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Abstract:- We apply optimal control theory to a model of interactions between cancer cells, CD4+ T cells,
cytokines and host cells to devise best immunotherapies for treating cancer. The CD4+ T cells cannot
kill cancer cells directly but use the cytokines produced to suppress tumor growth. The immunotherapy
implemented is modeled as a control agent and it can be either transferring of CD4+ T cells, cytokines or
both. We establish existence and uniqueness of the optimal control. The optimal treatment strategy is
then solved numerically under different scenarios. Our numerical results provide best protocols in terms
of strengths and timing of the treatments.
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1 Introduction

Cancer is a leading cause of death worldwide. It
is a broad group of diseases involved with unregu-
lated cell growth. In particular, cancer cells have
defects in regulatory circuits that govern normal
cell proliferation and homeostasis. It is suspected
that growth signaling pathways suffer deregulation
in all human tumors [1]. On the other hand, many
tumors express antigens that can be recognized by
the adaptive immune system and therefore can be
used to induce an anti-tumor immune response.
The Tumor Immuno-Surveillance Hypothesis states
that the immune system is capable of inhibiting the
growth of very small tumors and eliminating them
before they become clinically evident [2].

Cancer immunotherapy is the use of immune
system to treat cancer. It frequently involves
adopted cellular transfers of T cells and/or cy-
tokines. Researchers designing anti-tumor treat-
ments involving transfers of activated anti-tumor
cells have long focused on the methods to elicit
tumor-specific CD8 CTLs [3]. Although many of
the resulting treatments have indeed been able to
exploit CTLs that recognize tumor cells and/or tu-

mor antigens in vitro, complete tumor regression
has been achieved only in a minority of patients
and animal models [3]. Over the last few decades,
a few studies have shown that CD4 T cells can also
clear tumors completely and independently of CD8,
including Corthay et al. [4], Fernandez et al. [5],
Greenberg et al. [6], Mumberg et al. [7], and Qin
et al. [8]. In addition to these references just men-
tioned, several more recent experiments reconfirm
the effector roles of CD4+ without CD8+. In the
following, we briefly discuss each of these research
works.

To elucidate the direct anti-tumor activity of
Th1 and Th2 cells, particularly against tumors re-
sistant to CTL lysis, Mattes et al. [3] design ex-
periments using B16 mouse melanoma, a highly
metastatic and CTL-resistant tumor cell line. Their
results demonstrate that CD4+T cells can recognize
a secreted tumor-specific antigen and exhibit a cy-
tokine secretion profile characteristic of Th2 cells.
The cytokines are capable of clearing established
lung and visceral metastases of a CTL-resistant
melanoma. This work provides the basis for a new
approach to adoptive T cell immunotherapy of can-
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cer using CD4+ T cells.

Using TCR Tg mice, Perez-Diez et al. [9] in a
recent study perform a direct comparison between
CD4 and CD8 T cells specific for the same tumor
containing pure populations of CD4 or CD8 T cells
in order to test each type of effector role alone with-
out the effects of potential contaminants. Their
study shows that CD4 cells are actually better than
CD8 cells at rejecting tumors in every case tested
using six different tumors. They conclude that CD4
cells are better effector cells even when the CD4 ef-
fectors exhibited minimal in vitro or in vivo lytic
activity against the tumor cells and even when the
tumor expressed major histocompatibility complex
(MHC) class I but not class II molecules.

Motivated by an increasing evidence indicating
that CD4+ T cells are able to mediate tumor de-
struction without direct interaction with tumor cells
and that CD4+ T cells may provide even greater
anti-tumor effect than CD8+ T cells, Zhang et al.
[10] test CD8-depleted, B-cell-deficient mice for in-
duction of the anti-tumor immunity of CD4+ T
cells. Zhang et al further confirm the role of CD4+

T cells as effectors.

The interactions between tumor cells and other
components of the tumor microenvironment are
very complex and continuously changing. Therefore
devising cancer immunotherapies to treat or to cure
cancer is a very challenging task. Mathematical
modeling provides a valuable tool for understand-
ing the complicated interactions among the many
components of the tumor microenvironment. See
[11], [12], [13] and [14]. There are many mathemat-
ical models of tumor-immune interactions with dif-
ferent complexities in the literature. For example,
Forys et al. [15], Kuznetsov et al. [16], Michelson et
al. [17], and de Vladar and Gonzalez [18] use mod-
els of ordinary differential equations to understand
the interactions between tumor and effector cells.
Kirschner and Panetta [19] investigate asymptotic
dynamics between cytokines and CTL cells, where
the CTL cells are directly killing cancer cells. The
article by Eftimie et al. [2] provides a very thorough

review of the research in this area.

To further study the effector roles of CD4+ T
cells via cytokines discovered recently, Eftimie et
al. [20] construct models of interactions between tu-
mor, CD4+ and cytokines to investigate the role of
CD4+ cells on skin tumor rejection. In [21], math-
ematical models of tumor, CD4+ T cells, and cy-
tokines with continuous treatments are proposed to
explore the effects of different immunotherapies. It
is known that tumor cells and normal tissue cells
compete for resources and space [1]. Further, the
signaling interactions between the stromal and neo-
plastic tissues are important in driving tumor cell
proliferation [22]. As a consequence, host cells play
important roles on tumor evolution. A mathemat-
ical model of tumor and normal tissue cells with
another component of generic immune cells such as
CD8+ T cells or NK cells is proposed in [11] to
study various optimal treatment strategies. More
recently, mathematical models of tumor cells, nor-
mal tissue cells, CD4+T cells and cytokines with
continuous and pulsed treatments are investigated
to study the possible effects of CD4+ on tumor re-
gression and dormancy [23].

In this work, we apply optimal control theory to
devise the best immunotherapy strategies for treat-
ing cancer. The optimal control theory has been
applied to study cancer immunotherapy by many
researchers such as Burden et al. [24], Castiglione
and Piccoli [25], Khajanchi and Ghosh [26], Minelli
et al. [27], and Sharma and Samanta [28]. In these
studies by [24, 25, 26, 27, 28], objective functionals
may be defined differently depending on the goal
of the treatment outcomes. Our model with no
treatments is based on a system of ordinary dif-
ferential equations studied in [23] where the model
may have two interior steady states in the absence
of any treatments. It is shown in [23] that if the
tumor has a small intrinsic growth rate and is also
less competitive than the host cells, then the cancer
cells can be eradicated completely independent of
the tumor size. Since continuous treatments may
have serious side effects on the patients who receive
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the treatments, our goal of this research is to derive
a best immunotherapy by taking patient’s tolerance
of treatment into consideration. For our purpose,
we aim to derive a best strategy under which the
tumor size is small and the number of normal cells
are large during the whole treatment period.

The remainder of this manuscript is organized
as follows. In the following section, a brief review
of the mathematical model investigated in [23] is
presented. Section 3 uses optimal control theory to
provide optimal treatment strategies. In particu-
lar, we show that the optimal control exists, and is
unique if in addition the treatment period is small.
Numerical simulations under different scenarios are
performed in Section 4. The final section provides
a brief summary and discussion.

2 The model with no treatment
In this section, we briefly review the model studied
by Hu and Jang [23]. Recall that we focus on the
effector role of CD4+ T cells. Let x(t), y(t), z(t)
and w(t) denote the tumor cells, CD4+ T cells, cy-
tokines, and the normal tissue cells at time t ≥ 0,
respectively. The cytokine in this study is based
on IL-4 or more broadly any cytokines produced by
the Th2 cells. The time unit is a day. It is assumed
that both the tumor and normal tissue cells grow lo-
gistically with intrinsic growth rates r1 and r2 and
carrying capacities 1/b1 and 1/b2, respectively. In
the absence of CD4+ T cells and cytokines, the in-
teraction between tumor and normal tissue cells is
described by the classical Lotka-Volterra competi-
tion equation with competition coefficients δ1 and
δ3. These two types of cells compete for space and
resources for growth. The simple Lotka-Volterra in-
teraction is also assumed in [11] and [29] for study-
ing competition between tumor and host tissue cells.

Unlike CD8+ T cells, CD4+ T cells cannot kill
tumor cells directly but through the cytokines they
produced [3, 10]. The Michaelis Menten kinetics,
c1xz

a1 + x
, is used to model the killing of tumor cells

due to cytokines, where c1 is the maximum killing

rate by cytokines and a1 is the half saturation con-
stant. This tumor killing rate is also adopted in [20]
and [21]. The activation of CD4+ T cells is through
tumor cells and cytokines but is also limited by the

cancer cells and is described by
β1xz

α1 + x
. The param-

eter β1 is the maximum CD4+ production rate and
α1 is the half saturation constant, where β1 may be
interpreted as the antigenicity of the tumor. The
immune system produces CD4+ T cells more effec-
tively if β1 is larger. The rate of change of CD4+

T cells increases with increasing tumor cells but is
also limited by the tumor cells. The activation of
CD4+ T cells is similar to the model discussed in
[20] but is different from that in [21].

In addition to the apoptosis, denoted by µ1,
CD4+ T cells are inactivated due to interaction with
the tumor cells and this loss rate is given by δ2. This
inactivation of CD4+ T cells is also assumed in [20]
but not in [21]. The production of cytokines de-
pends on both the tumor and the CD4+ T cells and
is also modeled by the Michaelis-Menten kinetics.
Therefore, the production of cytokines is also lim-
ited by the cancer cells as in [21] and [20]. Let β2
denote the maximum production rate of cytokine
and α2 be the half saturation constant. The cy-
tokine decays naturally at a rate µ2. These param-
eters are positive constants and the model without
any treatment is given by

x′ = r1x(1− b1x)−
c1xz

a1 + x
− δ1xw

y′ =
β1xz

α1 + x
− µ1y − δ2xy

z′ =
β2xy

α2 + x
− µ2z

w′ = r2w(1− b2w)− δ3xw
x(0) > 0, y(0) ≥ 0, z(0) ≥ 0, w(0) > 0.

(1)

System (1) can have at most two interior steady
states and bistability exhibits in the interaction.
It is proven that if r2 > δ3/b1 and r1 < δ1/b2,
then steady state E2 = (0, 0, 0, 1/b2) is globally
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asymptotically stable for (1) in int(R4
+) so that

the tumor can be eradicated completely. On the
other hand, if the product of the natural loss rates
of CD4+ T cells and cytokines are large, µ1µ2 >

β1β2

(b1α1 + 1)(b1α2 + 1)
, then the immune system is

not effective and whether the tumor can establish
itself or not depends solely on its interaction with
the host cells. Although oscillations are frequently
observed in some previous models such as [19] and
[21] in which the host cells are not incorporated,
oscillations are rarely present in model (1). When
oscillations do exist in the dynamic interaction, then
long periodicity and small amplitude are obtained
and thus such an oscillatory behavior is not easily
observed clinically. It is widely believed that solid
tumor cells do not oscillate over time [2]. Therefore,
the study in [23] suggests that host cells along with
the mechanism of production of CD4+ T cells play
important roles on regulating tumor dynamics.

In the experiment carried out by Mattes et al.
[3], 105 tumor cells are injected in the mouse on
day zero and adopted transfer of 107 CD4+ T cells
is administered on day 7. The model (1) is validated
in [23] with a single treatment of CD4+ T cells on
day 7. It is concluded that the experimental result
of Mattes et al. [3] can be achieved if the immune
system of the subject is strong [23].

3 The optimal strategy of immunother-
apy

In this section, we devise the best treatment strate-
gies using optimal control theory. We introduce the
control terms ui, i = 1, 2, and formulate the treat-
ment problem in an optimal control setting. Section
3.1 establishes existence of the optimal control and
the uniqueness of the control pair is given in Section
3.2.

Before presenting our model, we briefly review
some optimal control models involving immunother-
apies. Burden, Ernstberger and Fister [24] propose
a model of cancer cells T (t), effector cells E(t) and
cytokines C(t) with optimal control. The control

is added to the equation of the effector cells us-
ing the term su(t), where s denotes strength and
u is the control with 0 ≤ u ≤ 1. Their objective
functional is given by J(u) =

∫ tf
0 (E(t) − T (t) +

C(t) −
1

2
Bu2(t))dt, B > 0, and they seek to maxi-

mize J subject to the state equations. Minelli et
al. study a five-dimensional ordinary differential
equations including effector cells E, help cells H,
dendritic cells D, tumor cells T and cytokines C
with a control term u(t) added to the equation of
dendritic cells. The objective functional is given by

J(u) = ρT (ff )+
1

2

∫ tf
0 u2(t)dt, where ρ is a weighted

factor and their goal is to minimize J subject to the
state equations. Notice that the term tf appeared
in the integral of both models denotes final time.
That is, the control is applied over the finite time
span [0, tf ]. Engelhart, Lebiedz and Sager [30] study
several published models of tumor-immune interac-
tions by applying optimal controls to these models.
We refer the reader to [24, 27, 30] and their refer-
ences for optimal controls in the setting of cancer
treatments by immunotherapies.

Let T > 0 be the fixed treatment period. Using
the same notations for the state variables in (1), the
state equations are given by

x′ = r1x(1− b1x)−
c1xz

a1 + x
− δ1xw

y′ =
β1xz

α1 + x
− µ1y − δ2xy + s1u1(t)

z′ =
β2xy

α2 + x
− µ2z + s2u2(t)

w′ = r2w(1− b2w)− δ3xw

(2)

with initial conditions x(0) = x0 > 0, y(0) = y0 ≥
0, z(0) = z0 ≥ 0, and w(0) = w0 > 0. Parame-
ters si ≥ 0, i = 1, 2, are the strengths of the im-
munotherapies by CD4+ T cells and cytokines re-
spectively, and (u1(t), u2(t)) ∈ U represents time
dependent external source of treatments with U de-
fined below. There is no treatment by CD4+ T cells
if u1(t) = 0 and the immunotherapy of CD4+ cells is
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maximal if u1(t) = 1. Similar interpretations hold
for u2(t). The admissible control class for our prob-
lem is

U = {(u1, u2) : ui(t) is piecewise continuous and

0 ≤ ui(t) ≤ 1 on [0, T ], i = 1, 2}. (3)

We assume the strengths of the treatments sat-
isfying s1 + s2 > 0 so that at least one kind of im-
munotherapy is performed. If s1 = 0, then the im-
munotherapy by CD4+ T cells is not implemented,
and the immunotherapy of cytokines is not adopted
if s2 = 0.

The goal of the treatment is to maximize the
normal tissue cells and minimize the cancer cells
along with the treatments during the whole treat-
ment period [0, T ] and so the objective functional is
given by

J(u1, u2) =

∫ T

0

(
w(t)−x(t)−

1

2
B1u

2
1(t)−

1

2
B2u

2
2(t)
)
dt,

(4)
where Bi ≥ 0, i = 1, 2, are weighted constants
used to balance the contributions between the treat-
ments. We assume Bi > 0 if si > 0 for i = 1, 2. The
optimal control problem consists of

max(u1,u2)∈UJ(u1, u2) (5)

subject to the state equations (2).
Notice that our objective functional (4) is dif-

ferent from those in [24] and [27]. We shall make a
remark on the numerical results later in the next
section if we choose a slightly different objective
functional. There are theory and techniques de-
veloped in Fleming and Rishel [31] and Lenhart
and Workman [32] for studying the optimal control
problem formulated above. We first provide exis-
tence of the control pair and then prove that the
control is unique if in addition the treatment period
T is small. These proofs are provided in Appendix.

3.1 Existence of Optimal Control
In this subsection we study existence of an optimal
control and derive the necessary conditions. Our

proof of the existence follows from Fleming and
Rishel [31, pages 68-69].

Theorem 3.1 There exists an optimal control for
the problem (2)–(5).

Once the existence of an optimal control is
shown, we proceed to apply the Pontryagin’s Max-
imum Principle [32] to derive necessary conditions.
Let (λ1, λ2, λ3, λ4) denote the adjoint vector. The
Hamiltonian of the optimal control problem (2)–(5)
is

H(x, y, z, w, λ1, λ2, λ3, λ4, u1, u2)

= w − x−
1

2
B1u

2
1 −

1

2
B2u

2
2

+ λ1

(
r1x(1− b1x)−

c1xz

a1 + x
− δ1xw

)
+ λ2

(
β1xz

α1 + x
− µ1y − δ2xy + s1u1

)
(6)

+ λ3

(
β2xy

α2 + x
− µ2z + s2u2

)
+ λ4

(
r2w(1− b2w)− δ3xw

)
,

where the adjoint variables satisfy λ′1 = −
∂H

∂x
,

λ′2 = −
∂H

∂y
, λ′3 = −

∂H

∂z
, λ′4 = −

∂H

∂w
with the

transversality conditions λi(T ) = 0 for 1 ≤ i ≤ 4.

Applying the optimality condition
∂H

∂ui
= 0, we ob-

tain u1 =
λ2s1

B1
and u2 =

λ3s2

B2
provided B1 and

B2 are positive. Since the control u1 and u2 are
bounded, the characterization of the optimal con-
trol pair (u∗1, u

∗
2) is therefore

u∗1(t) =



λ2(t)s1

B1
0 <

λ2s1

B1
< 1

0 if
λ2s1

B1
≤ 0

1
λ2s1

B1
≥ 1,
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u∗2(t) =



λ3(t)s2

B2
0 <

λ3s2

B2
< 1

0 if
λ3s2

B2
≤ 0

1
λ3s2

B2
≥ 1,

i.e., if B1 > 0 and B2 > 0

u∗1(t) = min{max{0,
λ2(t)s1

B1
}, 1},

u∗2(t) = min{max{0,
λ3(t)s2

B2
}, 1}. (7)

We summarize the above discussion as follows.

Proposition 3.2 Given an optimal control pair
(u∗1, u

∗
2) and solutions of the corresponding state

equations (2), there exist adjoint variables λi, 1 ≤
i ≤ 4, satisfying

λ′1 = 1− λ1[r1(1− 2b1x)−
c1a1z

(a1 + x)2
− δ1w]

− λ2[
α1β1z

(α1 + x)2
− δ2y]−

λ3α2β2y

(α2 + x)2
+ λ4δ3w

λ′2 = µ1λ2 + δ2λ2x−
λ3β2x

α2 + x
(8)

λ′3 =
λ1c1x

a1 + x
−
λ2β1x

α1 + x
+ λ3µ2

λ′4 = −1 + λ1δ1x− λ4[r2(1− 2b2w)− δ3x],

with λi(T ) = 0, 1 ≤ i ≤ 4. Moreover, u∗1 and u∗2 are
represented by (7).

Once the optimal control pair is characterized,
the optimality system consists of the state and ad-

joint equations and is given as

x′ = r1x(1− b1x)−
c1xz

a1 + x
− δ1xw

y′ =
β1xz

α1 + x
− µ1y − δ2xy + s1min{max{0,

λ2(t)s1

B1
}, 1}

z′ =
β2xy

α2 + x
− µ2z + s2min{max{0,

λ3(t)s2

B2
}, 1}

w′ = r2w(1− b2w)− δ3xw (9)

λ′1 = 1− λ1[r1(1− 2b1x)−
c1a1z

(a1 + x)2
− δ1w]

− λ2[
α1β1z

(α1 + x)2
− δ2y]−

λ3α2β2y

(α2 + x)2
+ λ4δ3w

λ′2 = µ1λ2 + δ2λ2x−
λ3β2x

α2 + x

λ′3 =
λ1c1x

a1 + x
−
λ2β1x

α1 + x
+ λ3µ2

λ′4 = −1 + λ1δ1x− λ4[r2(1− 2b2w)− δ3x],

with x(0) = x0 > 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0,
w(0) = w0 > 0, and λi(T ) = 0, 1 ≤ i ≤ 4. The
optimality system (9) yields a two-point boundary
value problem, which will be studied numerically.

3.2 Uniqueness of the Optimal Control
We prove uniqueness of the solution of (9) in this
subsection, and, as a result, the optimal control pair
is unique. Since the adjoint differential equations
(8) are linear in the adjoint variables λi, 1 ≤ i ≤ 4,
with bounded state coefficients, the adjoint vari-
ables are therefore bounded on [0, T ]. Using these
bounds along with the bounds of the state variables
and the control pair, we prove that the optimality
system (9) has a unique solution if T > 0 is suffi-
ciently small. Our proof is similar to the proof in
Burden et al. [24] and Fister et al. [33].

Theorem 3.3 For T > 0 sufficiently small, the so-
lution to the optimality system (9) is unique.

From the uniqueness of solution of the optimal-
ity system, the optimal control pair (u∗1, u

∗
2) given

in (7) is therefore unique if T > 0 is small.
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4 Numerical Investigations
In this section, we study the optimal control prob-
lem (2)–(5) numerically and compare the three
different immunotherapies, namely the infusion of
CD4+ T cells, cytokines, or a combination of
these two. The optimality system is solved us-
ing a forward-backward sweep method described in
Lenhart and Workman [32] with an iterative proce-
dure combined with the fourth order Runge-Kutta
scheme. Specifically, we adopt the following algo-
rithm:

Step 1. We choose an initial guess for the control u1
(u2).

Step 2. We solve the state equations using a forward
Runge-Kutta approximation with the initial
conditions and the initial guess of the control.

Step 3. We then solve the adjoint equations backward
by the Runge-Kutta approximation with the
transversality condition and the state solu-
tions from step 2.

Step 4. We update u∗1 (u∗2) by using the characteriza-
tion of the control.

Step 5. We repeat the same procedure until conver-
gence of the states, adjoints, and the control
is achieved.

The parameter values, their units and references
are presented in Table 1. Notice that β1, the tu-
mor’s antigenicity, lies in the range between 0.008
and 1.008 according to Eftimie et al. [20]. The value
depends on the individual who carries the disease.
In this numerical investigation, we let β1 = 0.835.
If β1 is larger, then the immune system is more ef-
fective in producing the CD4+ T cells. Local sen-
sitivity analysis provided in Table 5 of [23] showing
that parameters r1, b1, δ1 and b2 have the most sig-
nificant impact on tumor size. Other parameters
such as c1, r2 and β1 are also important.

Using these parameter values, the tumor’s carry-
ing capacity is 1/b1 ≈ 9.8039×108 and the carrying

capacity of the host cells is 1/b2 = 109. System
(1) has boundary steady states E0 = (0, 0, 0, 0),
E1 = (1/b1, 0, 0, 0) = (9.8039 × 108, 0, 0, 0), E2 =
(0, 0, 0, 1/b2) = (0, 0, 0, 109) and Ē = (x̄, 0, 0, w̄) =
(8.053071806 × 108, 0, 0, 8.3449 × 108), where Ei
is unstable for i = 0, 1, 2, and Ē is asymptoti-
cally stable. There are two interior steady states
E∗1 = (6.770×103, 1.559×106, 2.157×105, 9.99998×
108) and E∗2 = (3.179 × 105, 5.329 × 106, 8.438 ×
105, 9.9993×108). The Jacobian matrix of (1) eval-
uated at E∗2 has three negative real eigenvalues and
one positive real eigenvalue. Hence E∗2 is a sad-
dle point with a three-dimensional stable manifold.
The Jacobian matrix at E∗1 on the other hand has
four complex eigenvalues with negative real parts
and E∗1 is asymptotically stable. Therefore, model
(1) exhibits bistability since there are two local at-
tractors Ē and E∗1 .

If initial condition X0 = (6.77 ×
104, 106, 105, 109) is used, then the solution con-
verges to Ē = (x̄, 0, 0, w̄) = (8.053071806 ×
108, 0, 0, 8.3449× 108) in the absence of treatment.
Figures 1 and 2 provide the simulation results for
X0. Figure 1(a) illustrates that the tumor grows
to a huge size of 8.053071806 × 108 if no treat-
ment is administered. Let s1 = 5 × 105 be the
strength of treatment by CD4+ T cells. The time
evolutions of the tumor cells and optimal control
are given in Fig. 1(b) where B1 = 150. When
the same strength of cytokine treatment is applied,
s2 = 5 × 105, the tumor size grows to the order
of 8.0529995 × 108. This result is not presented.
Figure 1(c) uses s2 = 5 × 106 with B2 = 150. The
combined treatment with s1 = 3 × 105 = s2 and
B1 = B2 = 150 is presented in Fig. 1(d). The final
tumor sizes in (b)–(d) are about 379, 914 and 415
cells respectively. In this example, the treatment
by CD4+ T cells shows a better result than using
cytokines alone. Although the tumor increases its
size more sharply initially with the treatments by
CD4+ T cells, the final tumor size is smaller and the
full strength of the treatment only lasts for about
90 days.
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Table 1. Parameter values and their sources

Parameter Value Unit Reference

r1 0.514 day−1 [20]

b1 1.02× 10−9 day−1 [20]

c1 0.2 cell · (day)−1 · (pg/ml)−1 [20]

a1 105 cell [19]

δ1 1.1× 10−10 (cell · day)−1 [29]

β1 (0.008, 1.008) cell · (day)−1 [20]

α1 103 cell [34]

µ1 0.1 day−1 [21]

δ2 10−7 (cell · day)−1 [20]

β2 5.4 pg/ml · (cell · day)−1 [20]

α2 103 cell [20]

µ2 34 day−1 [20]

r2 0.2822 day−1 [29]

b2 10−9 day−1 [29]

δ3 0.58× 10−10 (cell · day)−1 [29]

In Fig. 2(a), the strength s1 is increased to
5 × 106 and the final tumor size is about 68 cells.
Notice that as s1 is increased, the full strength of
treatment only last for about five days which is con-
siderably shorter than the the smaller strength used
in Fig. 1(b). If we increase s2 to s2 = 5× 107, then
the tumor can be completely eradicated. The opti-
mal control u2 varies with the tumor size as shown
in Fig. 2(b). A combined treatment is presented in
Fig. 2(c), where s1 = s2 = 6×105. The final tumor
size is about 226 cells. In these examples, we used
B1 = B2 = 150.

Let X1 = (107, 106, 105, 109) be the initial con-
dition so that the tumor size is larger. Then the
solution also converges to Ē as for the initial con-
dition X0 when there is no treatment. That is,
both X0 and X1 lie in the basin of attraction of
Ē. Figures 3 and 4 present the simulation results

with different treatment strategies. In Fig. 3(a),
s1 = 5× 108, where the final tumor size is about 3
cells. Fig. 3(b) adopts s2 = 6.4×108 and the tumor
cells can be eradicated completely. Comparing the
two treatment options, there is a tradeoff between
the two. The use of CD4+ T cells requires a smaller
strength s1 than the use of cytokines, s2. Indeed,
CD4+ can reduce the number of tumor cells to 25
with s1 = 2.14× 108. But u1(t) is larger than u2(t)
for more than 90 days even if we increase s1 up to
6.4×108. In this instance there are 2 cells at the end
of the treatment. Moreover, there is a sharp drop
of the tumor cells in the first five days if CD4+ T
cells are adopted with s1 = 5 × 108. A combina-
tion of the two therapies is given in Fig. 3(c) where
s1 = 2×108 and s2 = 108, and the final tumor size is
about 144 cells. One can see that the full strengths
of the treatments last for only about five days and
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then half of the maximum strengths are used for
the remaining days. This is different from Fig. 1(d)
and 2(c) where full treatment of CD4+ T cells are
needed. On the other hand, the final tumor size is
about 8× 108 if s1 = 108 and s2 = 3× 108. This is
not presented. The tumor is completely eradicated
if s1 = s2 = 2× 108, see Fig. 3(d).

Figure 4 uses smaller Bi with B1 = 15 = B2. In
Fig. 4(a), s1 = 2.5 × 108 and the final tumor size
is around 2. With s2 = 6 × 108, the tumor grows
to 7.9 × 108. This strength of cytokines is not suf-
ficient to suppress the tumor. Fig. 4(b) provides
time evolutions of the cancer cells along with the
optimal control u2 when s2 = 6.32× 108. Compar-
ing Fig. 4(a) and 4(b), the treatment by CD4+ T
cells seems better than adopting cytokines since in
the later case the final tumor size is about 2. The
optimal combined treatments is given in Fig. 4(c),
where s1 = 2.5×108 and s2 = 1.5×108, and in Fig.
4(d) where s1 is decreased to s1 = 2 × 108. In this
later case, larger values of u1 and u2 last longer.

Suppose now the tumor killing rate c1 is in-
creased to 0.3. Then the magnitudes and local sta-
bility of Ei, i = 0, 1, 2, and Ē = (x̄, 0, 0, w̄) remain
the same since they are independent of c1. System
(1) has two interior steady states E∗1 = (6.769605×
103, 1.039022× 106, 1.437819× 105, 9.999986× 108)
and E∗2 = (3.178716×105, 3.552882×106, 5.625116×
105, 9.999347× 108), where E∗1 is locally asymptot-
ically stable and E∗2 is a saddle point with a three-
dimensional stable manifold. The tumor size in E∗i ,
i = 1, 2, is smaller than the tumor size of the corre-
sponding interior steady states with c1 = 0.2. The
solution converges to Ē if X1 is used as the initial
condition. Figure 5 provides the simulation results
for B1 = 150 = B2. In particular, s1 = 2× 108 and
s2 = 4.5× 108 are given in Fig. 5(a) and Fig. 5(b)
respectively. The final tumor size is about 4 in (a)
and the tumor cells are eradicated completely in (b).
A combined treatments is given in Fig. 5(c)-(d). In
(c), s1 = 1.5 × 108 and s2 = 108 with x(100) ≈ 0.
In (d), s1 = 108 and s2 = 1.5×108 with x(100) ≈ 0.
We see that as c1 is increased, then the cytokines

are more effective in killing the cancer cells so that
the strength needed to control the tumor is smaller.

Remark. If the goal of the treatment is to mini-
mize the final tumor size, and maximize the normal
tissue cells and minimize the cancer cells along with
the cost or tolerance for the whole treatment period,
then the objective functional is given by

J(u1, u2) = −x(T ) + (10)∫ T

0
(w(t) −x(t)−

1

2
B1u

2
1(t)−

1

2
B2u

2
2(t))dt,

where Bi ≥ 0, i = 1, 2, are the weighted constants
representing either a patient’s level of treatments
tolerance or costs associated with the treatment,
and (u1, u2) ∈ U . Comparing the objective func-
tional (10) with that of (4), the extra payoff term
−x(T ) is added here. The optimal control problem
consists of

max(u1,u2)∈UJ(u1, u2) (11)

subject to the state equations (2).
The Hamiltonian of the optimal control problem

(10)–(11) subject to the state equations (2) is given
by (3.5). The adjoint variables λi, 1 ≤ i ≤ 4, sat-

isfy λ′1 = −
∂H

∂x
, λ′2 = −

∂H

∂y
, λ′3 = −

∂H

∂z
, λ′4 = −

∂H

∂w
with the transversality conditions λ1(T ) = −1 and
λi(T ) = 0 for 2 ≤ i ≤ 4. The condition λ1(T ) = −1
results from the extra payoff term −x(T ) given in
(10). Applying the optimality condition, we ob-
tain an optimal control pair (u∗1, u

∗
2) that maximizes

J(u1, u2), where u∗1 and u∗2 are given by (7). The
optimality system is then numerically solved using
the same algorithm but with a different transversal-
ity condition, namely λ1(T ) = −1. If the objective
functional (10) is considered for those parameter
values and initial conditions given in Fig. 1–5, then
although the final tumor size is somewhat smaller
but it is not significantly smaller. The difference of
final tumor size between the two objective function-
als is only between 0 to 50 cells depending on the
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parameter values and initial conditions. However,
the tumor size usually increases slightly at the end
of the treatment period if objective functional (4)
is considered.

5 Conclusion
In this work, we apply optimal control theory to
provide a best immunotherapy for treating cancer.
The treatment period is fixed and the optimal im-
munotherapy is defined as the therapy that maxi-
mizes the host cells and minimizes the cancer cells
along with the costs or tolerance associated with
the treatments during the whole treatment period.
The model of tumor-immune interaction without
the control is based on a system of ordinary differ-
ential equations studied in [23]. Using the classical
theory, we show that an optimal control pair exists
and is given explicitly in terms of the parameters
and adjoints. We prove that the optimal control
pair is unique if the treatment period is small.

The optimal control pair is numerically solved
using a forward-backward Runge-Kutta sweep
method. We investigate the optimal treatment
strategies with two different initial conditions. One
initial condition has a small tumor size while the
tumor size is large in the other initial condition.
The strategy of using CD4+ T cells or cytokines
alone or a combination of these two is investigated.
The treatment by CD4+ performs better than us-
ing cytokines alone when the tumor size is small
as shown in Figures 1 and 2. The dose of CD4+ T
cells and the final tumor size are smaller. Moreover,
the schedule of adopting maximum dose of CD4+ T
cells is considerably shorter than using of cytokines.
If the tumor size is large, then a large dose si of the
treatment is needed and there is a tradeoff between
the two immunotherapies. A combined treatment
of CD4+ and cytokines seem to be more effective
than using a single type of treatment alone. Fur-
ther, if cytokines are more effective in killing the
cancer cells, that is, if c1 is larger, then a smaller
strength of the treatment is needed.

In this study we do not consider any negative

effect on the host cells when immunotherapies are
applied. In a future research project, we plan to in-
corporate side effects of the immunotherapy into the
host cells and to provide a best protocol for treating
cancer under this additional scenario.

A Appendix
A. Proof of Theorem 3.1 To prove existence, it is
enough to verify the following five conditions given
in Corollary 4.1 of [31]:

(a) The class of all initial conditions with a con-
trol pair (u1, u2) ∈ U for which the state equa-
tions being satisfied is nonempty.

(b) U is closed and convex.

(c) The right hand side of each of the state equa-
tions is continuous, bounded above by the sum
of the control and the state, and can be writ-
ten as a linear function of ui, i = 1, 2.

(d) For fixed x and w, the integrand of J(u1, u2)
is convex on U .

(e) The integrand of J(u1, u2) is concave in ui,
1 ≤ i ≤ 2, and is bounded above by C2 −
C1||(u1, u2)||γ for some C1 > 0 and γ > 1.

Given any initial condition (x0, y0, z0, w0) and a
control pair (u1, u2) ∈ U , we have from the state
equations (2) that x′ ≤ r1x, y′ ≤ β1z + s1, z

′ ≤
β2y + s2 and w′ ≤ r2w. Consider the linear system

x̄′ = r1x̄

ȳ′ = β1z̄ + s1
z̄′ = β2ȳ + s2
w̄′ = r2w̄

x̄(0) = x0, ȳ(0) = y0, z̄(0) = z0, w̄(0) = w0.

Since the solution of the above linear system is
bounded on [0, T ], the solution of (2) exists and
condition (a) is satisfied. Moreover, as x′|x=0 = 0,
y′|y=0,x,z≥0 ≥ 0, z′|z=0,x,y≥0 ≥ 0 and w′|w=0, solu-
tions of (2) remain nonnegative on [0, T ] by Theo-
rem A.4 of [35].
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It is clear that condition (b) is trivially true.
To verify condition (c), we let X = (x, y, z, w) and
let f(t,X, u1, u2) denote the right hand side of (2).
Then there exists M0 > 0 such that

||f(t,X, u1, u2)|| ≤ ||


r1 0 0 0
0 0 β1 0
0 β2 0 0
0 0 0 r2

 ||
×||X||+ s||u|| ≤ M0||X||+ s||u||, (12)

where s = max{s1, s2} > 0 and u = (u1, u2).
Moreover, the right hand side of each of the state
equations is continuous and can be written as a
linear function of ui, i = 1, 2. Therefore condi-
tion (c) is proved. For each fixed x and w, we let

g(u1, u2) = w−x−
1

2
B1u

2
1−

1

2
B2u

2
2. Then by a direct

computation, we have ag(u1, u2)+(1−a)g(v1, v2) ≤
g(a(u1, u2) + (1 − a)(v1, v2)) for any a, 0 ≤ a ≤ 1,
and (u1, u2), (v1, v2) ∈ U . Hence g(u1, u2) is convex
on U and condition (d) is satisfied.

Clearly the integrand of J(u1, u2) is concave in

ui, i = 1, 2, and w(t)−x(t)−
1

2
B1u

2
1(t)−

1

2
B2u

2
2(t) ≤

w(t)−
1

2
B1u

2
1(t) −

1

2
B2u

2
2(t) ≤ C2 − C1(u

2
1 + u22) =

C2−C1||(u1, u2)||γ , where C2 depends on the upper
bound of w(t) on [0, T ], C1 = min{B1/2, B2/2} > 0
and γ = 2 > 1, i.e., condition (e) is verified. There-
fore, an optimal control pair exists for the control
problem (2)–(5) by Corollary 4.1 of [31].

B. Proof of Theorem 3.3

Suppose (x, y, z, w, λ1, λ2, λ3, λ4) and
(x̄, ȳ, z̄, w̄, λ̄1, λ̄2, λ̄3, λ̄4) are two solutions of the
optimality system (9). Similar to the proof in [24]
and [33], we let m > 0 be such that

x = emtp, y = emtq, z = emtv, w = emtg,

λ1 = e−mtj, λ2 = e−mtk, λ3 = e−mtl, λ4 = e−mtf,

x̄ = emtp̄, ȳ = emtq̄, z̄ = emtv̄, w̄ = emtḡ,

λ̄1 = e−mtj̄, λ̄2 = e−mtk̄, λ̄3 = e−mt l̄, λ̄4 = e−mtf̄ .

Substituting the above expressions into the x equa-
tion in (9) and simplifying, yields

mp+p′ = r1p(1−b1emtp)−
c1e

mtpv

a1 + emtp
−δ1emtpemtg,

(13)
and

mp̄+ p̄′ = r1p̄(1−b1emtp̄)−
c1e

mtp̄v̄

a1 + emtp̄
−δ1emtp̄emtḡ.

(14)
Subtracting (14) from (13), multiplying the result-
ing equation by p− p̄ and integrating from 0 to T ,
we have

m
∫ T
0 (p− p̄)2dt+

1

2
[p(T )− p̄(T )]2

= δ1

∫ T

0
emt(p̄ḡ − pg)(p− p̄)dt (15)

+ r1

∫ T

0
(p− p̄)2dt+ r1b1

∫ T

0
emt(p̄2 − p2)(p− p̄)dt

+ c1

∫ T

0
emt[

p̄v̄

a1 + emtp̄
−

pv

a1 + emtp
](p− p̄)dt.

We next use the bounds of the state and adjoint
variables to provide a bound for the right hand side
of (15). Specifically, the following inequality is used
frequently in obtaining the estimates

∫
|f(t)g(t)|dt ≤ (

∫
f2(t)dt)1/2(

∫
g2(t)dt)1/2

≤
∫
f2(t)dt+

∫
g2(t)dt

2
.

For example, in the last term of (15) where

[
p̄v̄

a1 + emtp̄
−

pv

a1 + emtp
]

=
a1p̄(v̄ − v) + a1v(p̄− p) + a1p̄pe

mt(v̄ − v)

(a1 + emtp)(a1 + emtp̄)
,
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and hence

c1

∫
emt[

p̄v̄

a1 + emtp̄
−

pv

a1 + emtp
](p− p̄)dt

≤ c1e
mT × [M1

∫
(v − v̄)2 +

∫
(p− p̄)2

2a1

+ M3

∫
(p− p̄)2/a1

+ M2
1 e
mT

∫
(v − v̄)2 +

∫
(p− p̄)2

2a1
]dt.

Here we have used the bounds p, p̄ ≤ M1 and
v, v̄ ≤ M3 and without writing out the lower and
upper limits of the integral. We apply a similar
procedure to other terms of (15) and simplifying,
yields

(m− r1)
∫ T

0
(p− p̄)2dt+

1

2
[p(T )− p̄(T )]2

≤ (E1e
mT + E2e

2mt)

∫
(p− p̄)2dt

+ (E3e
mT + E4e

2mT )

∫
(v − v̄)2dt

+ E5e
mT

∫
(g − ḡ)2dt,

(16)

where Ei, 1 ≤ i ≤ 5, depend on the bounds of the
state variables and parameters.

For the y equation in (9), we let h∗(k) =

min{max{0,
s1e
−mtk

B1
}, 1}. Observe that |h∗(k) −

h∗(k̄)| ≤ |k − k̄| ≤ emt|k − k̄| since m > 0 and
0 ≤ t ≤ T . We apply a similar technique as in the
x equation to obtain

mq+q′ =
β1e

mtpv

α1 + emtp
−µ1q−δ2emtpq+e−mts1h

∗(k),

(17)
and

mq̄+ q̄′ =
β1e

mtp̄v̄

α1 + emtp̄
−µ1q̄−δ2emtp̄q̄+e−mts1h

∗(k̄).

(18)
Subtracting (18) from (17), multiplying the result-
ing equation by q − q̄ and integrating from 0 to T ,

the last term becomes

s1

∫
e−mt(h∗(k)− h∗(k̄))(q − q̄)dt

≤ s1e
mT

∫
(k − k̄)2 +

∫
(q − q̄)2

2
.

The procedure yields

(m− µ1)
∫ T

0
(q − q̄)2dt+

1

2
[q(T )− q̄(T )]2

≤ F1e
mT

∫
(p− p̄)2dt+ F2e

mT

∫
(q − q̄)2dt

+ F3e
mT

∫
(v − v̄)2dt

+ F4e
mT

∫
(k − k̄)2dt,

(19)

where Fi, 1 ≤ i ≤ 4, depend on the bounds of the
state variables and the parameters. The z and w
equations can be treated similarly.

For the adjoint variables, say λ2, we have

−mk + k′ = µ1k + δ2e
mtkp−

β2e
mtlp

α2 + emtp

and

−mk̄ + k̄′ = µ1k̄ + δ2e
mtk̄p̄−

β2e
mt l̄p̄

α2 + emtp̄
.

Subtracting the first equation from the second, mul-
tiplying the resulting equation by k−k̄ and integrat-
ing from 0 to T , we obtain

m

∫
(k − k̄)2dt+

1

2
[k(0)− k̄(0)]2

= −µ1
∫

(k − k̄)2dt+ δ2

∫
emt(k̄p̄− kp)(k − k̄)dt

+ β2

∫
emt(

lp

α2 + emtp
−

l̄p̄

α2 + emtp̄
)(k − k̄)dt.

(20)
We then have the following estimates

(m+ µ1)
∫

(k − k̄)2dt+
1

2
[k(0)− k̄(0)]2

≤ B̃1e
mt
∫

(p− p̄)2dt (21)

+(B̃2e
mt + B̃3e

2mt)
∫

(k − k̄)2dt

+(B̃4e
mT + B̃5e

2mt)
∫

(l − l̄)2dt,
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where B̃i, 1 ≤ i ≤ 5, depend on the bounds of the
state and adjoint variables and the parameters.

We perform the same procedure to other adjoint
and state variables and then adding the eight esti-
mates of the equations in (9) and obtain

1

2

(
[p(T )− p̄(T )]2 + [q(T )− q̄(T )]2

+ [v(T )− v̄(T )]2 + [g(T )− ḡ(T )]2
)

+
1

2
([j(0)− j̄(0)]2 + [k(0)− k̄(0)]2

+ [l(0)− l̄(0)]2 + [f(0)− f̄(0)]2)

+ (m− r1)
∫

(p− p̄)2dt

+ (m− µ1)
∫

(q − q̄)2dt+ (m− µ2)
∫

(v − v̄)2dt

+ (m− r2)
∫

(g − ḡ)2dt+ (m− r1)
∫

(j − j̄)2dt

+ (m+ µ1)

∫
(k − k̄)2dt+ (m+ µ2)

∫
(l − l̄)2dt

+ (m− r2)
∫

(f − f̄)2dt

≤ (J11e
mT + J12e

2mT + J13e
3mT )

∫
(p− p̄)2dt

+ J21e
mT

∫
(v − v̄)2dt

+ (J31e
mT + J32e

2mT + J33e
3mT )

∫
(v − v̄)2dt

+ (J41e
mT + J42e

2mT

+ J43e
3mT )×

∫
(q − q̄)2dt (22)

+ (J51e
mT + J52e

2mT + J53e
3mT )

∫
(k − k̄)2dt

+ J71e
mT

∫
(f − f̄)2dt

+ (J81e
mT + J82e

2mT + J83e
3mT )

∫
(l − l̄)2dt,

where Jij depends on the bounds of the state and
adjoint variables and the parameters. Simplifying
(22), we have

(m− M̃1 − M̃2e
3mT )

∫ T
0 [(p− p̄)2 + (g − ḡ)2

+(v − v̄)2 + (q − q̄)2 + (j − j̄)2 (23)

+(k − k̄)2 + (f − f̄)2 + (l − l̄)2]dt ≤ 0,

where M̃i, i = 1, 2, depend on the bounds of the
state and adjoint variables and the parameters. We
can choose m > 0 such that m > M̃1 + M̃2. Then

T0 :=
1

3m
ln(

m− M̃1

M̃2

) > 0. Therefore if T < T0,

then m− M̃1− M̃2e
3mT > 0 and from (23) we must

have 0 = (p− p̄)2 = (g− ḡ)2 = (v− v̄)2 = (q− q̄)2 =
(j − j̄)2 = (k − k̄)2 = (l − l̄))2 = (f − f̄)2 on [0, T ].
Therefore for T > 0 small, T < T0, the solution to
the optimality system (9) is unique.

References

[1] R.A. Weinberg, The Biology of Cancer, 2nd ed., Garland Science: London, UK, 2013.

[2] R. Eftimie et al., Interaction between the immune system and cancer: a brief review of non-spatial
mathematical models, Bull. Math. Biol., vol. 73, 2011, pp. 2-32.

[3] J. Mattes et al., Immunotherapy of cytotoxic T cellresistant tumors by T helper 2 cells: An eotaxin
and STAT6-dependent process, J. Exp. Med., vol. 197, 2003, pp. 387-393.

[4] A. Corthay, D.K. Skovseth, K.U. Lundin, et al., Primary antitumor immune response mediated by
CD4+ T cells, Immunity, vol. 22, 2005, pp. 371-383.

[5] E. Fernandez-Cruz, B.A. Woda, J.D. Feldman, Elimination of syngeneic sarcomas in rats by a subset
of T lymphocytes, J. Exp. Med., vol. 152, 1980, pp. 823-841.

13

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Xiaochuan Hu, Sophia R. J. Jang

E-ISSN: 2224-2902 60  Volume 15, 2018



[6] P.D. Greenberg, D.E. Kern, M.A. Cheever, Therapy of disseminated murine leukemia with cy-
clophosphamide and immune Lyt-1+,2- T cells. Tumor eradication does not require participation of
cytotoxic T cells, J. Exp. Med., vol. 161, 1985, pp. 1122-1134.

[7] D. Mumberg. P.A. Monach, S. Wanderling, CD4+ T cells eliminate MHC class II-negative cancer cells
in vivo by indirect effects of IFN-gamma, Proc. Natl. Acad. Sci. USA, vol. 96, 1999, pp. 8633-8638.

[8] Z. Qin, T. Blankenstein, CD4+ T cellmediated tumor rejection involves inhibition of angiogenesis
that is dependent on IFN gamma receptor expression by nonhematopoietic cells, Immunity, vol. 12,
2000, pp. 677-686.

[9] A. Perez-Diez et al., CD4 cells can be more efficient at tumor rejection than CD8 cells, Blood, vol.
109, 2007, pp. 5346-5354.

[10] S. Zhang, CD4 T-cell-mediated anti-tumor immunity can be uncoupled from autoimmunity via the
STAT4/STAT6 signaling axis, Eur. J. Immunol., vol. 39, 2009, pp. 1252-1259.

[11] L. de Pillis et al., A validated mathematical model of cell-mediated immune response to tumor
growth, Cancer Res., vol. 65, 2005, pp. 7950-7958.

[12] B. Goldstein, J. Faeder, W. Hlavacek, Mathematical and computational models of immunereceptor
signaling, Nat. Rev. Immunol., vol. 4, 2004, pp. 445-456.

[13] N. Kronik et al., Improving alloreactive CTL immunotherapy for malignant gliomas using a simula-
tion model of their interactive dynamics, Cancer Immunol. Immunother., vol. 57, 2008, pp. 425-439.

[14] N. Kronik et al., Improving T-cell immunotherapy for melanoma through a mathematicall motivated
strategy: efficacy in numbers?, J. Immmunother., vol. 35, 2012, pp. 116-124.

[15] U. Forys et al., Anti-tumor immunity and tumor anti-immunity in a mathematical model of tumor
immunotherapy, J. Biol. Syst., vol. 14, 2006, pp. 13-30.

[16] V. Kuznetsov et al., 1994. Nonlinear dynamics of immunogenic tumors: parameter estimation and
global bifurcation analysis, Bull. Math. Biol., vol. 2, 1994, pp. 295-321.

[17] S. Michelson et al., Tumor micro-ecology and competitive interactions, J. Theor. Biol., vol. 128,
1987, pp. 233-246.

[18] H. de Vladar, J. Gonzlez, Dynamic response of cancer under the influence of immunological activity
and therapy, J. Theor. Biol., vol. 227, 2004, pp. 335-348.

[19] D. Kirschner, J.C. Panetta, Modeling immunotherapy of the tumor immune interaction, J. Math.
Biol., vol. 37, 1998, pp. 235-252.

[20] R. Eftimie et al., Anti-tumour Th1 and Th2 immunity in the rejection of melanoma, J. Theor. Biol.,
vol. 265, 2010, pp. 467-480.

[21] L. Anderson, S. R-J. Jang, J. Yu, Qualitative behavior of systems of tumor-CD4+-cytokine interac-
tions with treatments, Math. Meth. Appl. Sci., vol. 38, 2015, pp. 4330-4344.

14

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Xiaochuan Hu, Sophia R. J. Jang

E-ISSN: 2224-2902 61  Volume 15, 2018



[22] D. Hanahan, R. Weinberg, Hallmarks of cancer, Cell, vol. 100, 2010, pp. 57-70.

[23] X. Hu, S. R-J. Jang, Dynamics of tumor-CD4+-cytokine-host cells interactions with treatments,
App. Math. Comput., vol. 321, 2018, pp. 700-720.

[24] T. Burden, J. Ernstberger, K. Fister, Optimal control applied to immunotherapy, Dis. Cont. Dyn.
Sys. Ser. B, vol. 4, 2004, pp. 135-146.

[25] F. Castiglione, B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, J.
Theor. Biol., vol. 247, 2007, pp. 723-732.

[26] S. Khajanchi, D. Ghosh, The combined effects of optimal control in cancer remission, Appl. Math.
Compu., vol. 271, 2015, pp. 375-388.

[27] A. Minelli, F. Topputo, F. Bernelli-Zazzera, Controlled drug deliver in cancer immunotherapy: sta-
bility, optimization, and Monte Carlo analysis, SIAM J. Appl. Math., vol. 71, 2011, pp. 2220-2245.

[28] S. Sharma, G.P. Samanta, Analysis of the dynamics of a tumor-immune system with chemotherapy
and immunotherapy and quadratic optimal control, Differ. Equ. Dyn. Sys., vol.24, 2016, pp. 149-171.

[29] A. Lopez, J. Seoane, M. Sanjuan, A validated mathematical model of tumor growth including tumor-
host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., vol. 76, 2014,
pp. 2884-2906.

[30] M. Engelhart, D. Lebiedz, D. Sager, Optimal control for selected cancer chemotherapy ODE models:
A view on the potential of optimal schedules and choice of objective function, Math. Biosci., vol.
229, 2011, pp. 123-134.

[31] W. Fleming, R. Rishel, Deterministic and Stochastic Optimal Control, Springer: New York, 1975.

[32] L. Lenhart, JT. Workman, Optimal Control Applied to Biological Models, Chapman & Hall:
NewYork, 2007.

[33] F. Fister, S. Lenhart, J. McNally, Optimizing chemotherapy in an HIV model, Elec. J. Diff. Equ.,
vol. 32, 1998, pp. 1-12.

[34] J. Arciero, T. Jackson, D. Kirschner, A mathematical model of tumor- immune evasion and siRNA
treatment, Dis. Con. Dyn.Sys. Ser. B, vol. 4, 2004, pp. 39-58.

[35] H,R. Thieme, Mathematics in Population Biology, Princeton University Press: New Jersey, 2003.

15

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Xiaochuan Hu, Sophia R. J. Jang

E-ISSN: 2224-2902 62  Volume 15, 2018



0 100 200 300
10

4

10
6

10
8

10
10

tu
m

or
 ce

lls
days

(a)

0 20 40 60 80 100
0

5

10
x 10

4

tu
m

or
 c

el
ls

0 20 40 60 80 100
0

0.5

1

days

u
1

0 20 40 60 80 100
0

5

10
x 10

4

tu
m

or
 c

el
ls

0 20 40 60 80 100
0

0.5

1

days

u
2

(b) (c)

0 20 40 60 80 100
0
1
2

x 10
5

tu
m

o
r 

c
e
lls

0 20 40 60 80 100
0

0.5
1

days

u
1

0 20 40 60 80 100
0

0.5
1

days

u
2

(d)

Figure 1: The parameter β1 = 0.835 and the initial condition is X0 = (6.77×104, 106, 105, 109). In (a) no
treatment is adopted and the tumor grows to 8.05307181× 108. Plots (b) and (c) apply the treatment of
CD4+ and cytokines respectively with s1 = 5× 105, s2 = 5× 106, and Bi = 150 for i = 1, 2. The number
of tumor at the end of the treatment period is about 379 and 914, respectively. In (d), a combined
treatment with s1 = 3× 105 = s2 and B1 = 150 = B2 is given. The final tumor size is about 415.
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Figure 2: The parameter β1 = 0.835 and the initial condition is X0 = (6.77 × 104, 106, 105, 109) with
B1 = 150 = B2. In (a) s1 = 5× 106, in (b) s2 = 5× 107, and in (c) s1 = s2 = 6× 105.

17

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Xiaochuan Hu, Sophia R. J. Jang

E-ISSN: 2224-2902 64  Volume 15, 2018



0 20 40 60 80 100
0

1

2
x 10

7

tu
m

or
 c

el
ls

0 20 40 60 80 100
0

0.5

1

days

u
1

0 20 40 60 80 100
0

1

2
x 10

7

tu
m

or
 c

el
ls

0 20 40 60 80 100
0

0.5

1

days

u
2

(a) (b)

0 20 40 60 80 100
0

1

2
x 10

7

tu
m

o
r 

c
e

lls

0 20 40 60 80 100
0

0.5

1

days

u
1

0 20 40 60 80 100
0

0.5

1

days

u
2

0 20 40 60 80 100
0

1

2
x 10

7

tu
m

o
r 

c
e

lls

0 20 40 60 80 100
0

0.5

1

days

u
1

0 20 40 60 80 100
0

0.5

1

days

u
2

(c) (d)

Figure 3: This figure uses the same parameter values as in Fig. 1 with initial condition X1 =
(107, 106, 105, 109) and B1 = 150 = B2. In (a) s1 = 5 × 108, (b) s2 = 6.4 × 108, (c) s1 = 2 × 108

and s2 = 108, and (d) s1 = 2× 108 and s2 = 2× 108.
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Figure 4: This figure uses the same parameter values as in Fig. 1 with initial condition X1 =
(107, 106, 105, 109) and B1 = 15 = B2. In (a), s1 = 2.5 × 108 with x(100) ≈ 2, (b) s2 = 6.32 × 108

and x(100) ≈ 1, (c) s1 = 2.5 × 108 and s2 = 1.5 × 108 with x(100) ≈ 0, and in (d) s1 = 2 × 108,
s2 = 1.5× 108 and x(100) ≈ 5.
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Figure 5: This figure adopts β1 = 0.835, c1 = 0.3, initial condition X1 = (107, 106, 105, 109) and B1 =
150 = B2. In (a), s1 = 2 × 108 with x(100) ≈ 4, (b) s2 = 4.5 × 108 and x(100) ≈ 0, (c) s1 = 1.5 × 108

and s2 = 108 with x(100) ≈ 0, and in (d) s1 = 108, s2 = 1.5× 108 and x(100) ≈ 0.
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