKI
TDFGLARLLDIDETEYHADGGKVRMCGVMVCDGGCW
EGWVRSHGWREDESWDGENYGATSACEGREGAACAP
PCRVCALPRIRERPGRVCLLASHLPLLPAMMLDSMTFG
AKPYDGIPAREIPDLLEKGERLPQPPICTIDVYMIMVKC
AWLSCAGCLEEGGRSWVEEPTRGMKGDQDVCRPRSPS
MLGASKPSCIPFTVKVQSHETIAPLKSSLGDRAKPHLKK
IKKQTKRKKKLKGKLEEMPKVLAEDPRVWCYFSTTMI
DSECRPRFRELVSEFSRMARDPQRFVVIQVLGLCAPSLP
VAKSTLLQRVGRRDES 

>model 2 

LKNMRGRTFAVLFTTLPPAQNLAYGRRMVLHMNKTTP
MDIMSNILKCSNAPHMITTHCNLNLPDSSDPSISASMPC
MWVPYSSNVYMNKALYFSWSEEGNRPMNYINGGRAI
QWKAEQKLIGMGQICNVLAWMLVRLSMVVIFENISRKI
KKKVEIVLASGGKWDYVPDQMGFLHVGQAGLELPTSG
DPSASASQSARITGVSHRAWPGTLFIFVPLKVCTVCVYN
QLKTKKSMPVIPALKEAEAGGRSPEVRSSRPAMQMIFL
VAFSFLMDCLLLISILVNSRLLVFFVLM 

>model 3 

SPAFWASMAASMSGKTAEAWAPRTCMMLDSMTFGAK
PYDGIPAREIPDLLEKGERLPQPPICTIDVYMIMVKCAW
LSCAGCLEEGGRSWVEEPTRGMKGDQDVCRPRSPSML
GASKPSCIPFTVKVQSHSMIAPLKSSLGDRAKPHLKKIK
KQTKRKKKLKGKLEEMPKVLAEDPRVWCYFSTTMIDS
ECRPRFRELVSEFSRMARDPQRFVVIQVLGLCAPSL 

>model 4 

YPCPQEAYVMAGVGSPYVSRLLGICLTSTVQLVTQLMP
YGCLLDHVRENRRSLGSQDLLNWCMQTPATCHDARLL
SRTSGSVHMCVAELCWLPGGGWEVLGGGAHKGHERG
PGCMMSAKIPGVGVMLGWGGATILPL 

 
The 3D protein target models have been generated by 

‘homology modelling’. Three structures have been obtained 
for each model protein sequence. The model structures for 
different population are shown in Supplementary material 5. 

The quality of the model structures were evaluated using 
the parameters, GQME (Global Model Quality Estimation), 

QMean (the degree of nativeness), Cbeta, All-atom and 
Solvation and Torsion angle potential. The Z-score values 
(standard deviation from the mean value) of these parameters 
have been included in (Table 3). 

The high GQME score values of the models support 
reliability of the structures. The QMEAN score measures the 
degree of nativeness. The low (close to zero) QMEAN score 
value suggests the model structure to be comparable with the 
experimental ones. Similarly, the local geometry of the models 
has been studied using a short-range torsion angle potential 
(over three consecutive amino acids) and a long-range 
interaction using C-beta level and all atoms. The solvation 
energy is calculated to investigate the possibility for solvation. 
All these evaluation techniques support the quality of model 
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structures [41]. 
 
Table 3. Protein Model Evaluation Parameters 

 

Protein 

 
 

SAS 

AMR 

EUR 

AFR 

ESA 

 
The model is further evaluated through MD simulation by 

studying the time-evolved behaviour of the protein [42].  The 
deviation of model structure from the template can be studied 
through ‘root mean square deviation (RMSD)’ during the 
‘molecular dynamics (MD)’ simulations. The smaller the 
deviation, higher will be the stability of the structure of 
protein. Screened models were having RMSD variations 
below 3 Å suggesting the structures to be stable. 

The kinase domain of the protein models has been used for 
the docking studies (Fig.4). The reported kinase protein, 
1XKK has been used as the standard target. 

The protein characterization has been carried out for the 
protein models of different populations. It has been found that 
the number of amino acids, molecular weight, PI value, 
GRAVY value, and aliphatic index varied for different protein 
models. The protein structure stability has been studied 
through Ramachandran plot as well as molecular dynamic 
simulation. It has been identified that the properties of protein 
models for EAS and SAS populations were similar where as it 
is different for other populations (Supplementary material 6.) 

 

3.4 Pharmcophore Mapping and Interaction 

analysis 

NThe amino acid residues LEU-718, GLY-719, SER-720, 
GLY-721, ALA-722, PHE-723, GLY-724, THR-725 and 
MAT-726 were considered as the pharmacophore of the 
protein model. The pharmacophore mapping has been carried 
out against Zinc database which consists of structures of 
synthesized chemical molecules including FDA approved 
drugs. 2400 molecules were found to have pharmacophores 
complementary to the target protein. These molecules were 
further subjected to descriptor analysis, interaction analysis. 
Lapatinib was having comparatively good interaction with the 
target proteins when compared to the other molecules. Thus 
Lapatinib has been considered for further analysis. 

The druggability has been primarily evaluated through 
docking studies using 1XKK and the model proteins as the 
target, Lapatinib, 9 derivatives of Lapatinib, 70 
pharmacophoric analogs of these derivatives and 384 potential 
drug analogs predicted from the ‘structure based 
pharmacophoric mapping’ of model proteins of different 
population (SAS, AMR, EUR, AFR and EAS) and with ligand 
molecules included in the Zinc database. The 384, drug 
analogs have been further exposed to screening based upon the 
docking and interaction score values and nine molecules (Fig 
5) with the top score values have been included in the Table 4.  

 

 
Fig 5. The nine analogs molecules with the top score 

Analogue 
It has been identified that Lapatinib is most suitable for 

American population and least suitable for South Asian 
Population. The molecule had good interaction with the 
model_protein_AMR with an interaction score 45.11 followed 
by model_protein_EUR (interaction score 28.98), 
model_protein_AFR (interaction score 18), 
model_protein_EAS (interaction score 15.98) and 
model_protein_SAS (interaction score 15.01). 

 
Table 4: The docking score and interaction score of 

Lapatinib, its derivative and analog molecules with 1xkk and 
the model proteins 
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The derivative 7 had a good interaction with EUR, 

derivative 8 showed good interactions with SAS and EAS, 
derivative 9 interacts with AFR and the derivative 6 interacts 
with AMR model proteins. It has been identified that the 
analogue 3 interacts with SAS and EAS protein models, 
analogue 5 with EUR model protein, analogue 6 showed a 
good interaction with AFR protein model and analogue 7 had 
a good interaction with AMR protein model 

3.5 Computational evaluation 

UsThe molecules were evaluated by subjecting the ligand-
target complexes obtained from interaction analysis to MD 
simulation. The derivative 7, derivative 8, derivative 9, 
analogue 3, analogue 5 and analogue 6 are found to be stable 
during the NVT MD simulation. The average RMSD values 

for all the complexes were found to be below 0.9suggesting it 
to be able to retain in the complex for enough time. The 
molecules were further subjected to ADMETox analysis. The 
molecules were screened based on ‘Lipinski rule of five’. The 
derivatives and the analogs are found to be better absorbed by 
the body. However, derivative 8 with IUPAC name (4-{3-
Chloro-4-[(m-fluorophenyl)methoxy]phenylamino}-6-(5-{[2-
(methylsulfonyl)ethylamino]methyl}-2-furyl)quinazoline) and 
analog 3 with IUPAC name (4,5-Dihydroxy-2-(6-methoxy-7-
coumarinyloxy)-6-[(3,4,5-trihydroxy-6-methyltetra hydro-2H-
pyran-2-yloxy)methyl]tetrahydro-2H-pyran-3-yl acetate) are 
found to be keeping higher solubility and oral absorption 
(Table 5). 

 
Table 5. The ADMETox prediction of Lapatinib, its 

derivative and analogueue molecules 
 

Ligands 
Absorpti

on 
Solubil

ity 
cardiotoxi

city 
hepatot
oxicity 

Lapatinib 2 1 0.993 0.994 
Derivative 1 2 1 0.990 0.993 
Derivative 2 2 1 0.989 0.993 
Derivative 3 2 1 0.993 0.992 
Derivative 4 2 1 0.991 0.992 
Derivative 5 2 1 0.991 0.995 
Derivative 6 2 1 0.992 0.992 
Derivative 7 2 1 0.991 0.992 
Derivative 8 3 2 0.991 0.995 
Derivative 9 3 2 0.991 0.992 
Analogue 1 3 2 0.000 0.982 
Analogue 2 3 2 0.981 0.000 
Analogue 3 3 3 0.000 0.000 
Analogue 4 3 1 0.986 0.000 

Ligands 
IXKK Model 1 Model 2 

DS IS DS IS DS IS 

Lapatinib 19.09 
42.8

0 

10.1

1 
30.25 

12.9

6 
55.21 

Derivative 
1 9.83 35.3

0 
34.8

3 60.78 34.0
7 61.22 

Derivative 
2 19.11 43.2

9 
35.3

4 56.51 36.4
6 59.15 

Derivative 
3 19.73 45.0

1 
35.9

4 63.96 36.1
7 61.17 

Derivative 
4 17.89 44.1

3 
36.0

0 58.90 36.1
7 61.17 

Derivative 
5 13.01 38.8

0 
35.9

4 63.96 35.9
3 60.47 

Derivative 
6 13.01 38.8

0 
36.4

6 59.15 37.3
3 60.02 

Derivative 
7 22.62 48.5

5 
35.4

0 60.00 35.6
4 56.92 

Derivative 
8 23.62 46.4

9 
35.5

1 61.27 34.9
6 56.29 

Derivative 
9 24.05 48.3

1 
36.1

9 61.14 35.8
3 56.56 

Analog 1 35.17 60.7
4 

36.7
4 63.98 35.1

7 57.93 

Analog 2 35.17 60.7
4 

36.8
3 59.77 36.8

3 59.77 

Analog 3 37.23 61.1
7 

35.1
9 56.50 36.8

3 59.77 

Analog 4 35.29 59.2
9 

34.1
4 60.81 36.8

3 59.77 

Analog 5 35.17 60.7
4 

36.8
3 59.77 35.2

5 56.88 

Analog 6 35.17 60.7
4 

35.1
9 56.50 35.2

5 56.88 

Analog 7 36.83 59.7
7 

35.9
6 60.41 36.7

4 63.98 

Analog 8 35.29 59.2
9 

35.2
9 59.29 35.1

7 60.74 

Analog 9 35.29 59.2
9 

35.1
7 60.74 35.1

7 60.74 

Analogue 5 3 3 0.988 0.000 
Analogue 6 3 1 0.000 0.000 
Analogue 7 3 2 0.998 0.000 
Analogue 8 3 2 0.995 0.000 
Analogue 9 3 1 0.999 0.000 
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The zero level cardio toxicity and hepatotoxicity suggest 

analog 3 to be a potential ERBB2 ‘down regulator’ for SAS 
and EAS populations when compared to other derivative and 
analogue molecules interacting with AFR, EUR and AMR 
population models subject to further in-vitro/in-vivo 
evaluations 

4. Discussion 

4.1 Genomics 

The gene, ERBB2 was found to be involved in promoting 
metastatic breast cancer. The germline mutations of ERBB2 
gene; c.338G>A: p.R113Q has been identified as the potential 
risk factor that may result in breast cancer development and 
progression [43]. The HER2 germline mutation A270S is 
reported to keep a negligible survival among breast cancer 
patients [44]. The genomic analysis of the HER2 gene and 
identification of its ‘single nucleotide 
polymorphisms/variations (SNPs/SNVs)’ could improve the 
efficacy of anti-HER2 treatments [45]. Though Lapatinib has 
been identified as the potential drug inhibiting ERBB2 
mutation, its drug action varies among ethnic groups due to 
individual variations. The clinical trials reports of the drug 
suggest that, the progression of the disease and death rates are 
decreasing among US population. However, the drug is not 
found to be that useful in controlling the disease among SAS 
populations. The Side effects also differ among patients in 
both the populations. With the implementation of 
pharamcogenomic analysis, a population-specific potential 
personalized drug molecule could be designed. The variations 
(SNVs) involved in each pharmacogenomic factors have been 
identified for all the populations.  

 

4.2 Variation analysis 

     The variations could be classified into different classes 
based on population analysis. There were 43 variations that 
were found commonly among all the five populations namely; 
South Asian (SAS), American (AMR), European (EUR), 
African (AFR) and East Asian (EAS) according to the ‘1000 
genome population data’. The variations among SAS were 
further classified into 4 classes based on its frequency of 
occurrence and their clinical significance. The ‘deepCNN 
based prediction model’ helps to assign clinical significance 
values to all the SNVs. The designed model is found to be 
giving an accuracy of 72.5%.  
 

 

4.3 Model generation 

     Mutant gene models have been generated for each 
population by incorporating their corresponding variations. 
These models are further subjected to transcription, translation 
and homology modelling to generate the corresponding ‘target 
protein models’. Homology modeling has been found to be a 
coherent technique to develop the 3D structure of unknown 
protein molecules by our research group. This technique was 
found to be efficient in generating the remote protein 
homologies of p-glycoprotein, ‘methicillin-Resistant 
Staphylococcus aureus’ of mecA gene and the structure of the 
‘E1 domain of Q1El92_CHIKV viruses’.  [46-49]. In this 
work, the models structures have been evaluated through 
molecular dynamic (MD) simulation and by measuring the 
QMean score, the ‘local quality estimate (LQE)’,protein 
mobility score, number of bad angles and bonds as well as 
finding the percentage of residues present in the favored 
region (torsional angles - phi (φ)and (psi (ψ)) [50]. The protein 
models varied within and across the population group both in 
structure as well as sequence properties.  This suggests the 
importance of considering genetic variations. The 
physicochemical properties of the protein models have been 
studied to identify its functional properties. The isoelectric 
point (PI), negative GRAVY (Grand Average Hydropathy) 
and relatively high ‘aliphatic index values’ suggests that the 
molecules are functionally significant, thermodynamically 
stable and can survive in hydrophilic environment [51, 52].  
 

4.4 Pharmacophore mapping and interaction 

analysis  

    Among molecules obtained from target-based 
pharmacophore mapping, Lapatinib has been identified with 
complementary pharmacophore features and anti-breast cancer 
mechanisms. It was found to be interacting with the amino 
acid residues present in the kinase domain of the model 
protein (Fig 4). The derivatives generated through substitution 
in the kinase domain of the Lapatinib molecule and their 
pharmacophore analogs were subjected to the docking studies 
with the CDOCKER algorithm. 
 

 
Fig 4. The docking score and interaction score of Lapatinib, its 

derivative and analogue molecules with 1xkk and the model 
proteins 
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4.5 Computational Evaluation 

      The interaction study and the ADMETox analysis suggest 
few ‘customized potential molecules’, more interacting and 
with higher docking score values with the model proteins. The 
transport of drug to and from central nervous system is 
measured through the logarithmic ratio of the compound 
concentration in brain and blood known as log (BB), stands 
for the ‘Blood Brain Barrier’ [53-55].  
 
The comparative analysis between the five populations 
suggest that, s is having good interaction with mutant protein 
model for AMR and least interacting with mutant protein 
model for SAS. The most supporting molecule for South 
Asian population are derivative-8 ((4-{3-Chloro-4-[(m-
fluorophenyl)methoxy]phenylamino}-6-(5-{[2-
(methylsulfonyl)ethylamino]methyl}-2-furyl)quinazoline) and 
the drug analog-3 ((4,5-Dihydroxy-2-(6-methoxy-7-
coumarinyloxy)-6-[(3,4,5-trihydroxy-6-methyltetrahydro-2H-
pyran-2-yloxy)methyl]tetrahydro-2H-pyran-3-yl acetate)). 
Moreover, these molecules are found to be more interacting 
than the standard Lapatinib molecule.  The absorption and 
solubility properties of the molecules suggest them to be 
acceptable. The toxicity predictions of these molecules 
support them to be potential drug molecules to down-regulate 
ERBB2 mutation associated with metastatic breast cancer, 
subject to further invitro and invivo evaluations. 
 
All the results and conclusions received in this manuscript are 
based upon the observations made by ‘the Insilco-analysis’ 
and ‘pharmacogenomic prediction techniques’. However, all 
the conclusions can be made only by evaluating the results 
through in-vivo and experimental techniques. The authors 
would like to illustrate the importance of ‘customized drug 
designing’ especially to terminal diseases. The illustration of 
the strategy for designing and developing ‘predictive, 
preventive, participatory and personalized (P4) drugs are the 
primary motive of this work. 

5. Conclusion 

The population analysis of ERBB2 variations have been 
carried out and classified the SNVs into different population 
groups based on the 1000 genome population analysis – 
American (AMR), European (EUR), South Asian (SAS), 
African (AFR) and East Asian (EAS). The variants within 
SAS have been further classified into 4 groups based on their 
frequency of occurrence among the patients. The population 
specific mutant gene models have been generated by inducing 
corresponding group of variations. The 3D structures of the 
mutant protein have been modelled through transcription, 
translation and homology modelling. The structure based 
pharmacophore mapping suggests Lapatinib to be the standard 
ligand which was further modified to identify suitable 
derivative and analogs for South Asian population. The 
computational evaluation suggests the derivative, (4-{3-
Chloro-4-[(m-fluorophenyl)methoxy]phenylamino}-6-(5-{[2-
(methylsulfonyl) ethylamino]methyl}-2-furyl)quinazoline) and 
the analogue of Lapatinib derivative, (4,5-Dihydroxy-2-(6-

methoxy-7-coumarinyloxy)-6-[(3,4,5-trihydroxy-6-
methyltetrahydro-2H-pyran-2-yloxy)methyl]tetrahydro-2H-
pyran-3-yl acetate have been found to be potential molecule 
that could down-regulate ERBB2 mutation within breast 
cancer patients among South Asian population subject to 
further in-vitro, in-vivo and clinical evaluations.  
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