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 Mathematical modeling is playing an incredible role for 

providing quantitative insight into multiple fields. It has 

already contributed to a better understanding of the 

mechanisms of various diseases. Mathematical modeling has 

gotten attention because modeling and simulation of any 

physical phenomena allows us for rapid assessment. So it is 

mainly used to describe the real phenomena which lead to 

design better prediction, management and control 

strategies.Infections and infectious diseases are massive 

burden on many societies, including the countries. 

Mathematical models narrating the population dynamics of 

infectious diseases have been playing an important role in 

better understanding epidemiological patterns and disease 

control for a long time. In many cases a simple mathematical 

model can reveal the nature of the infectious disease 

transmission, which plays an significant role in the control and 

prevention of the infectious diseases. Mainly  Differential 

equations and difference equations are two allegory 

mathematical approaches to modeling epidemic dynamical 

systems. Fortunately, mathematical models are uniquely 

positioned to provide a tool amenable for rigorous analysis, 

hypothesis generation, and connecting results from isolated in 

vitro experiments with results from in vivo and whole 

organism studies. In particular, one of the most successful 

combinations of expertise is that of experimental and 

biological sciences with the mathematical and computational 

sciences. The use of mathematical models was proven to be 

fundamental towards advancing physics in the 20th century, 

and many are projecting mathematics to play a similar role in 

advancing biological discovery in the 21st century. 

Mathematical and computational models have already begun 

to play an increasingly large role in the advancement of 

biological and biochemical research because they make it 

possible to quantitatively bridge the gap between data 
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gathering and mechanism testing by providing a set of 

analytical and numerical tools. 

   The birth of mathematical theory of epidemics can be 

described to the work of Daniel Bernoulli in 1760 [2], who 

developed a discrete epidemic model to analyze the mortality 

of smallpox, and more recently to Sir Ronald Ross [3], 

Anderson Gray McKendrick [4], and the statistician William 

Ogilvy Kermack. Sir Ronald Ross, an English physician and 

Nobel Laureate, developed the first mathematical models for 

the study of the transmission dynamics of malaria [3]. 

McKendrick and Kermack published a series of papers, 

introducing a deterministic epidemiological model and their 

celebrated threshold theorem [4–6]. In the first paper of this 

series a discrete-time epidemic model is considered, which 

leads to a continous-time model as the time steps are taken to 

the limit. After the 2003 SARS outbreaks, and more recently 

the 2009 H1N1 pandemic and the 2014 Ebola epidemics, 

efforts to connect models to data have increased greatly. 

Brauer developed a discrete-time model for SARS [7]. And 

many other epidemics of particular diseases have also been 

modeled in a discrete framework. These include measles [8], 

tuberculosis [9], rodent-hantavirus [10, 11], chytridiomycosis 

in amphibians [10], plant diseases [12], and diseases involving 

vectorhost transmission [13] and vertical transmission [14]. 

The connection between epidemic models in discrete-time and 

continuous-time settings has been observed in the past. For 

example, Pellis et al. [15] examined and extended the insights 

that can be gained from Ludwig’s result [16]. Biswas et al., 

2020 investigated and analyzed the transmission of most 

devastating infectious diseases independently in which 

mathematical modeling was the key tool [17] (see also Biswas 

et al., 2014 [18]) . At present, there has been an increasing 

benefit on discrete population dynamical systems because of 

their rich dynamics behavior and suitability. On the one hand, 

the discrete models display richer dynamical behavior than the 

continuous models, which brings more challengeable problems 

for researches.  

    In theoretical epidemiology the Euler discretization has 
been extensively utilized to build the discrete epidemic models 
[ 19–21]. Chinviriyasit et al. discussed a SEIRS model [34]. 
Henneman et al. formulated a mathematical modeling of 
influenza and a secondary bacterial infection [35]. The main 
idea is discretizing the existing continuous models. The main 
focus of our study is to discretize a continuous model and 
analyses of this obtained discrete-time model. In our study, we 
have determined the basic reproduction number of the discrete 
model according to the work of Micheal A. mikucki (2012) 
[22] and study the existence and the stability of the disease-
free and endemic equilibrium points of the model. Finally 
numerical simulations are performed to show the dynamic 
behavior of SIR model. 

A. Materials: In our study we use the parameter values 
that used Dubey et al. [1] in their continous model. 
Because mainly the data of a epidemic model is 
collected in discrete time.Here we give the 
parameters as  

             
0 1 27, 0.02, 1, 0.05, 0.2, 0.02, 0.003, 0.002, 0.5A a b               

 
B. Method: We convert a continuous model into a 

discrete model using Euler discretization Scheme. 
And showed the effect of step size h. 
 

 
 In this study, we reconsider a SIR epidemic model with 

nonlinear incidence and treatment rate derived by (Dubey  et 

al. 2015) [1]: 

 

0 1
dS SI

A S
dt S I




 
  

 
 

 

0 1 21 1
dI SI aI

I I I
dt S I bI


  

 
    

  
                                                       

(1) 

2 0 1
dR aI

I R
dt bI

   


 

 

Where, (0) 0, (0) 0, (0) 0S I R    

Here, ( ), ( )S t I t and ( )R t represent the number of 

susceptible, infective and recovered individuals at time t 

respectively. The recruitment of susceptible is A and 0 be the 

natural death rate of the population in each class. 1 is the 

death of infected individuals due to infection, 2 is the natural 

recovery rate of infected individuals due to immunity. In 

model (1)  dubey et al took the incidence rate as Beddington-

De Angelis type: 

2. Methods and Materials 

3. Discrete Sir Model 
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Here  is the transmission rate,   is a measure of inhibition 

effect, such as preventive measure taken by susceptible 

individuals, and  is measure of inhibition effect such as 

treatment with respect to inflectives. This nonlinear incidence 

rate is more reasonable than bilinear incidence rate. 

In model (1)  we see, the person has recovered once from the 

disease, that means the person received immunity. The discrete 

epidemic model is more suitable to describe the spread of 

diseases since the epidemiological data are usually collected in 

discrete time units, such as daily, weekly, or monthly. We are 

interested to derive the discrete version of model (1) . 

Applying Euler Scheme to system (1) leads to discrete 

systems as follows that shows in Fig 1:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

So, the formulated Discrete SIR model is as follows: 
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n n

n n n

n n

S I
S S h A S

S I
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 


 
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1 0 1 21 1
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

 
      
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                                                        (2)

 

1 2 0 2 1
n

n n n n n

n

I
R R h I R I

bI


  

 
     

 
                                                                             

Where 0h  is the step size of integration. Due to the 
biological interpretation of system (2), only nonnegative 
solutions are meaningful to be considered. 

    Theorem 3.1 All solutions of the model (2) with non-

negative initial value remain non negative for all 0t  and are 

ultimately bounded. 

Proof: In our model, we consider ( ), ( )S t I t and ( )R t  the 

number of susceptible, infective and recovered individuals at 

time t respectively. Let, nN be the total number of population 

at time n. So, n n n nN S I R    

Adding all equations in model (2) we obtain the equation for 

the total population on nN . 

Substituting n n n nS N I R    into second equation of 

model (2), we get, 

1 1 0 2[ ]n n nN N h A I N       

1 2 0[ ]
1

n
n n n n

n

aI
R R h I R

I
 


    


                                         

(3) 

Obviously, model (2) and model (3) are equivalent. 

Now from 1st equation we get, 
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Which implies. 
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So, 
0

0 0
0

1 (1 ) (1 )
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n

n
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N hA h N

h






  
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Now, 0nN   for 0nn  when the initial value 0nN   

Similar we can show that nI and 0nR  for 0nn  for initial 

condition 0 0I  and 0 0R  respectively. 

Now we will show that, the solutions system is ultimately 

bounded. 

It is clear that the equation 

1 1 0[ ]n n n nN N h A I N      has a unique equilibrium 

*
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*
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recovery 
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Recory rate 

due to 

treatment 
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induced 
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Susceptible 
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Fig 1 Flowchart of SIR 

model 

4. Analytical Analysis of the Discrete Model 

4.1. Positivity and the Boundedness of the Discrete
 Model Solution:   
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i.e *
0

hA
N


 , which is globally asymptotically stable, that is 

0lim n
t

N N


  

Therefore, 

0

lim ( )n n n
t

hA
SP S I R


    

It follows that the model (2) is bounded in the fesible region, 

0

( , , ) : , , 0, hA
S I R S I R S I R



 
      

 
 

Obviously, this region is positively invariant with respect to 

the model (2) which implies the model (2) is ultimately 

bounded. 

 

    In this study only gets two positive equilibrium points . one 
is disease free equilibrium point (DFE) and the another is 
endemic equilibrium point. 
For find the equilibrium points of the systems (2) 

Set, 1n nS S S

    

1n nI I I     

1n nR R R

    

Then the system (2) reduces to, 

0 0
1

S I
A S

S I




 

 


 
  

 
 

 0 1 2 0
1 1

S I aI
I

S I bI


  

 

  


  
    

  
                                                                            

(4) 

2 0 0
1

aI
I R

bI
 




  


 

     Now we investigate the disease free equilibrium point of 
the model (2) 
At Disease free equilibrium, 0I R    and put 0S S   

Then the system (3) reduces to, 

0 0 0A S   

0
0

A
S


   

So the disease free- equilibrium point of the system (2) is,  

0
0

,0,0A
E



 
  
   

    In model (2) the first two equation are independent of third 

equation. So, for analysis the model we can consider only the 

first two equations. 
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n n
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I




 


 
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(5) 

Where, 3 0 1 2       

The Jacobian matrix of the system (5) at DEF is- 

3
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0
0

0

1 0
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1
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J

h A
h
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So according to the work of Michael A. Mikucki (2012) [22], 

we get, 

3
0

[ 1 ]h A
F T h ah
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
 

0
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
 and 0[1 ]c h   

Now we consider, 

0
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3[1 ]T h ah    

The basic reproduction number of the system (2) will be 
1( [ ] ).p F I T   

Where, I  is an 1 1  identity matrix. 

31 [1 (1 )T h ah       

3[ ]ah h   
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1

3

1[1 ]T
ah h

  
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1

0 3
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F T

A ah h
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0
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A
R

A a



  
 
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Which is the same of the continuous model (1). 

    In this section, we observe the endemic equilibrium points 
of the model: 

4.2. Equilibrium points:  

4.3. Disease free equilibrium point (DFE):  

 

4.4. Basic reproduction number:  

 

4.4. Endemic equilibrium point:  
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We find the endemic equilibrium point by solving systems (4) 

From third equation of the system (4) we get, 

2 2 0
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(6) 

From 2nd equation of system (4) we obtain, 
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(7) 

S 
 is positive of 3( )S a                                                     

(8) 

Now form the first equation of systems (4) we get, 
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Substituting the value of 
*S from equation (7) into equation 

(9), we get, 
3 2* * *

1 2 3 4 0A I A I A I A                                                  

(10) 

Where, 
2 2 2

1 0 3 3A b b pl     

2 2
2 0 3 0 3 3 3 3 32 ( ) ( ) ).A b a b b ql bp a l bm Abp               

 
2

3 0 3 3 0 3 3 3 32 ( ) ( ) ( ) (( ) 2 )A a b a a bmp q a l bm Abp                  

 
2 2

4 0 3 3( ) ( )A a a mq Aq         

And 3 3 0( ), ( ), ( )p q a a l                

0( )m A    

It may be noted that , 0p q  under condition (8), now using 

Discartes’ rule of sign, the cubic equation (10) has unique 

positive real root 
*I  if any one of the following holds: 

2 3( ) 0, 0i A A   And 4 0,A   

2 3( ) 0, 0ii A A  and 4 0,A   

2 3( ) 0, 0iii A A  and 4 0,A   

We consider first two cases form which we have the following 

inequalities. 

3 0 3( )a l b A b                                                   (11) 

And 0 1R                                             (12) 

After the value of
*I , we can find the value of 

*S from 

equation (7). This implies that there exists a unique endemic 

equilibrium 
* * * *( , , ),E S I R if the inequalities (8), (11), (12) 

are satisfied. 

And the equilibrium points of this discrete systems will be the 

same of the continuous systems. 

    We want to investigate the stability of each fixed points. We 

note that, the first two equations of the model (2) is 

independent of nR and therefore we can consider only these 

two equations for the analysis. 

We denote ( , )
1

SI
S I

S I




 


 
 

And ( )
1

I
I

I








 

Now the Jacobian matrix of the first two equations of model 

(2) at a fixed point ( , )e eS I is given by, 

0 2 2

32 2 2

(1 ) (1 ) )1
(1 ) (1 )

( , )
(1 ) 1 )1

(1 ) (1 ) (1 )

e e e e

e e e e

e e

e e e e

e e e e e

I I h S S
h

S I S I
J S I

h I I S S a
h

S I S I bI

   

   

   


   

    
    

     

   
           

 

To explore the stability of the fixed points that means at the 

equilibrium points of model (2), we recall  Lemma see. E.g 

(Das et al, 2011) [23] , (Elsansuny et al. 2012) [24],  (Hc, teny 

and Jiang, 2012) [25]. 

4.5. Stability analysis:  
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Lemma 1: 

Let, 
2

1 2( )Q P P     and (1) 0.Q   

Suppose 1 2,  are two roots of ( ) 0Q   . Then 

1. 1 1   and 2 1   if and only if ( 1) 0Q   and 

(0) 1Q    

2. 1 1   and 2 1   if and only if ( 1) 0Q   ; 

3. 1 1   and 2 1   if and only if ( 1) 0Q   and 

(0) 1Q   

4. 1 1   and 2 1  if and only if ( 1) 0Q   and 

1 0,2;p   

5. 1 2,  are the complex and 1 1  , 2 1  if and 

only if 2
1 24 0p p   and (0) 1Q   

A fixed point ( , )e eS I is called a sink if 1 1  and 2 1  , 

( , )e eS I is called a saddle. 1 1   and 2 1  , ( , )e eS I is 

called a non-hyperbolic if 1 1   or 2 1  . 

 

Stability at Disease free Equilibrium: 

Here we investigate the stability of 0E  

 

Theorem 3.2: we attain the following assumption. 

(i) 0E is a sink when 00 2h  and 

0 00 ( )(1 ) 2h ah R     

(ii) 0E  is a stable when, 00 2h  and 

0 0( )(1 ) 2h ah R     

(iii) 0E is a source, when, 0 2h  and 

0 0( )(1 ) 2h ah R     

(iv) 0E is a non-hyperbolic when 0 0   and 0 1R   

Proof:   

The Jacobian matrix at the disease free equilibrium point 

0

,0A



 
 
 

is, 

0
0

0
3

0

1
( )

,0
0 1

h A
h

AA
J

h A
h ah

A




 




 

 
  

  
      

 

                                 

(ii) 

The Eigen values of Jacobian matrix (ii) are 1 01 h    and 

2 3
0

1 h A
h ah

A


 

 
   


 

3
0

( 1)h A
h ah

A




 
   


 

3
0

3
0

3
0 3

3
0 3

3 0

1 ( )

1 ( )

1 ( ) 1
( )( )

1 ( ) 1
( )( )

1 ( )[1 ]

h A
h ah

A

h A
h ah

A

h A
h ah

A h ah

A
h ah

A a

h ah R




 




 




  




  



   


   


 
    

  

 
    

  

   

 

 

If 0 1R  then 2 1  so we obtain; 

(i) 0E  will be a sink if and only if 1 1   and 2 1   

0

0

0

0

0

1 1

1 1 1

1 1 1 1 1 1

2 0

0 2

h

h

h

h

h











  

    

       

    

  

 

And,  

 

3 0

3 0

3 0

3 0

3 0

1 ( )[1 ] 1
1 1 ( )[1 ] 1
1 1 1 ( )[1 ] 1 1 1
2 ( )[1 ] 0

0 ( )[1 ] 2

h ah R

h ah R

h ah R

h ah R

h ah R











   

      

         

      

     

 

 

(ii) 0E  will be a saddle if and only if  

1 1   and 2 1   

 Now, 

0

0

0

1 1

1 1 1

0 2

h

h

h







  

    

  

 

And  
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 2 1   

 i.e, 3 0( )[1 ] 2h ah R     

 (iii) 0E will be a source, if 1 1   and 2 2   

Which implies, 

0 2h   and 3 0( )[1 ] 2h ah R     

iv) 0E  is a non-hyperbolic 

 when  1 1   or 2 1   

i.e, 
 

  

0

0

0

0

1 1
0

0
0

h

h

h









 

  

 



 

Or,  
 

3 0

3 0

0

0

1 ( )[1 ] 1
( )[1 ] 0

1 0
1

h ah R

h ah R

R

R





   

    

  

 

 

We can say when basic reproduction number is 1, then 0E  is a 

non-hyperbolic. 

 

Stability analysis at endemic Equilibrium:  

Now we can observe the stability of endemic equilibrium
*E . 

The Jacobian matrix at the endemic equilibrium is, 

0 2 2

32 2 2

(1 *) * (1 *) *)1
(1 * *) (1 * *)

( *, *)
(1 *) * 1 *) *1

(1 * *) (1 * *) (1 *)

I I h S S
h

S I S I
J S I

h I I S S a
h

S I S I bI

   


   

   


   

    
    

     
   
           

 

The characteristic equation of this Jacobian matrix is 
2

1 2( )Q p p      

Where 1 ( )rp T J  and 2 ( )p xt J  

Now consider, 

2

2

2

(1 *) *( *, *)
(1 * *)
1 *) *( *, *)

(1 * *)

( *)
(1 *)

I I
S I

S I

S S
S I

S I

a
f I

bI

 


 

 


 




 




 




 

* * * *
* * 0

* * * *
3

1 ( ( , ) ( , )
( , )

( , ) 1 [ ( , ) ]
h S I h S I

J S I
h S I h S I

  

  

    
   

   

 
* * * * *

1 0 32 [ ( , ) ( , ) ( )]P h S I S I f I            

And 
* * * * * 2 * * * *

2 0 3
* * * * * 2 * * * * * * * * *

0 3 0 3

1 [ ( , )] (1 ( ( , ) ( ) ( , ) ( , )

1 [ ( , )] ( , ) ( ) [ ( , )]( ( , ) ( )) ( , ) ( , )

P h S I h S I f I h S I S I

h S I S I f I h S I S I f I S I S I

     

         

        

            

 

Lemma 2: If 0 1,R   then (1) 0.R   

Proof: 
2 * * * * * * * * *

0 3(1) [( ( , ) ( , )) ( ( , ))( ( , ) ( ))Q h S I S I S I S I f I           

Now at 0 1,P   

Then 
* 0S  and 

* 0I   

Then 
* *( , ) 0S I   and 

* *( , ) 0S I   

Since all the parameters are non-negative, it is clear that 

(0) 1,Q   

Lemma 3: If 0 1,R   then (0) 1,Q  is equivalent to 
*h h  

where 
* * * * *

* 0 3
* * * * * * * * *

0 3

( , ) ( , ) ( )
( ( , ) )( ( , ) ( ) ( , ) ( , )

S I S I f I
h

S I S I f I S I S I

   

     

   


   

 

Proof: We note that 0 1,R  implies
* *( , ) 0S I  , 

0( ) 0f I   and 
* *( , ) 0S I   

Clearly 2(0) 1Q p   is equivalent to  

* * * *
0

* 2 * *
3 0

* * * * *
3

* *

* * * * *
*0 3

* * * * * * * * *
0 3

1 [ ( , )] ( , )

( ) [ ( , )]

( ( , ) ( )) ( , )

( , ) 1

( , ) ( , ) ( )
( ( , ) )( ( , ) ( ) ( , ) ( , )

h S I S I

f I h S I

S I f I S I

S I

S I S I f I
h h

S I S I f I S I S I

  

  

  



   

     

   

    

  



   
  

   

 

From Lemma 1, 2 and 3 we have the following theorem 

Theorem 3.3: If 0 1,R  then we have, 

1. *E  is a sink if then following conditions holds 
*h h  

2. *E is a saddle if * *
1 2h h h   

3. *E is a source if *h h  

4. *E  is a non-hyperbolic if *h h  

     In this section we present various numerical results using 
the Euler scheme .To give some numerical evidence for the 

5. Numerical Analysis of the Discrete Model 
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qualitative dynamic behavior of the model (2), we will display 
some diagrams to illustrate the analytical results and explore a 
new dynamics behavior as the parameters change. In particular, 
we present numerical simulation results for model (2) by using 
Matlab programming language in Matlab 2018b. Since in 
eqidemic model the data is collected in discrete time. So, we 
choose some hypothetical data used in the work of Dubey et al. 
2015 [1] . Our main goal is to illustrate the result by numerical 
simulations considered from a qualitative, rather than a 
quantitative point of view. Along with the verification of our 
analytical observations, these numerical results are very much 
important from the practical point of view. The numerical 
result shows different behavior of our dynamical model. To 
develop our numercal analysis we follow the work of several 
researchers in [26-28]. 
For 

0 1 27, 0.02, 1, 0.05, 0.2, 0.02, 0.003, 0.002, 0.5A a b             

 at the initial position  , , (245,45,1)S I R 
. 

 

 
 
 
 
 

 
 

(b) h= 10 

 
 
 
In Fig 2, we see that the number of the infected individuals I(t) 
decreases with time, and these individuals once recovered  
became immunized. That means they will not get reinfected. 
Besides, the susceptible individuals S(t) increases. The 
decrease of infected individual and the increase of susceptible 
individuals occur due to treatments. 
 
Case 1: We choose the parameter values  

0 1 27, 2, 1, 2, 1, 0.02, 1, 1, 0.1A a b             

 at the initial position 
 , , (245,45,1)S I R 

. Here 

0 1R  ,the average number of a new infection by an infected 

individual is less than one. So, the equilibrium point 0E is 
asymptotically  stable.  

 
 
 

(a) h= 0.01 
 

Fig 2 Susceptible , Infected and Recovered population vs 

time when treatment option is present 

(a) h= 0.01 
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(b) h= 10 
 
 

 
(c) h=0.01 

Fig 3  Susceptible , Infected and Recovered population vs time and Phase 

diagram for the model (2) with 0 1R    

 
Case 2: We take the parameter values  

0 1 27, 2, 1, 1, 1, 0.02, 1, 1, 0.1A a b               

at the initial position 
 , , (245,45,1)S I R 

. Here 

0 1R  ,the average number of a new infection by an infected 
individual is equal to one. So, the disease in these case is 
constant. 
 

 
(a) 

 
 

(b) 
 

   Fig  4  Susceptible , Infected and Recovered population vs time and Phase 

diagram for the model (2) with 0 1R    

 
Case 3: We choose the parameter values  

0 1 27, 0.002, 0.005, 0.01, 2, 0.02, 0.19, 0.02, 0.005A a b             

 at the initial position 
 , , (245,45,1)S I R 

. Here 

0 1R  ,the average number of a new infection by an infected 

individual is more than one. So, the equilibrium point *E is 
asymptotically  stable.  
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(a) h=0.01 

 

 

 

 

 

 

(c) h=0.01 

 

 

 

Fig  5  Susceptible , Infected and Recovered population vs time and Phase 

diagram for the model (2) with 0 1R   

 

In Fig  6(a) and 6(c), we see the effect of α (incidence rate)  on 
S(t) and I(t) individuals (respectively) for given parameters 

0 1 27, 0.02, 1, 0.05, 0.2, 0.02, 0.003, 0.002, 0.5A a b             

 when h=0.01 at the initial value  , , (245,45,1)S I R  . Fig  
6(a) shows when α increases, the susceptible individuals  S(t) 
sharply decline initially and at α = 0.006 S(t) decreases slowly.  
Then it harmony to its equilibrium points.  Fig  6(c), gives 
more people will be infected when the incidence rate is larger. 
And less people will be infected  when the incidence rate is 
lower.  For a larger incidence rate, the number of infected 
individuals increases at the initial position, then decreases and 
finally sits down at its steady state. Due to immunity and the 
treatments this decrease occurs. But when h=10, then the effect 
of   on susceptible cell and infected cell cannot understand 

clearly. 

 

(a) h=0.01 
 

(b) h=0.1 
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(b) h=10 

 

 

 

(c) h=0.01 
 

 
(d) h=10 

 
 

Fig  6  Effect of  on Susceptible and and infected individuals 

 

(a) h=0.01 
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(b) h=10 
 
 

 

(c) h=0.01 

 
 

(d) h=10 
 
 
 

Fig  7  Effect of a and b on Infected individuals 

 
 
Now we observe the effect of treatment rate ‘a’ and limitation 
to treatment rate ‘b’ on infected population in Fig 7(a) and 7(c). 
Fig 7(a) narrates infected individuals decreases when treatment 
rate  increases and it sits down at its steady state, but the 
disease is not getting totally uprooted as it will insist at a much 
lower level. Fig 7(c) describes infected individuals increases 
when b increases which is because of limited availability of 
resources in community when h=0.01. But when h=10 then the 
figure more bifurcating than the continuous model. 
 

 

 

 

 

(a) h=0.01 

(b) h=0.1 
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Fig  8  S − I  plot for 0.08863   

 

 

 

 

 

 

 
Fig  9  S − I  plot for 0.06   

0 1 27, 0.002, 0.005, 0.01, 2, 0.02, 0.02, 0.005A a b             

at  , , (245, 45,1)S I R  . Here, we have represented the 
phase plane analysis of susceptible and infected population in 
Fig 8 and Fig 9, respectively. Fig 8 represents a stable limit 
cycle for α = 0.08863 (person)−1(day)−1 when h= 0.01 and 
0.1 and a straight line when h=0.5 and other parameters are 
same as given. Here no matter what the initial values of S(t)  
and  I(t), the populations eventually rise and fall periodically. 
Fig 8 (d) shows the variation of h. This isolated periodic 
trajectory is known as a stable limit cycle.  Fig 9, trajectories 
represent phase portraits for α = 0.06 (person)−1(day)−1 and 
different values of h as well as other parameters are same as 
given. 

The discrete epidemic model is more suitable to describe 
the spread of diseases since the epidemiological data are 
usually collected in discrete time units, such as daily, weekly, 
or monthly. In this study, we have studied the dynamical 
behavior of the discrete SIR epidemic model (2) with 

(c) h=0.5 

(d) Combined limit cycle 

(a) h=0.01 

(b) h=0.1 

(c) h=0.5 

6. Conclusions
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nonlinear incidence rate in presence of immunity. Sufficient 
conditions for the existence of the disease free equilibrium and 
endemic equilibria have been obtained. Model (2) is suitable 
to describe rotavirus, hand, foot, and mouth disease, influenza, 
chicken pox, measles, smallpox, mumps and SARS and so on 
which  infectious diseases gains lifelong immunity. The 
discrete models are more appropriate forms than the 
continuous ones in order to directly fit the statistical data 
concerning infectious diseases. Motivated by the above facts, 
we have derived a discretized SIR epidemic model (1) by 
using Euler method. Therefore, the discretization scheme have 
the same equilibria and preserves the asymptotic stability of 
the equilibria for corresponding continuous models (1) in [1] 
as well as positivity and boundedness of the solutions. It is 
explained that the discrete model is dynamically balanced with 
its continuous model only for small step-size h, for large h, 
discrete model may exhibit complex dynamical behaviors. 
From numerical simulation ,we see that for large size of h 
discrete model is bifurcating most. The discrete model exhibits 
variant and rich dynamical behavior. Finally we can say,  
discrete model is more useful in epidemic model.  

We have no interest for future research in this topics. 
7. Future Work 
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