WSEAS Transactions on Biology and Biomedicine


Print ISSN: 1109-9518
E-ISSN: 2224-2902

Volume 15, 2018

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.



Referential Seasonality of Critical Loads of Sulfur on Rhizophora harrisonii in the Port of Guayaquil

AUTHORS: Quevedo O., Cerón J., Cerón R., Calderón M., Jaramillo B., Inzhivotkina Y., Revelo W.

Download as PDF

ABSTRACT: The research focuses on demonstration of the life quality of mangroves with the respect to the critical loads of atmospheric sulfur during the dry and rainy seasons of 2017, the investigation was conducted on two islands of the interior estuary in Gulf of Guayaquil: 'Trinitaria' with a high incidence of pollutant activity and 'Chupador Chico' island, which is part of the Wetland of International Importance. The analysis of the data included the use of a simple one-way Anova and the Kruskal-Wallis tests for the contrast of the hypotheses, with a p-value of 0.05. The proteins and chlorophylls were determined with the Bradfor and 80% acetone methods, as well as the salts of Mg2 +, Mn2+, K+ , Ca2 + and SO4 2- in the leaves, it was measured by APHA method 4500 and passive samplers for the determination of critical loads of sulfur. During the dry and rainy seasons it was observed significant differences in proteins 9.85 - 3.546 ug ml-1 and carotenoids 31.25 - 0.96 ug ml-1 respectively, which differs between islands. The sulfates present in the leaves varied from 3,540 to 2,125 ppm for the dry and rainy season. The sulfur fluxs were of 3.35 kg S ha-1 year -1 there were no significant differences between study sites or times of sulfur fluxs, which responds to a regional distribution. The significant differences of the photosynthetic pigments, proteins and salts between study sites and seasons responds to the different anthropics tensors that Rhizophora harrisonii supports in the study area.

KEYWORDS: Soluble proteins, Rhizophora harrisonii, chlorophyll, critical loads, SO2.

REFERENCES:

[1] Pardos JA. La contaminación atmosférica y los ecosistemas forestales. Investig Agrar Sist y Recur For. 2006;55-70.

[2] CEPAL. Estadística de América Latina y el Caribe. 2011.

[3] INEC. Anuario de estadísticas de transporte. Quito, Ecuador; 2013.

[4] MAE. Caracterización biológica del Estero Salado en ramales con diferentes tipos de desarrollo Urbano CDC-SGMC-GE-004-2012. 2012.

[5] Wilson SA. Are mediterranean plant species likely to have a distinctive response to SO2 pollution? Agric Ecosyst Environ. 1995;55(2):71-93.

[6] Vázquez FM, Arbestain MC, Lado LR, E. Barreal Modroño. Cargas críticas de contaminantes: un criterio de evaluación de la sensibilidad de la naturaleza para la ordenación de las actividades humanas. Santiago de Compostela: Instituto de Investigaciones Tecnológicas; 2003.

[7] Cerón J, Cerón R, Aguilar-Ucán CA, Montalvo C, García A, Muriel M, et al. Mapping temporal and spatial variation of sulphur and nitrogen deposition to a complex ecosystem in Campeche, Mexico. WIT Trans Ecol Environ. 2016;203:113-23.

[8] Baldasano JM, Soret A, Guevara M, Martínez F, Gassó S. Integrated assessment of air pollution using observations and modelling in Santa Cruz de Tenerife (Canary Islands). Sci Total Environ. Elsevier B.V.; 2014;473- 474:576-88.

[9] Eyring V, Isaksen ISA, Berntsen T, Collins WJ, Corbett JJ, Endresen O, et al. Transport impacts on atmosphere and climate: Shipping. Atmos Environ. 2009;44(37):4735-71.

[10] Kauffman BJ, Donato D, Adame MF. Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. Documento de Trabajo 117. Bogor, Indonesia; 2013.

[11] Ramsar-MAE. Ficha Informativa de los Humedales de Ramsar (FIR), Manglares del Estuario Interior del Golfo de Guayaquil «Don Goyo». Guayaquil, Ecuador: Ramsar; 2013.

[12] Bonjoch NP, Tamayo PR. Protein Content Quantification by Bradford Method. En: Handbook of Plant Ecophysiology Techniques. Netherlands: Kluwer Academic; 2001. p. 283- 95.

[13] Lichtenthaler HK. Chlorophylls and carotenoids Pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350-82.

[14] Adobe Creative Team. Adobe Photoshop CS6. ADOBE; 2012.

[15] American Public Health Association. Standard Methods for the Examination of Water and Wastewater. Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH, editores. American Public Health Association (APHA), American Water Works Association, Water Environmental Federation; 2005. 1200 p.

[16] Salisbury EJ. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos Trans R Soc B Biol Sci. 1928;216:1-65.

[17] Statgraphics Centurion XVII. Virginia: Statpoint Technologies, Inc; 2014.

[18] Sauceda-Acosta CP, González-Hernández VA, Sánchez-Soto BH, Sauceda-Acosta RH, Ramírez-Tobías HM, Quintana-Quiroz JG. Macf-Ij, método automatizado para medir color y área foliar mediante imágenes digitales. Agrociencia. 2017;51(4):409-23.

[19] Guerrero NR, Andrés M, Quintero O, Pérez C. Determinación del Área Foliar en Fotografías Tomadas con una Cámara Web , un Teléfono Celular o una Cámara Semiprofesional Leaf Area Measurement in Photographs Taken with a Webcam , a Cell Phone or a Semi Professional Camera frecuencia en la investigación. 2012;65(1):6399-405.

[20] Casierra-posada F, Zapata-casierra V, Cutler J. Comparación de métodos directos e indirectos para la estimación del área foliar en duraznero (Prunus persica) y ciruelo (Prunus salicina). Rev Colomb Ciencias Hortícolas. 2017;11(1):30-8.

[21] Sandrini-Neto L, Hostin L, Lana P, Pellizzari F. Un nuevo método de análisis digital para la determinación de los niveles de consumo foliar. Investig Mar. Escuela de Ciencias del Mar. Pontificia Universidad Católica de Valparaíso; mayo de 2007;35(1):1-6.

[22] Fenn ME, Poth M a., Arbaugh MJ. A Throughfall Collection Method Using Mixed Bed Ion Exchange Resin Columns. Sci World J. 2002;2:122-30.

[23] Fenn ME, Sickman JO, Bytnerowicz A, Clow DW, Molotch NP, Pleim JE, et al. Chapter 8 Methods for Measuring Atmospheric Nitrogen Deposition Inputs in Arid and Montane Ecosystems of Western North America. Dev Environ Sci. 2009;9(8):179-228.

[24] Aragón RP, Catalá IM, Tortajada L. Prácticas de contaminación atmosférica. Universitat Politécnica de Valencia; 2010. 128 p.

[25] David W. Clow Leora Nanus, Mark E. Fenn, Graham A. Sexstone HAR. Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA . Atmos Environ. 2015;

[26] Secretaria de Comercio y Fomento Industrial. Water Analysis (Análisis de aguas). Determination of sulfate ion in natural water and waste water (Determinación del ión sulfato en aguas naturales, residuales y residuales tratadas). Mexico; 1981 p. 10.

[27] WRPLOT ViewTM. Lakes Environmental Software; 2018.

[28] Cerón RM, Cerón JG, Guerra JJ, López E, Endañu E, Ramírez M, et al. Effects of simulated acid rain on tropical trees of the coastal zone of Campeche, Mexico. WIT Trans Ecol Environ. 2009;126:259-70.

[29] Kondo N, Sugahara K. Changes in transpiration rate of SO2-resistant and -sensitive plants with SO2 fumigation and the participation of abscisic acid. Plant Cell Physiol. 1978;19(3):365–373.

[30] Schaefer DA, Reiners WA, Olson RK. Factors controlling the chemical alteration of throughfall in a subalpine balsam fir canopy. Environ Exp Bot. 1988;28(3):175-89.

[31] A H, Remacle J. Relative Importance of Factors Controlling the Leaching and Uptake of Inorganic Ions in the Canopy of a Spruce Forest. Biogeochemistry. 1993;23(2):99-117.

[32] Parker GG. Throughfall and Stemflux in the Forest Nutrient Cycle. Adv Ecol Res. 1983;13(C):57-133.

[33] Barceló J, Rodrigo G, Sabater B, Sánchez R. Fisiología vegetal. Universidad Nacional de Colombia Sede Bogota. Grupo Amaya S.A.; 2001.

[34] Reddy-Lopata K, Auerswald L, Cook P. Ammonia toxicity and its effect on the growth of the South African abalone Haliotis midae Linnaeus. Aquaculture. 2006;261(2):678-87.

[35] Taiz L, Zeiger E. Fisiología vegetal-Vol 2. Universitat Jaume; 2006. 1338 p.

[36] Jumbo J. Estudios bioecológicos del gusano defoliador Tyrinteina arnobia Stoll (Lepidoptera: Geometridae) en Mangle Rojo (Rhizophora harrisonii). Universidad de Guayaquil; 2000.

[37] Tomlinson GH. Acidic deposition, nutrient leaching and forest growth. Biogeochemistry. 2003;65(1):51-81.

[38] Thomas MD. Effects of air pollution on plants. Monograh Ser World Heal Organ. 1961;46:233–278.

[39] Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem Cycles. 2006;20(4).

[40] Dentener FJ, Crutzen PJ. Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx , O3, and OH. J Geophys Res Atmos. 1993;98(D4):7149-63.

[41] Whelpdale DM, Summers PW, Sanhueza E. A global overview of atmospheric acid deposition fluxes. Environ Monit Assess. 1997;48(3):217- 47.

[42] Filoso S, Williams MR, Melack JM. Composition and deposition of throughfall in a flooded forest archipelago (Negro River, Brazil). Biogeochemistry. 1999;45(2):169-95.

[43] Lara L, Artaxo P, Martinelli L, Victoria R. Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil. Atmospheric. 2001;35:4937-45.

[44] Pérez-Suárez M, Fenn ME, Cetina-Alcalá VM, Aldrete a. The effects of canopy cover on throughfall and soil chemistry in two forest sites in the Mexico City air basin. Atmosfera. 2008;21(1):83-100.

[45] Ponette-González AG, Weathers KC, Curran LM. Tropical land-cover change alters biogeochemical inputs to ecosystems in a Mexican montane landscape. Ecol Appl. 2010;20(7):1820-37.

[46] Corbett JJ, Fischbeck P. Emission from ships. Science (80- ). 1997;278(5339):823-4.

[47] Eyring V, Köhler H, Aardenne J van, A L. Emissions from international shipping: 1. The last 50 years. J Geophys Res Atmos. 2005;110(D17).

[48] Felipe-Sotelo M, Andrade JM, Carlosena A, Tauler R. Temporal characterisation of river waters in urban and semi-urban areas using physico-chemical parameters and chemometric methods. Anal Chim Acta. 2007;583(1):128- 37.

[49] Gallego Picó A, González Fernández I, Benjamín Sánchez G, Fernández Hernando P, Garcinuño Martínez RM, Bravo Yagüe JC, et al. Contaminación Atmósferica. Contaminación Atmosférica. Editorial UNED; 2012. 441 p.

[50] CINU. El progreso de América Larina y El Caribe. CINU; 2015.

[51] Schmalensee R. An interim evaluation of sulfur dioxide emissions trading. J Econ Perspect. 1998;12(3):53-68.

[52] Nevers N De. Ingeniería de Transecto 4 de la Contaminación del Aire. En Mexico: Mc. Graw Hill; 2012.

WSEAS Transactions on Biology and Biomedicine, ISSN / E-ISSN: 1109-9518 / 2224-2902, Volume 15, 2018, Art. #4, pp. 24-34


Copyright © 2018 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site