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Abstract: For the multiple drug administration it is important from therapeutic reasons to maintain the 
concentration in the blood plasma in an appropriate range. The effectiveness and toxicity of antibiotics and 
especially of aminoglycosides show a strong direct positive relationship with blood drug concentrations, 
therefore, therapy with aminoglycosides in adults is usually guided by therapeutic drug monitoring. In the 
present paper an optimization approach was developed to determine Amikacin dosage regimen to achieve the 
desired plasma concentrations after application from depot. The developed methodology allows the 
optimization of both the dose and the dosage interval. Performance of the developed methodology was 
evaluated by computing bias and precision of the estimated trough and peak Amikacin concentrations that were 
reached after dosage regimen determinations. 

Key-Words: optimization of multiple drug administration, individualization of drug therapy  

 
1 Introduction 

 Quantitative methods for individualizing 
and optimizing the dosage regimen and clinically 
monitoring for each patient are desirable to ensure 
that each patient can obtain effective therapeutic 
benefit while minimizing undesirable side effects. 
 Aminoglycosides cause irreversible hearing 
loss. The toxic effects of aminoglycosides are dose 
dependent and correlate with increasing drug serum 
concentrations. The effectiveness and toxicity of 
aminoglycosides show a strong direct positive 
relationship with blood drug concentrations, 
therefore, therapy with aminoglycosides in adults is 
usually guided by therapeutic drug monitoring [1]. 
Dosing regimens in adults have been evolved from 
multiple daily dosing to extended-interval dosing. 
This evolution has also taken place in neonates [2]. 
 For the multiple drug administration, it is 
important from therapeutic reasons to maintain the 
concentration in the blood plasma in an appropriate 
range. The common optimization methods use 
pharmacokinetic/pharmacodynamic concepts [3]. In 
[4,5] an application of Bayesian estimation for the 
appropriate dosage regimen prediction of Amikacin 
is presented. In [6,7,8] are considered some 
problems which make possible to optimize the  
 infusion rate input or of multiple intravenous 
administration of drug.  

 In the present paper an optimal impulsive 
control of compartment models was developed to 
determine Amikacin dosage regimen to achieve the 
desired plasma concentrations after drug 
administration from depot. Measurements of 
Amikacin concentration in serum are used to 
individualise dosage regimens (dose per 
administration and/or administration interval) to 
achieve attaining the desired therapeutic range as 
quickly as possible. Therapeutic range is defined in 
terms of peak concentration (to monitor 
effectiveness) and trough concentration (to avoid 
toxicity). This article focuses on methods to 
individualise Amikacin dosage regimens in the 
context of extended dosage intervals. Simple 
pharmacokinetic methods involve linear dosage 
adjustment based on peak or trough concentrations 
or area under the concentration-time curve, or 
nomograms. They are preferred methods due to their 
simplicity, strong pharmacodynamic rationale and 
prospective validation in a large population. 
However, it does not work when the fixed dose 
assumed is not relevant, for example for patients 
with burns, cystic fibrosis, ascites or pregnancy, 
because of the wide interindividual variability of 
aminoglycoside pharmacokinetic parameters [1]. 
The developed methodology allows the optimization 
of both the dose and the dosage interval, but 
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requires Amikacin concentrations from two or more 
samples taken in the pre- and post-distributive phase 
during a single dosage interval. Performance of the 
developed methodology was evaluated by 
computing bias and precision of the estimated of the 
trough and peak Amikacin concentrations that were 
reached after dosage regimen determinations.  
 
 
2 Problem Formulation 
 Let us consider two- compartment linear 
pharmacokinetic model, where the transfer of drug 
between two compartments is assumed to be occur 
in two directions [3].  
 Let the application of drug is from depot i.e. 
oral, muscular, subcutant and etc. The 
administration is regarded as an impulsive input to 
the gastrointestinal tract or muscle tissue or etc. The 
compartment receiving a nonnegative input is 
assumed to be the first and an apparent space of 
drug distribution in the body containing the blood 
space to be the second one (Fig.1). Then the 
dynamics of this system is described by the 
following differential equations: 

(1) 
( )

1
12 1 21 2

2
12 1 20 21 2

dM k M k M
dt

dM k M k k M
dt

= − +

= − +
 

where 1M  and 2M  are drug quantities 
correspondingly in the first and in second 
compartment, ijk  are the parameters of the 
compartment model (which will be estimated using 
nonlinear regression).  
 

Fig.1 Two compartment model 
 

 The base compartment is the second one. 
Only there (in the second compartment) the drug 
concentration could be measured. The drug 
administration is applied in the first compartment 
and a multiple administration is assumed.  

 The control in the system (1) is realized as 
follows. In the first compartment at the moments 

1 20 ... nt t t= < < <  the impulses iε are applied: 

(2) 1( ) ( ) , 0,1,2,...,i i ix t x t i nε+ −= + = . 

The size of these impulses - iε  corresponds to the 
quantity of the applied drug.  Since the 
measurement of the drug is possible only in the 
second compartment let us denote also  

(3) 2
2

2

( )( ) M tx t
V

=  

where 2V  is the volume of the second compartment  
and 2 ( )x t - its drug  concentration. Then the system 
(1) will be rewritten as  

(4) 
( )

1
12 1 21 2 2

2 12
1 20 21 2

2

dM k M k V x
dt

dx k M k k x
dt V

= − +

= − +
 

Let us assume that the parameters  
2 20 21 12, , ,V k k k  are already known (this lead to 

parameter estimation problem and it is discussed in 
the next section). So one can state the following 
problem.  

The drug administration will be multiple 
applied till the drug concentration reaches the value 
prescribed by the therapist. After this the multiple 
drug administration will continue but with rule that 
the drug concentration (again in the second 
compartment) will remain in the prescribed by the 
therapist ranges. Obviously, there are two stages of 
the problem. In the first one – there exists an 
interval  1 0[ , ]t t  for which the drug concentration 
starting at zero will reach a given value - 0C ; and in 
the second stage - there is an interval 1 0[ , ]t t  
(actually this is the time of the active therapy) – the 
concentration 2 ( )x t  has to be kept in the ranges –

0 2 0 0( ) , [ , ],mC x t C t t tδ δ− ≤ ≤ + ∈ where δ  is a 
parameter which determines the announced 
prescribed ranges.  
 
 
3 Problem Solution 
The characteristic equation of the system (1) is  

( )2
20 12 21 12 20 0r k k k r k k+ + + + =   

with roots  

M M
12

21

20

1 2
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( )

( )

2
1 20 12 21 20 12 21 20 21

2
2 20 12 21 20 12 21 20 21

1 ( ) 4 ,
2
1 ( ) 4 .
2

r k k k k k k k k

r k k k k k k k k

α

β

 = = − + + + + + − 

 = = − + + − + + − 
For the i-th interval - 1[ , ], 1,2,...i it t t i+∈ =  the 
solution of the system (4) has the form 

( ) ( )

( ) ( )( )
1 1 2

( ) ( )
12 12( )

2 1 2
2 21 2 21

( ) ,

( ) ,

i i

i i

t t t ti
i i

t t t t
i

i i

M t e C e C

k e k e
x t C C

V k V k

α β

α βα β

− −

− −

= +

+ +
= +

where the constants of integration 1 2,
iiC C  are 

determined by  

( )( )( )( 1) ( 1)
1 1 12 2 21

1( ) ( ) ,i i
i i i iC x t k x t kε β

β α
− −= + + −

−

( )( )( )( 1) ( 1)
2 2 21 1 12

1( ) ( ) .i i
i i i iC x t k x t kε α

β α
− −= − + +

−
For the first subinterval one has 

(6) ( )( )
( ) ( )12 12(1)

2
2 21

( ) .i t tk k
x t e e

V k
α βε β α

β α
+ +

= −
−

 

The solution of the considered problem 
essentially depends on the parameters of the system  
- 2 20 21 12, , ,V k k k . For a  specific clinical case (patient 
with a serious tissue infection and renal failure), 
after single intramuscular administration of 
antibiotic Amikacin, in our disposition were six 
experimental data points 2( , ( )), 1,2,...,6j jt x t j =  of 
plasma concentration 2 ( )x t . Smaples are taken in 
the pre- and post-distributive phase during a single 
dosage interval.  By using the method of nonlinear 
regression to the data, we estimate the individual 
pharmacokinetics parameters of the 
patient -1 -1 -1

20 12 210.1[h ]; k 6.5 [h ]; k 1.5 [h ]k = = = . 
The maximal feasible impulse (dose) for drug 
administration is 0 80 gε µ= . 

The parameter 2V  appears like a scale factor 
and has a subsidiary role. Its value is estimated to be  

2 10 .V l=   For the first stage of the stated problem  
(for the  particular assumed data) one finds the 
solution – 2 2 ( )x x t=  - shown at the Fig. 2.  
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5

10

15

20

times in hours - t

x 2

 
Fig.2 The concentration 2 2 ( )x x t=  for the first stage of 

the problem 

This solution is obtained also when taking 
into account the following details. It is assumed 
multiple drug administration in impulses with 
maximal feasible impulse 0ε  and with the 
conventional acquired application every 12 hours. 
As it can be seen from Fig.1, where the 
concentration in the second compartment enters into 
the prescribed by the therapist zone about the value 
of 0 15 /C g mlµ= . Therefore, one will assume 

0 24t =   and will pass over the second stage of  the 
problem.  

In  the second stage of the problem one will 
seek such control which will maintain the 
concentration 2 2 0( ), [ , ]mx x t t t t= ∈  (for the time 

mt  the value  mt =120 is assumed)  in the ranges 

(7) 0 2 0 0( ) , [ , ].mC x t C t t tδ δ− ≤ ≤ + ∈  

One will divide the interval 0[ , ]mt t  into 8 
subintervals – this means that again the 
conventional application of every 12 hours is 
assumed. The control is determined by iε  - the 
impulses in each left end of these impulses. One will 
introduce the following criteria of optimality – 

(8) 
1

1

2 2 0( ) min.
i

i

tN

i N t

F x t C dt
+

=

= − →∑ ∫   

  The same optimality criteria was introduced 
in [10,11] and it takes into integral account of the 
deviation of 2 ( )x t  about the value 0.C  In (8)  with 

1N  is denoted the index after which a stationary 
process has been achieved. 

  The additivity of the objective function 2F  
allows to seek the minimum of the function (8) in 
each subinterval 1[ , ]i it t +   and  to determine the value 
of iε  - the impulse for which this minimum is 
achieved. In Fig.2 the graphic of the such 
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determined concentration 2 2 ( ),x x t= [0, ]mt t∈  is 
shown. The values of the corresponding impulses iε  
(in gµ ) for the successive subintervals are: 80; 80; 
80; 41.0256; 39.5897; 39.5897; 38.1538; 39.5897; 
39.5897; 39.5897. The maximal deviation of 

2 2 ( )x x t=  is max 2 0 1max ( ) , [ , ]i i iX x t C t t t += − ∈ . 
  In the almost stationary process after 4t  is 
1.6825 /g mlµ , or in percentages  with respect to 

0C  is 11.22 %δ = . The region where the 
concentration  2 ( )x t  is placed is bounded by the 
upper bound maxC 16.69=  /g mlµ  and by the lower 
bound minC 13.31= /g mlµ . 
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5
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15

20

times in hours - t

x 2

 
Fig.3 The concentration 2 2 ( )x x t= , [0, ]mt t∈  

Fig.3 demonstrates convincingly how after 
the first stage  following an appropriate  control law, 
the concentration 2 2 ( )x x t=  is kept in the fixed 
bounds (7). In Fig.4 is shown the graph of the 
criterion 2F  as a function of varying impulses ε  in 
some chosen subinterval. One can see very clearly 
how the considered function reaches its minimum in 
an inner point. 
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Fig.4 Graph of the criterion 2F  as a function of varying 

impulses ε  

  One has obtained a solution under the 
assumption that the drug is applied every 12 hours. 
Let us change this assumption and look for a 

solution of the stated problem under the assumption 
of drug application every 24 hours. Now we shall 
increase the time mt  in order to reach clearly 
determined stationary process. One will choose 

mt 168=  hours and then instead of 8 (like in the 
previous case) there will be 6 subintervals 

1[ , ]i it t + (after 0t 24= ). There is actually the same 
optimization problem where only one of the 
parameters has been changed.  

  In Fig.5 the graph of the concentration  
2 2 ( ),x x t= [0, ]mt t∈   determined for the changed 

conditions is presented. The values of the impulses 
iε  (in gµ ) for the corresponding successive 

subintervals are as follows:  

80; 80; 80; 80; 80; 80; 78.1538; 78.1538. 
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Fig.5 The concentration 2 2 ( )x x t= for drug application 

every 24 hours 

  It can be seen that in four of the six subintervals the 
applied impulses with their maximal feasible values. 
This means that for these subintervals the minimum 
of the objective function 2F  is reached at the border 
of the subinterval.  

  In Fig.6 the graph of the of the criterion 2F  
as a function of the varying impulses ε   for such 
subinterval is shown. For the cases when the 
minimum of the objective function 2F  is reached for 
an inner point, the corresponding picture is 
analogous to Fig.4 and then the optimal impulse ε  
occurs to be less as the maximal feasible value of 
80. 
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Fig 6 Graph of the criterion 2F  for subinterval 5 6[ , ]t t t∈  

  The maximal deviation of 2 2 ( )x x t=  is  

max 2 0 1max ( ) , [ , ]i i iX x t C t t t += − ∈ , for the 
stationary process after 4t  is 3.8675 /g mlµ , or in 
percentages with respect to 0C  - 25.78 %δ = . The 
region where the concentration 2 ( )x t  is placed is 
bounded by the upper bound maxC 18.9=  /g mlµ  
and by the lower bound minC 11.1=  /g mlµ . 

  As it was naturally to be expected the thin 
out of the drug application leads to an enlarged 
variation of the  concentration 2 2 ( )x x t=  in the 
second compartment. The therapist is one to decide 
whether the ranges of this variation are admissible 
or not.  

  In order to clarify these questions an 
intermediate case will also be considered when the 
drug is applied every 18 hours. For more convenient 
replacement of the subintervals  will be assumed 
that  mt 150=  hours. Then the subintervals 1[ , ]i it t +  
are 7 (after 0t 24= ). In Fig.7 is shown the graph of 
the concentration 2 2 ( ),x x t= [0, ]mt t∈  determined 
for this new conditions. Now the corresponding 
values of the impulses iε  (in gµ )  for the 
successive subintervals are as follows:  

 80; 80; 80; 67.0769; 57.8462; 59.6923; 57.8462; 
59.6923; 57.8462. 
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Fig. 7 The concentration 2 2 ( )x x t= for drug application 

every 18 hours 

 
   Based on the above explanations, now it is 
clear that in all subintervals (after 0t 24= ), the 
minimum of the objective function 2F  is reached for 
an inner point of the subinterval.  

  The maximal deviation of 2 2 ( )x x t=  - 

max 2 0 1max ( ) , [ , ]i i iX x t C t t t += − ∈ for the 
stationary process after 4t  is 2.50 /g mlµ , or  in 
percentages with respect to the value 0C  is 

16.68 %δ = . The region where the concentration  

2 ( )x t  is placed is bounded by the  upper bound 

maxC 17.5 /g mlµ=  and by the lower bound 

minC 12.5 /g mlµ= . 
  At the end, for more completeness of the 
investigation, let us consider also the case of drug 
application every 8 hours. Here, we shall diminish 
the horizon of considerations because the stationary 
process is reached considerably earlier rather than in 
the cases considered so far. Therefore,  will be 
assumed  that mt 96=  hours. The first stage will be 
not changed, i.e. this more frequently drug 
application occurs after 0t 24= . The number of 
subintervals in this case  (after 0t 24= ) is 9.  

In Fig. 8 it is shown the graph of the 
concentration 2 2 ( ),x x t= [0, ]mt t∈  for drug 
application every 8 hours.  
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Fig.8 The concentration 2 2 ( )x x t=  for drug application 
every 8 hours 

Now the corresponding values of the impulses iε  (in 
gµ )  for the successive subintervals are as follows:  

80; 80; 75.9; 26.46; 26.46; 24.62; 26.46; 26.46; 
26.46; 26.46; 26.46. 

As it can be expected, now the  variation of 
the concentration 2 ( )x t , for the stationary process 
after 0t 24= , (which it is very clearly demonstrated 
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in Fig.8) is the smallest one. The maximal deviation 
of 2 2 ( )x x t= : max 2 0 1max ( ) , [ , ]i i iX x t C t t t += − ∈ for 
the stationary process after 3t  is 1.15 /g mlµ , or in 
percentages with respect to the value 0C  is  

7.69 %δ = . The region where the concentration 

2 ( )x t  is placed is bounded by the upper bound 

maxC 16.15 /g mlµ=  and by the lower bound 

minC 13.85 /g mlµ= . 

 
4 Conclusion 

The investigations described above give a very good 
opportunities illustration   optimization approach for 
solving the stated pharmacokinetic problems related 
with the individualization of the therapy is applied. 
The quantitative results found allow to evaluate the 
demonstrated solutions. Let  us repeat the main 
results:  for drug application every 12 hours the 
parameter δ  which determines the deviation of the 
obtained concentration with respect to the 

prescribed ones is 
(12) 11.22 %δ = . For drug 

application every 24 hours, this percentage is  
(24) 25.78 %δ = . Further, for 18 and 8 hours the 

corresponding numbers are 
(18) 16.68 %δ =  and 

(8) 7.69 %δ = . 
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