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1 Introduction 
Over the past decades, multiple efforts have been 
made to portray the dynamics of the cancer and to 
find an optimal administration strategy of the 
chemotherapy drug. In order to analyze these 
dynamics, as well as the interactions between tumor, 
immune and/or normal (healthy) cell populations 
near the tumor area under chemotherapy, numerous 
mathematical models have been proposed [1-5]. 
Based on such mathematical models, a more recent 
model that incorporates the interactions among 
tumor, normal, immune cells and chemotherapy 
drugs has been proposed [6,7]. Mathematical 
models of the above form have allowed researchers 
to test and compare various optimal control 
strategies for drug administration without the need 
to know the pharmacokinetics (PKs) of the applied 
anticancer drugs, which is required in several input-
output tumor growth inhibition (TGI) models, [8,9]. 
It must be noted that the pharmacokinetic PK 
parameters’ values are very difficult or even 
impossible to be found in the bibliography, 
especially for new drugs. 

Various techniques in the literature [7,10-12] 
attempted to solve optimal control problems for 
non-linear systems. However, due to the 
computational efforts to obtain them they cannot be 
generalized. Another approach suggested for this 

kind of problems is the Linear Time Varying (LTV) 
approximations [13]. Thus, the well-known Linear 
Quadratic Regulator (LQR) techniques could take 
place. Despite the valid results this approach 
produces, it is limited due to the required pre-
computation of the optimal control parameters. This 
issue can be dealt with a more recent technique, 
which is called State-Dependent Riccati Equation 
(SDRE) optimal control and has been applied 
effectively to plenty non-linear optimal control 
cases [14-16].  

In this research article, the dynamics of a non-
linear mathematical tumor growth model proposed 
by L. G. de Pillis and A. Radunskaya [6,7] are 
reviewed. Afterwards, two optimal control methods, 
based on the Direct Collocation (DirCol) [7] and on 
the SDRE methods [16] are examined for this 
certain mathematical model and an optimal 
intermittent chemotherapeutic treatment is 
determined and applied [16], decreasing the total 
amount of the administrated drug, while maintaining 
the efficacy of the treatment against the tumor. 
 

2 Methods 
2.1 The Mathematical Model of the Tumor 

Growth 
Among many mathematical models of tumor growth 
based on ordinary differential equations, the one 
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proposed by De Pillis and Radunskaya [6,7] stands 
out, since it portrays the growth of tumor cells and 
their interaction with normal and immune cells, 
alongside with the effects of the chemotherapy. The 
model considers three major cell types, immune, 
tumor and normal cells, denoted by 𝐼, 𝑇 and 𝑁 
respectively. The increase of immune cells in the 
tumor area is achieved by an external source 
(immune system), therefore a constant influx rate 𝑠 
is expected. If the tumor is eliminated, the immune 
cells will no longer be required, thus they will start 
decreasing at a per capita rate 𝑑1, converging to a 
long-term population size of 𝑠/𝑑1 cells. The 
existence of a tumor triggers the defensive 
mechanism of the body (immune response), thus the 
growth rate of immune cells is described by the term 

𝜌𝐼(𝑡)𝑇(𝑡) (𝛼 + 𝑇(𝑡))⁄ (1) 

where 𝜌 and 𝛼 are positive constants, representing 
the intensity and the threshold rate of the immune 
system respectively. When immune and normal 
cells meet tumor cells (and vice versa), several 
reactions take place, described by four competition 
terms 𝑐𝑖 , 𝑖 = {1,2,3,4}, of the populations between 
the cell types. More specifically, normal and tumor 
cells populations are competing for available 
resources and space, a reaction that can lead to the 
death of either the normal cells or the tumor cells. 
At the same time, the reaction of the tumor cells and 
immune cells can result in either the death of the 
first or the deactivation of the second [7]. The 
proliferation of the tumor and normal cells follows a 
logistic growth law with growth rate 𝑟𝑖 with 
maximum carrying capacity 𝑏𝑖

−1, where 𝑖 = {1,2} 
refers to the tumor and normal cells respectively. 
Each cell type is affected by the drug based on a 
coefficient denoted by 𝑎1, 𝑎2, 𝑎3 for immune, tumor 
and normal cells respectively. Cancerous cells are 
the main target, followed by the immune and normal 
cells, as a side effect. Thus, 𝑎2 > 𝑎1 > 𝑎3. The 
chemo drug, once injected into the body, is 
metabolized by the organism with a per capita decay 
rate 𝑑2. The drug amount injected per liter of body 
volume (i.e. the model input) at time 𝑡 is denoted by 
𝑣(𝑡) (mg/L/day) and the concentration of the drug 
per liter of blood by a state 𝑀(𝑡) (mg/L). A system 
of nonlinear ordinary differential equations that 
encapsulates the above is the following: 

𝑁̇ = 𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁 − 𝑎3𝛭𝑁,                    
𝑇̇ = 𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 − 𝑎2𝛭𝑇, (2) 
𝐼̇ = 𝑠 + 𝜌𝐼𝑇 (𝛼 + 𝑇)⁄ − 𝑐1𝐼𝑇 − 𝑑1𝐼 − 𝑎1𝛭𝐼,       
𝑀̇ = 𝑣(𝑡) − 𝑑2𝑀.                                                           

The units of all three cell populations (𝑁, 𝑇, 𝐼) are 
rescaled, so that one unit is at the order of the 
carrying capacity of the normal cells at the cancerous 
area. A realistic number to normalize the cell 
population is 1011 cells per unit in the y axis [6]. 
Table 1 presents the normalized system parameters 
and their values to the maximum carrying capacity 
of the normal cells, [6,7,16].  
 
Table 1. Model Parameters’ Values [6,7] 

Parameter Description Unit Value 

𝑎1 

Fraction 
immune cell 

kill by 
chemotherapy 

L mg⁄  0.2 

𝑎2 
Fraction tumor 

cell kill by 
chemotherapy 

L mg⁄  0.3 

𝑎3 

Fraction 
normal cell kill 

by 
chemotherapy 

L mg⁄  0.1 

𝛼 Immune 
threshold rate cells 0.3 

𝑏1 
Tumor cell 

carrying 
capacity 

cells−1 1.0 

𝑏2 
Normal cell 

carrying 
capacity 

cells−1 1.0 

𝑠 Immune 
source rate cells day⁄  0.33 

𝜌 Immune 
response rate day−1 0.01 

𝑐1 Competition 
term cells−1day−1 1.0 

𝑐2 Competition 
term cells−1day−1 0.5 

𝑐3 Competition 
term cells−1day−1 1.0 

𝑐4 Competition 
term cells−1day−1 1.0 

𝑑1 
Per capita 

death rate of 
immune cells 

day−1 0.2 

𝑑2 Per capita 
decay rate of 

day−1 1.0 
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 the drug 

𝑟1 
Per unit 

growth rate of 
tumor cells 

day−1 1.5 

𝑟2 
 

Per unit 
growth rate of 
normal cells 

day−1 1.0 

 

2.2 The DirCol Optimization Technique 
Direct Collocation is a very effective iterative non-
linear programming (NLP) optimization technique 
where a polynomial with a number of points 
(collocation points) in the time domain is chosen, in 
order to enforce it to satisfy the equations of motion 
at the collocation points. In general, direct 
collocation methods are quite simple to construct 
and solve especially when compared to indirect 
methods. This is because in the indirect methods it 
is mandatory to construct the necessary and 
sufficient conditions analytically, a particularly 
challenging procedure, and then to discretize these 
conditions and solve them numerically. Moreover, 
in direct collocation there is no need to use the 
adjoint variables for the optimization’s initialization. 
Finally, the region of convergence tends to be larger 
for direct methods than for indirect methods [17]. 

A basic method of collocation is the Hermite-
Simpson [17,18] (see Fig. 1). For each time segment 
[𝑡𝑘 , 𝑡𝑘+1] the two knot points (dots) represent the 
state and control NLP variables, which correspond 
to [𝑥𝑘 , 𝑢𝑘 , 𝑥𝑘+1, 𝑢𝑘+1]. The dynamics of the 
mathematical model are used to provide time 
derivative values at the two knot points, so the 
datasets [𝑥𝑘 , 𝑥𝑘+1, 𝑓(𝑥𝑘, 𝑢𝑘), 𝑓(𝑥𝑘+1, 𝑢𝑘+1)] can be 
used to generate a 3rd order Hermite interpolation 
polynomial (cubic spline), which satisfies the 
equations of the model at the knot points 𝑡𝑘 , 𝑡𝑘+1.  
 

 
Fig. 1. A time segment of the Hermite-Simpson 
collocation method [18]. 
 

Let [𝑥𝑐 , 𝑢𝑐] be the state and control at 𝑡𝑐 and the 
middle point of [𝑡𝑘 , 𝑡𝑘+1] be the collocation point 
(diamond). By enforcing 𝛥 = 𝑥̇𝑐 − 𝑓(𝑥𝑐 , 𝑢𝑐) = 0 it 
is possible to have a polynomial that also satisfies 
the dynamics at the collocation point. The larger the 
number of segments is, the closer to the real 
dynamics the approximation of the state is.  

The states of the model, 𝑥(𝑡) can be represented 
on each time segment by a quadratic polynomial of 
the following form: 

𝑥 = 𝑚0 + 𝑚1𝑡 + 𝑚2𝑡
2 + 𝑚3𝑡

3, (3) 
𝑥̇(𝑡) = 𝑚1 + 2𝑚2𝑡 + 3𝑚3𝑡

2, (4) 

where 𝑚𝑖 , 𝑖 = 0,1,2,3 are the coefficients of the 
cubic polynomial. The time domain is transformed 
such that 𝑡𝜖[0, ℎ], and it is assumed that 𝑥(0) = 𝑥𝑘, 
𝑥(ℎ) = 𝑥𝑘+1, 𝑥̇(0) = 𝑥̇𝑘 and 𝑥̇(ℎ) = 𝑥̇𝑘+1, where ℎ 
is the time interval of the time segment. By solving 
(3) and (4) for 𝑡 = 0 and 𝑡 = ℎ the coefficients 𝑚𝑖 
can be estimated and the colocation point 𝑥𝑐, can be 
then computed as follows [18]: 

𝑥𝑐 = 𝑥 (
ℎ

2
)                                                                    (5) 

=
1

2
(𝑥𝑘 + 𝑥𝑘+1) +

ℎ

8
[𝑓(𝑥𝑘 , 𝑢𝑘) − 𝑓(𝑥𝑘+1, 𝑢𝑘+1)],  

The control variable 𝑢𝑐 at the collocation point 𝑥𝑐 is 
computed using linear interpolation: 

𝑢𝑐 =
𝑢𝑘 + 𝑢𝑘+1

2
. (6) 

The integration effect 𝛥 is defined as the difference 
between the interpolated and calculated derivatives 
at 𝑥𝑐. Thus,  

𝛥 = 𝑥̇𝑐 − 𝑓(𝑥𝑐 , 𝑢𝑐)                                                      (7) 
= 𝑥𝑘 − 𝑥𝑘+1 +

ℎ

6
[𝑓(𝑥𝑘 , 𝑢𝑘) + 4𝑓(𝑥𝑐 , 𝑢𝑐) + 𝑓(𝑥𝑘+1, 𝑢𝑘+1)] 

The NLP solver will then select [𝑥𝑘 , 𝑢𝑘 , 𝑥𝑘+1, 𝑢𝑘+1] 
to enforce 𝛥 = 0 and finally the interpolation 
polynomial will approximate the true dynamics of 
the system [18]. 
 

2.3 The SDRE Optimal Non-linear Control 

Method 
The SDRE technique presents a systematic way of 
designing non-linear feedback controllers that 
approximate the solution of the infinite time horizon 
optimal control problem giving the time responses 
of the non-linear mathematical model in real time, 
and thus making it feasible to be implemented on-
line [14-16]. Firstly, the non-linear mathematical 
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model is converted to a pseudo-linear formulation, 
also referred to as extended linear form, which it is 
treated as a sequence of LTI mathematical models. 
Afterwards, the suboptimal solution is computed via 
solving the Algebraic Riccati Equation (ARE) for 
the LTI models obtained in each time step. 

The non-linear state-space mathematical model 
can be represented generally as: 

𝑥̇ = 𝑓 (𝑥(𝑡)) + 𝐺 (𝑥(𝑡)) 𝑢(𝑡), 𝑥(0) = 𝑥0 (8) 

where 𝑥 ∈ ℝ𝑛 is the state vector and 𝑢 ∈ ℝ𝑚 is the 
input vector. In cases, (8) can be written in the 
pseudo-linear form: 

𝑥̇ = 𝐴(𝑥)𝑥 + 𝐵(𝑥)𝑢 (9) 

where 𝑓(𝑥) = 𝐴(𝑥)𝑥, 𝐴(𝑥) ∈ ℝ𝑛x𝑛 and 𝐺(𝑥) =

𝐵(𝑥), 𝐵(𝑥) ∈ ℝ𝑛x𝑚. 𝐴(𝑥)  and 𝐵(𝑥) matrices are 
called state-dependent coefficient (SDC) matrices. 
There are many alternative parameterizations to 
choose from when constructing the SDC matrices, 
but the one which will be chosen must ensure 
pointwise controllability for ∀𝑥, in order to apply 
the SDRE control law. This can be achieved if the 
state-dependent controllability matrix (10) 

[𝐵(𝑥)   𝐴(𝑥)𝐵(𝑥)  ⋯  𝐴𝑛−2(𝑥)𝐵(𝑥)   𝐴𝑛−1(𝑥)𝐵(𝑥)] (10) 

has full rank for the time segment where the control 
is applied. 

SDRE attempts to determine the sub-optimal 
controller for the state model (9), in order to 
minimize the cost function 

𝐽 =
1

2
∫(𝑥𝑇𝑄(𝑥)𝑥 + 𝑢𝑇𝑅(𝑥) 𝑢)𝑑𝑡

∞

0

, (11) 

where 𝑄(𝑥) ∈ ℝ𝑛𝑥𝑛 and 𝑅(𝑥) ∈ ℝ𝑛𝑥𝑚 are state-
dependent matrices and determine the weight for 
each state and the control, thus 𝑄(𝑥) ≥ 0 and 
𝑅(𝑥) ≥ 0 for ∀𝑥 [14,15]. When the control of LQR 
is applied, if it is unbounded, the cost function 𝐽 is 
minimized using the state-feedback controller 

𝑢(𝑥) = −𝑅−1(𝑥)𝐵𝑇(𝑥)𝑃(𝑥)𝑥 ≜ −𝐾(𝑥)𝑥, (12) 

where the term −𝐾(𝑥) is referred to as feedback 
gain matrix and 𝑃(𝑥) ∈ ℝ𝑛x𝑛 is a symmetric, 
positive definite matrix and the unique solution of 
the ARE: 

𝐴𝑇(𝑥)𝑃(𝑥) + 𝑃(𝑥)𝐴(𝑥) − 𝑃(𝑥)𝐵(𝑥)𝑅−1(𝑥)𝐵𝑇(𝑥)𝑃(𝑥) + 𝑄(𝑥) = 0, (13) 

The dynamics of the pseudo-linearized closed-loop 
nonlinear state mathematical model (9) now 
become: 

𝑥̇ = (𝐴(𝑥) −  𝐵(𝑥)𝐾(𝑥)) 𝑥. (14) 
In the case of a bounded control input, the sub-
optimal input for the nonlinear state mathematical 
model (9) is: 

𝑢𝑏𝑜𝑢𝑛𝑑(𝑥) = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑢, 𝑢𝑚𝑖𝑛) , 𝑢𝑚𝑎𝑥) , (15) 

with 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 being the lower and upper 
bounds. 

Despite the high efficacy of the SDRE technique, 
it might need to be modified, so that high toxicity 
scenarios can be avoided when controlling dynamic 
systems like (2). Therefore, an intermittent 
controller is proposed, with a period of 𝑡𝑝 days, 
𝑡𝑝 ≥ 2. If the control is “active” during the first 𝑡𝑜𝑛 
days, where 1 ≤ 𝑡𝑜𝑛 < 𝑡𝑝, it is then “turned off” for 
the remaining 𝑡𝑜𝑓𝑓 = 𝑡𝑝 − 𝑡𝑜𝑛 days. An active 
controller is one which applies the control input 
calculated by SDRE, based on the state and control 
responses of the previous timestep, while an inactive 
controller sets the control input to zero, ignoring 
what SDRE dictates as optimal dose. During the 
time window of “inactive” days 𝑡𝑜𝑓𝑓, the states’ 
values change according to the mathematical 
model’s dynamics. When a new period is about to 
start, the dosage (input) based on the SDRE is 
applied once again, during the “active” days 𝑡𝑜𝑛. 
 

3 Results and Discussion 
In this work it is studied a tumor eradication case, 
where the aim is to kill the tumor cells and at the 
same time to reduce the excessive usage of the 
chemo drug [19]. For brevity, the states of (2) as 
well as the drug input are denoted by 
{𝑥1, 𝑥2, 𝑥3, 𝑥4} ≜ {𝑁, 𝑇, 𝐼,𝑀} and 𝑢 ≜ 𝑣 following 
the constraints 

𝑢𝑚𝑖𝑛 ≤ 𝑢, 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥, (16) 

where 𝑢𝑚𝑖𝑛 = 0, 𝑥𝑚𝑎𝑥 = ∞. A robust organism is 
one which maintains the population of its normal 
cells at levels above the 75% of its carrying 
capacity [6,7]. Thus,  

𝑥𝑚𝑖𝑛 = [0.75, 0, 0, 0]𝑇 . (17) 

The initial values of the states (normalized cell 
numbers) and the drug concentration of the 
mathematical model are 
[𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)] = [1,0.25,0.15,0]. The 
desired final values corresponding to the tumor-free 
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equilibrium, are [𝑥1(𝑡𝑓), 𝑥2(𝑡𝑓), 𝑥3(𝑡𝑓), 𝑥4(𝑡𝑓)] =
[1,0,1.65,0] [7], where 𝑡𝑓 = 150 days (approx. the 
4-6 months that chemotherapy usually lasts).  
 
3.1 Hermite-Simpson DirCol Optimal 

Control Treatment 
In order to obtain a good approximation of states, 
the time segments are set to 149 and the iterations’ 
limit to 50. High toxicity levels are prevented by 
setting 𝑢 ≤ 𝑢𝑚𝑎𝑥 = 1. Previous studies have 
presented objective functions, which focus on the 
tumor size at final time 𝑥2(𝑡𝑓), including the total 
tumor cells’ population ∫ 𝑥2(𝑡)

𝑡𝑓

0
𝑑𝑡 and its 

maximum value 𝑇𝑚𝑎𝑥 [6,17]. In the present study, 
the objective function is further evolved, including 
the total amount of drug given 𝑣𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑣(𝑡)

𝑡𝑓

𝑡=0 , 
making the approach more cost-efficient. The 
resulting objective function weighted by 𝑤1 =
1500, 𝑤2 = 150, 𝑤3 = 1000, 𝑤4 = 40 is  

𝐽(𝑢) = 𝑤1𝑥2(𝑡𝑓) + 𝑤2 ∫ 𝑥2(𝑡)𝑑𝑡
𝑡𝑓

0

+ 𝑤3 𝑚𝑎𝑥
𝑡∈(0,𝑡𝑓)

𝑥2(𝑡) + 𝑤4𝑣𝑡𝑜𝑡𝑎𝑙 . (18) 

The DirCol optimal control dictates a daily drug 
dosage, even if it is trivial (see Fig. 2). In order to 
avoid this, an intermittent Bang-Bang chemo drug 
dosage regimen can be applied  

𝑢𝑏𝑏(𝑡) = { 
𝑢𝑚𝑎𝑥, 𝑢(𝑡) ≥ 𝑢𝑡ℎ

0,                𝑢(𝑡) < 𝑢𝑡ℎ
 , (19) 

where 𝑢(𝑡) is the drug dosage as DirCol dictates, 
𝑢𝑚𝑎𝑥 = 1 and 𝑢𝑏𝑏(𝑡) is the modified drug dosage, 
according to a threshold 𝑢𝑡ℎ,  on day 𝑡 (see Fig. 3). 
As it is shown in Table 2, DirCol satisfies the lower 
bound of the normal cells 𝑁𝑚𝑖𝑛 = 0.75, but Bang-
Bang approach does not. This does not mean 
ineffectiveness of the latter, since Bang-Bang 
control suggests that the drug must be given mainly 
at the therapy’s initiatory days, a fact confirmed by 
the increase in the maximum drug concentration 
𝑀𝑚𝑎𝑥. On the other hand, DirCol dictates a 
smoother regimen with a significant amount of drug 
being administered during the initiatory days, 
followed by smaller amounts for the rest of 
treatment. It is worth mentioning that in all cases 
𝑇𝑚𝑎𝑥 is very close to its initial value, indicating the 
efficacy of the treatment regimens. Finally, the 
differences between these two methods have an 
obvious impact on the duration of the treatment, 
given that the DirCol approach is 1.6-2 times slower 
than the Bang-Bang approach, when comparing the 
tumor at the day 𝑡𝑧𝑒𝑟𝑜 of its eradication in both 
cases. Also, the intermittent DirCol Bang-Bang 

version is preferable, mainly because it is easier to 
be applied in real-life scenarios. 
 
Table 2. DirCol Treatment Results {for details, see 
[19]}. 

 Case 1 Case 2 

 DirCol 
Intermittent 

Bang-Bang 
DirCol 

Intermittent 

Bang-Bang 

𝑰𝟎 0.10 0.15 

𝑵𝒎𝒊𝒏 0.75 0.7087 0.75 0.7144 

𝑻𝒎𝒂𝒙 0.2536 0.2549 0.2521 0.2521 

𝑴𝒎𝒂𝒙 0.7227 0.9860 0.6605 0.9978 

𝒗𝒕𝒐𝒕𝒂𝒍 15.8379 16 14.9764 15 

𝒗𝒕𝒉 0.1455 0.12 

𝒕𝒛𝒆𝒓𝒐 118 72 122 63 

 

 
Fig. 2. Cell populations and drug dosage for the 
DirCol treatment (Case 2). 
 

 
Fig. 3. Cell populations and drug dosage (𝑣) for the 
intermittent Bang-Bang treatment (Case 2). 
 
3.2 SDRE Optimal Control Treatment 
In order to implement the SDRE optimal control 
based tumor chemo treatment, (2) must be rewritten 
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in the form of (9). Thus, the tumor-free equilibrium 
point (1/𝑏2, 0, 𝑠/𝑑1, 0) is shifted to the origin [16]. 
The shifted state variables are now defined as 
follows: 

𝑥1 ≜ 𝑁 −
1

𝑏2
, 𝑥2 ≜ 𝑇, 𝑥3 ≜ 𝐼 −

𝑠

𝑑1
, 𝑥4 ≜ 𝑀, (20), 

where 𝑥 ≜ [𝑥1, 𝑥2, 𝑥3, 𝑥4] is the shifted state vector. 
As a result, the shifted state space equations (2) are 
rewritten as: 

𝑥̇1 = −𝑟2𝑥1(1 + 𝑏2𝑥1) −
𝑐4

𝑏2

𝑥2 −
𝑎3

𝑏2

𝑥4 − 𝑐4𝑥2𝑥1 − 𝑎3𝑥4𝑥1, 

𝑥̇2 = 𝑟1𝑥2(1 − 𝑏1𝑥2) − (
𝑐2𝑠

𝑑1

+
𝑐3

𝑏2

)𝑥2 − 𝑐2𝑥3𝑥2 − 𝑐3𝑥2𝑥1 − 𝑎2𝑥4𝑥2,      

𝑥̇3 = −
𝑐2𝑠

𝑑1
𝑥2 − 𝑑1𝑥3 −

𝑎1𝑠

𝑑1
𝑥4 +

𝜌𝑠

𝑑1

𝑥2

(𝑎+𝑥2)
 +

𝜌𝑥3𝑥2

𝛼+𝑥2
− 𝑐1𝑥3𝑥2 −𝑎1𝑥4𝑥3, 

𝑥̇4 = 𝑢(𝑡) − 𝑑2𝑥4,                                                                                         (21) 

The non-linear mathematical model of (21) is now 
in the form of (8), thus it can be written in the form 
of (9) as follows: 

𝐴(𝑥) ≜

[
 
 
 
 
 
 
 −𝑟2(1 + 𝑏2𝑥1) −𝑐4 (𝑥1 +

1

𝑏2

) 0 −𝑎3 (𝑥1 +
1

𝑏2

)

−𝑐3𝑥2 𝑟1(1 − 𝑏1𝑥2) − (
𝑐2𝑠

𝑑1

+
𝑐3

𝑏2

) −𝑐2𝑥2 −𝑎2𝑥2

0
𝜌 (𝑥3 +

𝑠

𝑑1
)

(𝑎 + 𝑥2)
− 𝑐1 (𝑥3 +

𝑠

𝑑1

) − 𝑥4 −𝑑1 −𝑎1 (𝑥3 +
𝑠

𝑑1

) + 𝑥2

0 0 0 −𝑑2 ]
 
 
 
 
 
 
 

, 

𝐵(𝑥)
𝑇

≜ [0,0,0,1]𝑇 . (22) 

In order to end up to the tumor-free equilibrium, the 
tumor cells’ population and the drug concentration 
are the states to be minimized. Thus, the form of 
𝑄(𝑥) could be chosen as 

𝑄(𝑥) = 𝑄 = 𝑑𝑖𝑎𝑔(0,𝑤2, 0, 𝑤4), (23) 

where 𝑤2 = 150 and 𝑤4 = 0.1 [16]. For the weight 
matrix 𝑅(𝑥) three scenarios are examined:  

𝑅(𝑥) = {  

𝑟𝐶 ,                         or

𝑟𝐶 + 𝛽1𝑥2(𝑡),     or

𝑟𝐶 − 𝛽2𝑥2(𝑡),         
 (24) 

where 𝑟𝐶 = 4.7, 𝛽1 = 2, 𝛽2 = 15 [16]. A low value 
of the 𝑅(𝑥) will allow a greater amount of drug to 
be administered, compared to a higher one. When 
𝑅(𝑥) remains constant, the drug intake rate is 
related only to the factor 𝑟𝐶. On the contrary, when 
𝑅(𝑥) is a function of the tumor population (𝑥2), the 
drug input can vary according to the state value of 
the tumor. The estimation of both 𝑄(𝑥) and 𝑅(𝑥) is 
a very delicate process (see [20]) which includes a 
trial and error procedure, so that the tumor can be 
eradicated with a lesser amount of drug, resulting in 
lower toxicity levels. 

A summary of the results for the continuous 
SDRE based treatment is presented in Table 3. In 
the first three cases all the possible scenarios 
regarding 𝑅(𝑥) are studied. As one can observe in 
these three cases, high toxicity levels (𝑀𝑚𝑎𝑥 > 1) 
are present. Case 4 (see Fig. 5) is similar to Case 3 
(see Fig. 4), but with the addition of an upper bound 
𝑣𝑚𝑎𝑥 = 1 to the drug input, as a first attempt to 
minimize the toxicity, while maintaining the 
effectiveness of the treatment. The maximum drug 
concentration drops almost to a third of its previous 
value (𝑀𝑚𝑎𝑥 = 1) and, consequently, the minimum 
population of the normal cells is increased (𝑁𝑚𝑖𝑛 =
0.7064). However, there is an increase to the total 
amount of drug 𝑣𝑡𝑜𝑡𝑎𝑙 given and a longer duration 
for the therapy 𝑡𝑧𝑒𝑟𝑜 (~10 more days).  

A second attempt to tame the drug toxicity is to 
apply an intermittent drug dosology regimen while 
keeping the global minimum of the normal cells’ 
population at a relatively safe level. The continuous 
optimal cancer chemotherapy treatments proposed 
by many researchers (see [5,7,11-13,16]), are 
difficult to be applied in clinical practice due to their 
 
Table 3. Continuous SDRE Treatment Results 

Case 1 Case 2 Case 3 Case 4 

𝑹(𝒙) 4.7 4.7 + 2𝑥2(𝑡) 4.7 − 15𝑥2(𝑡) 4.7 

𝒗𝒎𝒂𝒙 ∞ ∞ ∞ 1 

𝑵𝒎𝒊𝒏 0.6311 0.6308 0.6350 0.7064 

𝑻𝒎𝒂𝒙 0.2511 0.2512 0.2502 0.2518 

𝒗𝒕𝒐𝒕𝒂𝒍 15.118 15.071 15.564 17.897 

𝒕𝒛𝒆𝒓𝒐 32 33 31 44 

𝑴𝒎𝒂𝒙 2.960 2.959 2.989 1 

 

 
Fig. 4. Mathematical model’s response and drug 
dosage for 𝑅(𝑥(𝑡)) as a decreasing function of the 
tumor evolution, i.e. 𝑅(𝑥(𝑡)) = 4.7 − 15 𝑥2(𝑡).  
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Fig. 5. Mathematical model’s response and drug 
dosage for constant value 𝑅(𝑥) = 4.7 and bounded 
drug dosage (𝑣𝑚𝑎𝑥 = 1).  
 
considerable side effects. Today, the chemotherapy 
drug administration is a discrete activity meaning 
that the cancer patients receive their 
chemotherapeutic drug 1–4 times a month. 
Therefore, an optimal intermittent treatment may be 
a promising approach.  Cases 3 & 4 damage the 
normal cells the least and combat the tumor 
successfully, therefore they are used as a basis for 
the determination and application of an intermittent 
treatment. Table 4 shows the two proposed 
intermittent regimens (i.e. the least harmful 
treatments based on the 𝑁𝑚𝑖𝑛, see [19]), 
corresponding to regimens with [(total) 𝑡𝑝/𝑡𝑜𝑛 
(active)] days being [3/1] and [4/3] (see Figs. 6 & 
7, respectively). The produced cases (5 & 6) offer 
further improvements when compared to cases 3 & 
4, since 𝑁𝑚𝑖𝑛 is increased and both the 𝑀𝑚𝑎𝑥 and 
the total amount of drug required (𝑣𝑡𝑜𝑡𝑎𝑙) are 
decreased. However, in both intermittent cases there 
is an increased treatment duration 𝑡𝑧𝑒𝑟𝑜. It is worth 
noticing that in Case 6, due to the already bounded 
drug dosage, the improvements are smaller, when 
compared to that of the unbounded case. 
 
Table 4. Intermittent SDRE Treatment Results 

Case 5 – Intermittent 

[3/1] 

Case 6 – Intermittent 

[4/3] 

𝑹(𝒙) 𝟒. 𝟕 − 𝟏𝟓𝒙𝟐(𝒕) 𝟒. 𝟕 

𝒗𝒎𝒂𝒙 ∞ 1 

𝑵𝒎𝒊𝒏 0.7084 0.7129 

𝑻𝒎𝒂𝒙 0.2502 0.2518 

𝒗𝒕𝒐𝒕𝒂𝒍 11.054 16.613 

𝒕𝒛𝒆𝒓𝒐 46 49 

𝑴𝒎𝒂𝒙 2.033 0.9679 

 
Fig. 6. Mathematical model’s response and drug 
dosage when an intermittent treatment of [3/1] days 
is applied. The drug dosage is unbounded (Case 5). 
 

 
Fig. 7. Mathematical model’s response and drug 
dosage when an intermittent treatment of [4/3] days 
is applied. The drug dosage is bounded (Case 6). 
 

In all cases examined, the maximum tumor size 
𝑇max does not show significant variation. More 
specifically, its value is almost identical to the initial 
one, i.e. 𝑇(0) = 0.25. In Case 1, i.e. the DirCol 
Bang-Bang approach, an increase of almost 1.9% of 
the maximum tumor cells’ population has been 
observed. This is also the maximum 𝑇𝑚𝑎𝑥 value for 
all the cases. Thus, apart from successfully 
eradicating the tumor growth, the proposed optimal 
treatments also inhibit its further development, 
which is an important achievement. A comparison 
of the tumor cells’ maximum populations for the 
intermittent DirCol Bang-Bang approaches with the 
intermittent SDRE cases is shown in the Fig. 8.  

The treatment duration, and therefore the total 
exposure of a patient to antineoplastic drugs, which 
is directly connected to the considerable side-effects 
caused by them, is a particularly important factor for  
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Fig. 8. Comparison of the tumor cells’ maximum 
populationm (i.e. 𝑇𝑚𝑎𝑥) for the “best” cases, i.e. the 
intemittent DirCol Bang-Bang approches (Cases 1 
& 2) and the intermittent SDRE (Cases 5 & 6). 
 
the evaluation of the proposed methods and 
treatment schedules. A comparison of the 
treatment’s duration 𝑡𝑧𝑒𝑟𝑜 for the intermittent 
DirCol Bang-Bang approaches with the intermittent 
SDRE cases is shown by the following figure, i.e. 
Fig. 9.  
 

 
Fig. 9. Comparison of the treatment’s duration (i.e. 
𝑡𝑧𝑒𝑟𝑜) for the “best” cases, i.e. the intermitted 
DirCol Bang-Bang approches (Cases 1 & 2) and the 
intermittent SDRE (Cases 5 & 6). 
 
As it is shown in Fig. 9, in the intermittent Bang-
Bang approach of Case 1 the treatment lasts longer 
mainly due to the highly weakened immune system 
(𝐼0 = 0.10). In cases 2, 5 and 6 the population of the 
immune cells is bigger (𝐼0 = 0.15) and therefore 
the immune system is stronger. This means that the 
treatment period for tumor eradication can be longer 
in cases where the immune system is weak. 
Moreover, the proposed intermittent SDRE 

treatment (i.e. Cases 5 & 6) can reduce the 
treatment’s duration. As a result, the total exposure 
to the chemotherapy drugs becomes smaller 
compared to the intermittent Bang-Bang approaches 
and therefore the intermittent SDRE treatment is 
preferable, for more details see [19]. 
 
4 Conclusion 
The problem of determining an optimal chemo drug 
regimen to be applied in tumor growth inhibition 
can be very challenging. For this reason, two well 
established optimal control methods are 
implemented, compared for first time and evaluated, 
considering a tumor growth nonlinear mathematical 
model proposed by De Pillis and Radunskaya [6,7].  

In the first approach, the Hermite-Simpson 
DirCol method is used to deduce an optimal 
regimen. The proposed daily drug administration, 
for the whole treatment period, makes it impractical 
for clinical implementation. Thus, a new 
intermittent Bang-Bang approach is proposed, 
maintaining the same amount of total drug 
delivered, but selecting discrete specific days for its 
administration. The results obtained have shown 
that intermittent optimized chemotherapy could 
achieve the tumor’s eradication, while at the same 
time extreme levels of toxicity are avoided, and the 
duration of the treatment could be reduced.  

In the second approach, the SDRE method is 
applied leading to a faster simulation time compared 
to DirCol. However, the unconstrained optimal 
chemotherapy dosage determined by this method 
results in high toxicity, i.e. excessive drug 
concentration in order to eliminate the tumor. This 
problem is confronted successfully in the present 
work, either by setting an upper bound to the drug 
dosage, or by embedding an intermittent application 
of the determined optimal chemotherapy treatment 
consisting of active and inactive days of the drug 
administration instead of a periodic. Both scenarios 
offer more effective regimens and, particularly, the 
so determined optimal intermittent drug dosage 
achieves to reduce the total drug amount 
administrated with the less important consequence 
of a slightly longer treatment period.  

In a future work, the tumor growth mathematical 
model could be modified and/or expanded in order 
to describe more accurately the kinetics of the 
chemotherapy drugs and therefore their effect on the 
cells populations. Until today, optimal control 
theory has been used to determine optimal 
chemotherapy regimens by controlling the 
concentration of the chemo drug in the plasma (i.e. 
the concentration of the drug per liter of blood - 
𝑚𝑔/𝐿). However, in clinical practice drugs are 
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administered based on the body mass of the patient. 
Thus, the problem to translate the concentration of 
the drug in plasma (i.e. 𝑚𝑔/𝐿) to drug dose injected 
to the patient body (i.e. 𝑚𝑔/𝑘𝑔/𝑑𝑎𝑦) must be 
solved. Moreover, not only classical optimal control 
methods, but also machine learning (ML) based 
control techniques could be used to determine 
improved optimal cancer treatment regimens.  
 

References: 

[1] V. Kuznetsov, I. Makalkin, M. Taylor and A. 
Perelson, Non-linear dynamics of immunogenic 
tumors: Parameter estimation and global 
bifurcation analysis, Bull. of Math. Bio, Vol.56, 
No.2, 1994, pp. 295-321. 

[2] M. Owen, J. Sherratt, Modelling the 
macrophage invasion of tumours: Effects on 
growth and composition, IMA Journal of 

Mathematics Applied in Medicine and Biology, 
Vol. 15, 1998, pp. 165-185. 

[3] J. A. Adam and J. Panetta, A simple 
mathematical model and alternative paradigm 
for certain chemotherapeutic regimens, 
Mathematical and Computer Modelling, Vol. 
22, No.8, 1995, pp. 4940. 

[4] E. Shochat, D. Hart and Z. Agur, Using 
Computer Simulations for Evaluating the 
Efficacy of Breast Cancer Chemotherapy 
Protocols, Mathematical Models and Methods 

in Applied Sciences, Vol.9, No.4, 1999, pp. 
599–615. 

[5] J. M. Murray, Optimal control for a cancer 
chemotherapy problem with general growth 
and loss function, Mathematical Biosciences, 
Vol.98, 1990, pp. 273-287. 

[6] L.G. De Pillis and A.E. Radunskaya, A 
mathematical tumor model with immune 
resistance and drug therapy: An optimal control 
approach, Journal of Theoretical Medicine, 
Vol.3, 2001, pp. 79-100. 

[7] L.G. De Pillis and A.E. Radunskaya, The 
Dynamics of an optimally controlled tumor 
model: a case study, Mathematical and 

Computer Modelling, Vol.37, 2003, pp. 1221–
1244. 

[8] M. Simeoni, P. Magni, C. Cammia, G. De 
Nicolao, V. Croci, E. Pesenti, M. Germani, I. 
Poggesi, M. Rocchetti, Predictive 
pharmacokinetic-pharmacodynamic modeling 
of tumor growth kinetics in xenograft models 
after administration of anticancer agents, 
Cancer Res,  Vol.64, 2004, pp. 1094–1101. 

[9] N. Terranova, M. Germani, F. Del Bene, P. 
Magni, A predictive pharmacokinetic–
pharmacodynamic model of tumor growth 

kinetics in xenograft mice after administration 
of anticancer agents given in combination, 
Cancer Chemother Pharmacol, Vol.72, No.2, 
2013, pp. 471–482. 

[10] F. Castiglione and B. Piccoli, Cancer 
immunotherapy, mathematical modeling and 
optimal control, Journal of Theoretical 

Biology, Vol.247, 2007, pp. 723–732. 
[11] U. Ledzewicz and H. Schättler, Optimal 

Control for Mathematical Models of Cancer 
Therapies, Interdisciplinary Applied 

Mathematics, Vol. 42, 2014. 
[12] M. Itik, M. U. Salamci, and S. P. Banks, 

Optimal control of drug therapy in cancer 
treatment, Non-linear Analysis: Theory, 

Methods & Applications, Vol.71, No.12, 2009. 
[13] N. Babaei, M. U. Salamci, and T. Çimen, State 

Dependent Riccati Equation controlled drug 
delivery for mixed therapy of cancer treatment, 
IFAC-PapersOnLine, Vol.48, No.25, 2015, pp. 
265–270.  

[14] H. T. Banks, B. M. Lewis, and H. T. Tran, 
Non-linear feedback controllers and 
compensators: a state-dependent Riccati 
equation approach, Computational 

Optimization and Applications, Vol.37, No.2, 
2007, pp. 177–218. 

[15] T. Çimen, State Dependent Riccati Equation 
(SDRE) control: A survey, Plenary Session of 

17th IFAC World Congress, Vol.17, 2008. 
[16] I. Mehmet, M. U. Salamci, and S. Banks, 

SDRE optimal control of drug administration in 
cancer treatment, Turk J Elec Eng & Comp Sci, 
2010.  

[17] M. Kelly, An Introduction to Trajectory 
Optimization: How to Do Your Own Direct 
Collocation, SIAM Review, Vol.59, No.4, 2017, 
pp. 849–904.  

[18] F. Topputo, and C. Zhang, Survey of Direct 
Transcription for Low-Thrust Space Trajectory 
Optimization with Applications, Abstract and 

Applied Analysis, 2014, pp. 1–15. 
[19] I. S. Mavromatakis, Determination of the 

pharmaceutical treatment-dosage for cancer 

patients using non-linear optimization 

techniques, Diploma Work, School of 
Electrical & Computer Engineering, Technical 
University of Crete, Chania, Greece, 2020. 
https://dias.library.tuc.gr/view/84773  

[20] A. Pouliezos, Modern Control Theory, Hellenic 
Academic Libraries Link, Athens, Greece, 
2015. http://hdl.handle.net/11419/105 
 

 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2020.17.9

Ason S. Mavromatakis, 
Sotirios G. Liliopoulos, George S. Stavrakakis

E-ISSN: 2224-2902 75 Volume 17, 2020

https://dias.library.tuc.gr/view/84773
http://hdl.handle.net/11419/105



