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Abstract: - Pesticides are toxic chemicals aimed for the destroying pest on crops. Since pesticides with similar 
properties tend to have similar biological activities, toxicity may be predicted from structure. Their structure 
feature and properties are encoded my means of molecular descriptors. Molecular descriptors can capture quite 
simple two-dimensional (2D) chemical structures to highly complex three-dimensional (3D) chemical 
structures. Quantitative structure-toxicity relationship (QSTR) method uses linear regression analyses for 
correlation toxicity of chemical with their structural feature using molecular descriptors. Molecular descriptors 
were calculated using open source software PaDEL and in-house built PyMOL plugin (PyDescriptor). 
PyDescriptor is a new script implemented with the commonly used visualization software PyMOL for 
calculation of a large and diverse set of easily interpretable molecular descriptors encoding pharmacophoric 
patterns and atomic fragments. PyDescriptor has several advantages like free and open source, can work on all 
major platforms (Windows, Linux, MacOS). QSTR method allows prediction of toxicity of pesticides without 
experimental assay. In the present work, QSTR analysis for toxicity of a dataset of mixtures of 5 classes of 
pesticides comprising has been performed. A good number of molecular descriptors were calculated followed 
by extensive objective and subjective feature selection to avoid redundant descriptors. For model building, the 
dataset was divided into training (80%) and test (20%) sets. A QSAR model built using three easily 
interpretable descriptors was subjected to extensive internal and external validation. The QSAR model is 
statistically robust with R2 = 0.872, Q2 = 0.844, CCCex = 0.845. The analysis revealed that lipophilicity, 
frequency of occurrence of hydrogen within 3 Å from phosphorus, and the presence of two benzene rings with 
–CH2– group as linker have good correlation with the toxicity of the pesticides.  
 
Key-Words: - pesticides, toxicity, molecular descriptors, free software, plugin, regression analyses, 
lipophilicity. 
 
1 Introduction 
Pesticides are used extensively to control 
agricultural pest and to improve crop yields. 
However, small fraction of the pesticides is moving 
up from surface into stream, rivers and lakes and 
cause of considerable environmental concern as a 
result from application drift, rainfall runoff, or 
residue leaching through the soil into groundwater 
[1]. The contamination of water by pesticides 
increasing around the world, so the knowledge of 
eco-toxicological effects for aquatic organisms for 
the environmental risk assessment is essential.  
 Before pesticides are registered they must 
undergo laboratory testing on animals for short-term 
(acute) and long-term (chronic) health effects. 
Laboratory animals are purposely fed doses high 
enough to cause toxic effects. Small planktonic 
crustaceans Daphnia, fish, and algae are the most 

common organisms tested for the evaluation of toxic 
effects of pesticides. In order to reduce expensive 
and time-consuming experiments and reduce animal 
testing quantitative structure-toxicity relationship 
(QSTR) method is valuable [2]. Molecular 
descriptors, which are used to represent the 
structural features in terms of numbers, encode 
valuable information about structure or patterns in 
the molecular structures. Molecular descriptors are 
mostly classified as one-dimensional (1D), two-
dimensional (2D) and three-dimensional (3D) 
descriptors. The 1D molecular descriptors represent 
bulk properties of compounds, such as the number 
of particular atoms, molecular weight, etc., and can 
be computed using molecular formula. 2D- 
molecular descriptors characterize structural 
information that can be calculated from 2D- 
structure of a molecule, such as the number of rings, 
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the number of hydrogen bond acceptors, etc. 3D- 
molecular descriptors stand for structural 
information that has to be obtained from 3D- 
structure of a m olecule, such as solvent accessible 
surface area with negative partial charge in the 
structure. 2D and 3D molecular structure 
considerable influence on properties of pesticides, 
such as absorption, distribution, metabolism, and 
excretion (ADME). QSTR method allows prediction 
of environmental toxicity derived from the 
molecular structure and fills an important gap in risk 
assessment studies (REACH) [4]. QSTR method 
involves representations of molecules or molecular 
patterns in the form of numerical descriptors that 
capture the structural features and properties of 
molecules, generally known as molecular 
descriptors. Molecular descriptors describe: 
chemical properties (electrophilicity, hydrogen 
bonding), physical-chemical properties 
(lipophilicity, polar surface area), 2D structure 
(topological, information, connectivity, information 
indices, 2D frequency fingerprints), 3D structure 
(RDF, WHIM, GETAWEY, geometrical 
descriptors). Correlation of toxicity of molecule and 
molecular descriptors is most often expressed by 
linear equation calculated by multiple linear 
regression (MLR), or partial least squares (PLS) [5]. 
Computational neural networks (CNN) are usually 
performed if there is an assumption about a 
nonlinear and a highly complex relationship 
between the structure and the observed toxicity [6]. 
 There are many commercial and free academic 
packages developed for calculation of molecular 
descriptors. Most of the molecular descriptors can 
be calculated by using commercial software 
packages such as CODESSA [7] and DRAGON [8]. 
Limitations of most of those packages are high price 
and hardly interpretable calculated molecular 
descriptors in terms of structural features. To 
overcome this, we have developed, PyDescriptor, a 
new script implemented with the commonly used 
visualization software PyMOL for calculation of a 
large and diverse set of easily interpretable 1D- to 
3D- descriptors. They are also easy interpreting in 
terms of structural moieties, applicable for 
representing local environment or structure, simple 
to understand, independent of experimental 
properties, sensitive to changes in conformation 
molecule. PyMOL is free open source molecular 
graphics tool for 3D visualization of proteins, small 
molecules, density, surfaces, and trajectories [9]. 
PyDescriptor is a useful addition to the currently 
existing molecular descriptor calculation software. It 
has several advantages like free and open source and 
it is able to works on all major platforms (Windows, 

Linux, MacOS). It is a n ew chem-informatics tool 
which transforms a variety of structural features and 
local environment of a molecule to understandable 
1D- to 3D- descriptors, which include encoding 
pharmacophoric patterns, atom-centred descriptors 
and a variety of fingerprints. These descriptors are 
either available in costly commercial softwares or in 
operating system dependent free softwares, thereby 
restricting their wide use. The script is freely 
available for academic use [10].  
 In the present paper we have generated QSTR 
models using molecular descriptors calculated by 
PyDescriptors for estimation of toxicity of 43 
pesticides obtained on a quatic vertebrates bluegill 
sunfish (Lepomis macrochirus) [1].   
 
2 Methods 

 2.1 Toxicity data 

Toxicity data for aquatic vertebrates bluegill sunfish 
(Lepomis macrochirus) were retrieved from 
literature. Toxicity of 43 pesticides is expressed as 
LC50 (lethal concentration that kills 50 % of the 
animals in a test population / molL-1). LC50 were 
converted in the form of a logarithm (log LC50) 
(Table 1). 

2.2 Calculation of molecular descriptors 

Molecular descriptors were calculated using open 
source software PaDEL [11] and a new in-house 
built PyMOL plugin (PyDescriptor) [9] followed by 
extensive objective and subjective feature selection 
to avoid redundant descriptors. 

2.3 Regression analysis and validation of 
models 

For model building, the dataset was divided into 
training (80%) and test (20%) sets. The best QSAR 
models were obtained using a G enetic Algorithm 
using QSARINS v 2.2 [12]. 

The models have been assessed by: fitting 
criteria; internal cross-validation using leave-one 
out (LOO) method and Y-scrambling; and external 
validation. Fitting criteria included: the coefficient 
of determination (R2), adjusted (R2

adj), cross-validate 
R2 using leave-one-out method (Q2

LOO), global 
correlation among descriptors (Kxx), difference 
between global correlation between molecular 
descriptors and y the response variable, and global 
correlation among descriptors (ΔK), standard 
deviation of regression (s), and Fisher ratio (F). 
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Internal and external validations also included the 
following parameters: root-mean-square error of the 
training set (RMSEtr); root-mean-square error of the 
training set determined through cross validated LOO 
method (RMSEcv), root-mean-square error of the 
external validation set (RMSEex), concordance 
correlation coefficient of the training set (CCCtr), 
test set using LOO cross validation (CCCcv), and of 
the external validation set (CCCex),  mean absolute 
error of the training set (MAEtr), mean absolute error 
of the internal validation set (MAEcv) and mean 
absolute error of the external validation set (MAEex), 
predictive residual sum of squares determined 
through cross-validated LOO method (PRESScv) in 
the training set and in the external prediction set 
(PRESSex). The analysed external validation 
parameters also include the coefficient of 
determination (R2

ex). Robustness of QSAR models 
was tested by Y-randomisation test. New parallel 
models were developed based on f it to randomly 
reordered Y-data (Y scrambling), and the process 
was repeated several times (2000 iterations) [13-15]. 
Investigation of the applicability domain of a 
prediction model was performed by leverage plot or 
Williams plot (plotting residuals vs. leverage of 
training compounds). Detection of outliers was 
carried out for compounds that have values of 
standardized residuals greater than two standard 
deviation units using QSARINS. The leverage h of a 
compound is the measure of its influence on t he 
model. 
 

3 Result and discussion  

The best three-descriptor based QSTR model for 
prediction of toxicity for the Lepomis acrochirus is: 

logLC50 = 1.948 – 0.588 ALogP + 1.223 FP747 – 
0.375 fPH3A                                                          (1) 

Ntraining set = 34   Nprediction set = 9 
 
The statistical results of the obtained QSTR model 
are presented in Table 2. Satisfaction of fitting 
criteria implies the following: the closer R2 values 
are to unity, the more similar calculated values are 
to the experimental ones, that is, R2 ≥0.60. Also, 
larger F statistic and lower standard deviation 
means that the model is more significant. In order to 
avoid overfitting, inter-correlation between the 
descriptors included in the equation is detected 
based on Kxx and ΔK. 

Table 1. Experimentally obtained toxicity endpoint 
and estimated values by eq. (1) of pesticides for 
Lepomis acrochirus 
 

 
Low Kxx and ΔK ≥ 0.05 implies no chance 
correlation between descriptors. The minimum 
acceptable statistical parameters for internal and 

  Chemical 

Exp. 
endpoint 

Prediction 
fitting 

logLC50 
mol/L 

logLC50 
mol/L 

1 bensulfuron 2.43 -0.26 
2 chlorimuron 0.59 1.39 
3 chlorsulfuron* 0.92 0.86 
4 flumetsulam 2.97 -0.36 
5 halosulfuron 2.22 0.01 
6 imazapyr* 3.19 -0.03 
7 imazaquin 3.13 0.11 
8 imazethapyr 3.17 -0.14 
9 metsulfuron* 2.61 -0.35 
10 nicosulfuron 3.39 0.36 
11 primisulfuron* 2.34 -0.99 
12 prosulfuron 2.57 -0.96 
13 sulfometuron 2.22 -0.48 
14 triasulfuron 2.40 -0.49 
15 atrazine* 2.22 -0.19 
16 cyanazine 1.97 -0.28 
17 metribuzin 2.65 -0.33 
18 prometon 2.12 0.29 
19 prometryn 1.62 0.36 
20 simazine 2.53 -0.68 
21 acetochlor 0.74 0.25 
22 alachlor* 1.31 0.03 
23 metolachlor 1.64 -0.51 
24 propachlor 0.86 0.55 
25 azinphos-methyl -1.19 0.40 
26 chlorpyrifos -1.25 0.26 
27 diazinon -0.13 -0.53 
28 disulfoton -0.34 -0.24 
29 ethoprophos 1.19 -0.16 
30 fonofos -1.35 -0.22 
31 malathion -0.45 0.49 
32 parathion -0.24 -0.47 
33 parathion methyl 0.86 0.51 
34 phorate* -1.82 1.25 
35 terbufos -1.89 0.92 
36 butylate* 1.39 -0.62 
37 carbaryl 1.69 0.25 
38 carbofuran 0.45 0.85 
39 EPTC 2.13 -0.40 
40 molinate 1.87 0.25 
41 pebulate* 1.54 0.35 
42 thiobencarb 0.84 -0.52 
43 tri-allate 0.74 -0.21 
       * member of the test set 
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external predictivity include the following 
conditions: R2

ext ≥ 0.60; CCCext ≥ 0.85; RMSEcv and 
MAEcv close to zero; and RMSEtr < RMSEcv. Robust 
QSAR models should have low R2

yscr 
 
and low 

Q2
yscr

 
values and R2

yscr > Q2
yscr. In order to 

investigate the applicability of a prediction model 
and detect possible outliers, the applicability domain 
of the selected model was evaluated by a l everage 
analysis expressed as Williams plot, in which 
residuals and the leverage values were plotted. 
Williams plot is given in Figure 1. A scatter plot of 
experimentally obtained toxicity calculated by 
QSTR model versus values calculated by Eq. (1) is 
presented in Figure 2.  
  

Table 2. Statistical parameters of the obtained 
QSAR models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Obtained model has satisfactory results of 
fitting parameters and internal validation and low 
collinearity between the three descriptors. The 
results of Y-scrambling demonstrated that model 
wasnot obtained by chance correlation. Model 1 
may be considered as predictive due to the high 
values of R2

ext and CCCext, as w ell as small 
difference between RMSEtr and RMSEex, and 
between MAEtr and MAEex. As can be seen from the 
Williams plot (Figure 1), toxicity of pesticides 30 
(fonofos) predicted my model (1) must be used with 
reserve, because its leverage value is greater than 
the warning leverage (h* = 0.353). Also, the same 
model has generated one outliers, pesticides 2 
(chlorimuron) because its standardized residual is 

greater than ± 2.5.The best QSTR model obtained 
include the following descriptors: lipophilicity 
(ALogP), PaDEL fingerprint descriptor FP747 and 
PyMOL descriptor fPH3A.Considering the negative 
coefficient of ALogP in Eq. (1) highly toxic 
compounds have a high lipophilicity. High 
lipophilic compounds my easily pass lipidous 
membranes and accumulate in fat tissue, therefore 
cause enhanced toxic effect [16]. Negative 
coefficient of PyDescriptor fPH3A implies that 
frequency of occurrence of hydrogen within 3 Å  
from phosphorus positively influence on increased 
toxicity of pesticides. QSAR study of toxicity of 
phoshorhydrazide (PHA) derivates revealed that the 
NH–P(X) moiety has a much higher inhibitory 
activity than the NH–C(X) moiety. The presence of 
the electron acceptor substituent around the P=X 
group increases the inhibitory potential of the PHA 
derivatives [17].  
 Obtained results are in accordance with previous 
findings of QSTR modeling of toxicity of organic 
molecules to Daphnia magna [4]. Obtained PLS a  
model suggests that higher lipophilicity and 
electrophilicity, and hydrogen bond don or groups 
are responsible for greater toxicity. 
 Figure 3a presents a chemical structure of the 
most toxic compound (35), an aliphatic 
organothiophosphate insecticide, terbufos. 
Thiophosphates are a very toxic class of 
organophosphorus compounds, especially if possess 
reactive functional groups such as:  methyl, 
phosphate ester (P=O type) and unsubstituted 
phenyl group [18].  
 

 
Fig. 1. Applicability domain of the QSAR model for 
loglC50 expresses by eq. (1). 
 

 Statistical parameters Value 

Fitting 
criteria 

R2 0.87 
R2

adj 0.86 
F 68.24 

Kxx 0.35 
ΔK 0.19 

RMSEtr 0.51 
MAEtr 0.43 
CCCtr 0.93 

Internal 
cross- 

validation 

Q2
loo 0.84 

RMSEcv 0.56 
MAEcv 0.48 

PRESScv 0.92 
CCCcv 0.92 

Y-
scrambling 

R2
yscr 8.67 

Q2
yscr -19.05 

External 
validation 

R2
ext 0.79 

RMSEext 0.66 
MAEext 0.52 

PRESSext 3.95 
CCCext 0.85 
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Fig. 2. A scatter plot of experimentally obtained 
toxicity calculated by QSTR model versus values 
calculated by eq. (1). 
 
 QSTR study of some organophosphorus 
compounds performed by using the quantum 
chemical and topological descriptors relieved that 
the sulphur atoms instead of oxygen atoms 
improved toxicity [19]. 
 Figure 3b s hows a structure of minimum toxic 
compound (6) imazapyr, an imidazolinone 
herbicide. Imazapyr does not contain phosphorus 
atom. According a positive coefficient of fingerprint 
descriptor FP747 in eq. (1) imply that higher values 
of this descriptor mean lower toxicity. 
 Plugin PyDescriptor allows visualization 
software PyMOL to encode a pharmacophoric 
patterns for lipophilicity, donors and acceptors of 
hydrogen atom. By means of new plugin, PyMOL 
can display a lipophilic area of molecule. In Figure 
4 shows lipophilic area (green) of most toxic 
compound (35) and at least toxic compound (6). As 
can be see, terbufos (35), the most toxic analyzed 
pesticide has greater lipophilic area than imazapyr 
(6). Lipophilic areas in terbufos (35) are located on 
the aliphatic carbon atoms at the two ethoxy groups 
and tert-butyl group. Imazapyr (6) possess smaller 
lipophilic area located at the aromatic carbon atoms, 
methyl and isopropyl radical. Since we confirmed 
that toxicity increase with lipophilicity, as a 
consequence of the enhanced ability of toxicants to 
enter the organism (narcosis), this method allows 
prevision of possible locations in molecule for 
contact with lipid bilayer of cell membranes.    

 
a) 

 
b) 

Fig. 3. Structure of: a) the most toxic pesticide, 
terbufos (35); b) the least toxic pesticide imazapyr 
(6). 
 
 

 
a) 

 
b)  

Fig. 4. Lipophilic area (green) of: a) the most toxic 
pesticide, terbufos (35); b) the least toxic pesticide 
imazapyr (6).  
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4 Conclusion 

In the present work, we have used an open source 
molecular descriptor calculation PyMOL plugin 
PyDescriptor for calculation easily interpretable and 
informative molecular descriptors. Robust QSTR 
models with good external predictive ability have 
been developed for the toxicity of pesticides for the 
fish, bluegill sunfish. The developed models, since, 
satisfy the threshold values for many statistical 
parameters could be useful for the prediction of 
experimentally undermined toxicity of known 
pesticides, as well as new pesticides. The model can 
also be employed to better understand the 
mechanism of toxicity of the various families of 
pesticides on the aquatic organisms, as well as the 
identification of potential aquatic pollutant. 
 Our results indicates that future QSTR analysis 
of pesticides should apply a specific group of 
descriptors relates with lipohilicity and structure 
fragment involved in electron transfer. 
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