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Abstract: - Segmentation is one of image processing methods that results in partitioning a digital image into 

multiple parts (segments). This method may be used as a step in image analysis or may be considered as a 

single task. Segmentation is used to analyze medical images, faces, images of the Earth surface and many 

others. For complex structured images researchers in increasing frequency have to elaborate new methods of 

segmentation. In particular the application of classical segmentation methods to high resolution images often is 

not very successful, and fractal and multifractal methods seems to be more preferable, because they are more 

sensitive to pixel intensity changes. In this work we consider two methods of segmentation: calculation of 

fractal signatures for the elements of a partition of the surface formed by the image grey level function, and the 

method of multifractal spectrum calculation based on using density function. The both methods result in 

obtaining a set of numerical characteristics that may be used as classification and segmentation signs. The both 

methods show reliable results for images from Brodatz album and high resolution medical images of various 

types. 
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1 Introduction 
Segmentation, as one of main approaches to digital 

image analysis, is widely used in biomedical 

research. The applicability of a given segmentation 

method depends on the problem under investigation. 

The description of many classical segmentation 

algorithms is given in [10]. For magnetic resonance 

and ultrasonic images k-mean clustering, contour 

and edge detection methods are often applicable. So, 

in [7] when analyzing mammograms and selecting 

the regions of interest the authors used the 

segmentation method based on minimization of the 

active contour energy. Informative characteristics of 

the regions were considered as classification signs. 

Labeeb, Hamdy et all [11] used the mathematical 

morphology approach to define the regions of retina 

ischemia. The natural way to color images analysis 

is to obtain segmented images for all components of 

the palette, which results in identifying the color 

component giving significant segmentation 

performance. Such a technic was used in [1] to 

obtain the segmented red blood cells infected with 

malaria parasites. The common practice in image 

analysis is to apply several methods and compare 

results. 

For images of complex structure researches tend 

to use segmentation algorithms based on fractal and 

multifractal analysis. Such an approach is suitable 

for high resolution images that contain large number 

of fine details. Classical algorithms may not lead to 

reliable results because they often face into 

problems of specifying essential changes of pixel 

intensities. 

Results of many observations and practical 

explorations show that for many objects and 

phenomena occurring in nature relations between 

their numerical characteristics satisfy the power law, 

which states that the estimated quantity (for 

example the area of square) is proportional to the 

side size in a power. For many geometric objects we 

observe a power law with integer degree. At the 

same time for real objects very often such a power is 

not integer but fractional. Thus we may operate with 

wide class of objects for that the relations between 

numerical characteristics may be expressed by using 

a fractional power. Such objects are called fractals 

or fractal sets. Fractal sets have a self-similarity 

property: a part of the image is similar to the whole 

one. Such a similarity may be strict (as the Cantor 

set or the Serpinsky carpet) or statistical. In many 

cases self-similarity of a set may be characterized by 

a scaling exponent (the degree in power law) which 
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is used to define the fractal dimension of the set. An 

in-depth analysis of connections between fractals 

and power laws and self-similarity may be found in 

[16].  

There are various types of fractal dimensions. In 

practice the class of so called box-computing (box-

counting) dimensions (e.g. capacity dimension) is 

widely used [6]. Let a set M be covered by 𝑁(𝜀) 

boxes with a side 𝜀. It is assumed that the number of 

boxes is proportional to 𝜀−𝛼 . Decreasing 𝜀 and 

taking the limit of 
ln 𝑁(𝜀)

ln1
𝜀⁄

  we obtain the value of 𝛼, 

which is called capacity dimension of M. It is easy 

to understand that box-computing dimensions may 

be calculated for binary images, because it is 

sufficient use only two colors to mark the belonging 

a point to the set. For greyscale (or monochrome) 

images the Minkovsky dimension, which coincides 

with capacity dimension for non-empty bounded 

sets in 𝑅3, may be used [6]. 

Multifractal set is a union of several fractals, 

which of them has its own fractal dimension. 

Components of multifractals are usually arranged by 

a complex interwoven way, hence segmentation 

problem by using classical methods is not very easy.  

It is now widely accepted that many digital 

images may be considered as phase portraits of 

complex processes, especially images of biomedical 

preparations. Such images are complex, both regular 

and irregular structures. As a rule textures are often 

may be considered as fractal or multifractal sets 

[14]. Common assumption in image analysis of 

various textures is that the measure of an image (or 

its part) depends on the linear size, and this 

dependence may be expressed by a power law. 

Image segmentation is a partitioning a digital 

image into multiple segments in accordance with a 

sign. More precisely, image segmentation is the 

process of assigning a label to every pixel in an 

image such that pixels with the same label share 

certain characteristics. The application both fractal 

and multifractal methods to image analysis results in 

obtaining the numerical characteristics that may be 

used as classifying signs. Besides that such 

characteristics may be considered as segmentation 

signs. That means that using fractal and multifractal 

analysis we may additionally obtain some kind of 

segmentation. 

Fractal and multifractal methods are based on 

assumption that there is a measure defined in terms 

of pixel intensities. The image is divided on cells 

(boxes), for each cell its measure is calculated. The 

sum of pixel intensity is often used as a measure, 

but various types of filtration (Gaussian, Laplacian) 

are also applied [19]. The measure may be normed 

depending on the method. 

It is also assumed that the measure of 𝑖th cell 

𝑃𝑖(𝑙)~ 𝑙𝛼𝑖, where 𝛼𝑖  are called singularity (scaling) 

exponents (power law again). One should calculate 

approximate value of these exponents and fractal 

dimensions of subsets that contain the cells having 

close values of exponents. The set of obtained 

fractal dimensions forms multifractal spectrum. To 

solve segmentation problem we have to find only 

exponents. 

Segmentation based on using singularity 

exponents seems to be most appropriable for high 

resolution images. In [9, 18] the authors used Holder 

exponents to obtain segmentation of medical 

images. 

In this work we consider two methods for image 

segmentation: fractal signature and multifractal 

analysis. The first method is based on the 

construction of the grey level function graphics for a 

greyscale image, which is a surface in 3-

dimensiomal Euclidean space. For this surface we 

can calculate a characteristic called fractal signature 

and the Minkovsky dimension, which are simple 

related. The segmentation may be performed by 

partitioning of the image into cells and calculation 

fractal signature (or Minkovsky dimension) with the 

following marking the cells by a color in accordance 

with the obtained values. This method was 

described in [15] and successfully applied to analyze 

text documents [17], biomedical preparation images 

[2-4], and ISAR radar images [8, 12, 13]. One can 

obtain segmentation in the palette components. 

The second method is the calculation of 

multifractal spectrum based on density function, 

which was supposed in [19]. For each point of an 

image a special characteristic — density function — 

is calculated. The image is divided on subsets of 

points that have close values of density function (so 

called level sets). Fractal dimensions of level sets 

form multifractal spectrum. This method was 

applied to obtain level sets for different biomedical 

images [5]. Any level set is a segmentation of an 

initial image. 

We also consider a modification of the method 

and calculate density function for a small base cell, 

being the cell size is a parameter. Such an 

optimization reduces run time considerably and does 

not affect visibly on segmentation results. For both 

variants of the method it is density function value 

that is considered as segmentation sign.  

Comparison of results of proposed methods and 

edge detection method in MATLAB showed that for 

4 classes of high resolution biomedical preparation 

images fractal and multifractal methods are seemed 

to be more reliable. 
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2 Fractal Signature Method 
The idea of the method is to calculate fractal 

dimension of the surface formed by the graphic of 

the grey level function for a given image. To do it 

we calculate the approximate value of the surface 

area, and this area may be obtained by using the 

volume of a special object. 

Let 𝐹 = {𝑋𝑖𝑗 , 𝑖 = 0,1, … , 𝐾, 𝑗 = 0,1, … , 𝐿} be an 

image and 𝑋𝑖𝑗 be the grey level of the (𝑖, 𝑗)th pixel. 

In a certain measure range the grey-level surface of 

F can be viewed as a fractal. In image processing the 

grey level function F is a nonempty bounded set in 

𝑅3. The surface area 𝐴𝛿 may be calculated using the 

volume of a special -parallel body — “blanket” 

with the thickness 2. 

For 𝛿 = 1,2, … the blanket surfaces are defined 

iteratively as follows: 

 

𝑢𝛿(𝑖, 𝑗) = 𝑚𝑎𝑥 {
𝑢𝛿−1(𝑖, 𝑗) + 1,

 𝑚𝑎𝑥
|(𝑚,𝑛)−(𝑖,𝑗)|≤1

𝑢𝛿−1(𝑚, 𝑛) } 

𝑏𝛿(𝑖, 𝑗) = 𝑚𝑖𝑛 {
𝑏𝛿−1(𝑖, 𝑗) − 1,

 𝑚𝑖𝑛
|(𝑚,𝑛)−(𝑖,𝑗)|≤1

𝑏𝛿−1(𝑚, 𝑛) }. 

 

The volume of the blanket 𝑉𝑜𝑙𝛿 and 𝐴𝛿 

computed as  

 

  
𝑉𝑜𝑙𝛿 = ∑(𝑢𝛿(𝑖, 𝑗) − 𝑏𝛿(𝑖, 𝑗))

𝐴𝛿 =
𝑉𝑜𝑙𝛿−𝑉𝑜𝑙𝛿−1

2

             (1) 

 

The value 𝑆𝛿 =  
𝑙𝑜𝑔2 𝐴𝛿

𝑙𝑜𝑔2 𝛿
 is called fractal signature. 

Fractal dimension of the surface is defined by the 

formula  

 

𝐷 ≈ 2 −
𝑙𝑜𝑔2 𝐴𝛿

𝑙𝑜𝑔2 𝛿
.                        (2) 

 

It should be noted that we can use both fractal 

signatures and fractal dimensions as numerical 

characteristics for the following classification and 

segmentation. 

In practice the approximate value of 𝑆𝛿 is 

obtained by the least square method as the slope of 

the line in axes (𝑙𝑜𝑔2 𝛿,𝑙𝑜𝑔2 𝐴𝛿). 

When solving segmentation problem we should 

use fractal signatures (or dimensions) for small parts 

of the given image — boxes (or cells). In this case 

boxes with similar characteristics form a segment. 

Hence the algorithm is the following. Partition the 

image into n cells by size 𝑁 × 𝑁 and then for 

𝑘 = 1, 2, … , 𝑛  calculate grey level functions 𝐹𝑘, 

𝑢0
𝑘 and 𝑏0

𝑘
, 𝑢𝛿

𝑘 and 𝑏𝛿
𝑘
 (for 𝛿 = 1, 2, 3),  𝑉𝑜𝑙𝛿

𝑘
 

and 𝐴𝛿
𝑘. 

By the least square method calculate 

approximate values 

𝑆𝑘 = 𝑙𝑖𝑚𝛿→0
𝑙𝑜𝑔2 𝐴𝛿

𝑘

𝑙𝑜𝑔2 𝛿
. 

Mark the cell having close values 𝑆𝑘 by the same 

color. 

We note that under such an approach the fractal 

signature method may be considered as a 

multifractal one: we obtain fractal dimensions of the 

partition cells, which is similar multifractal 

spectrum. 

 

 

3 Multifractal Spectrum Computation 
 

3.1 Base Method Description 
Let 𝜇 be a measure defined through pixel intensities. 

For  𝑥 ∈ 𝑅2 we denote 𝐵(𝑥, 𝑟) a square of side r 

with center x. Let 𝜇(𝐵(𝑥, 𝑟)) = 𝑘𝑟𝑑(𝑥)(𝑥), 

where 𝑑(𝑥) is the local density function of 𝑥, and 𝑘 

is some constant. Then  

 

𝑑(𝑥) = lim𝑟→0
log 𝜇(𝐵(𝑥,𝑟))

log 𝑟
.                (3) 

 

The density function measures the non-

uniformity of the intensity distribution in the 

square 𝐵(𝑥, 𝑟). The set of all points 𝑥 with local 

density 𝛼 is a level set 

 

𝐸𝛼 = {𝑥 ∈ 𝑅2 ∶  𝑑(𝑥) = 𝛼}. 
 

The multifractal spectrum is defined as 

 

{𝑓(𝛼) ∶  𝛼 ∈  𝑅} = {dim(𝐸𝛼) : 𝛼 ∈  𝑅}. 
 

In practice, for not to increase the number of 

level sets, one can really consider sets  

 

𝐸(𝛼, 𝜀) = {𝑥 ∈ 𝑅2, 𝑑(𝑥) ∈ [𝛼, 𝛼 + 𝜀)}.   (4) 
 

It is clear that showing level sets results in a 

segmentation of the image. Level sets are obtained 

in black and white palette: points from a level set 

are marked by black color. In this case capacity 

dimension is the appropriate variant of fractal 

dimension. Obtained level sets are shown for each 

𝛼-interval separately. Vectors of fractal dimensions 

of level sets are used as classification signs for 

images from different classes. 
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3.2 Measure Choice 

The measure 𝜇(𝐵(𝑥, 𝑟)) may be calculated by 

several ways. As it may depend on large 

illumination changes, the authors of [19] proposed 

to define the measure by using convolution operator 

with Gaussian smoothing kernel, diagonal and anti-

diagonal directions in the square and the sum of 

Laplacians in the square. In this work we use two 

methods: the sum of intensity pixels in the square 

and the sum of Laplacians in the square. 

1. 𝜇(𝐵(𝑥, 𝑟)) — the sum of intensity pixels in 

the square with side 𝑟 and center 𝑥.  

 

𝜇(𝐵(𝑥, 𝑟)) = ∬ 𝐼(𝑦)𝑑𝑦, 
 

where 𝐼(𝑦)  — is the pixel intensity in 𝑦 ∈ 𝐵(𝑥, 𝑟). 

In discrete case 

 

𝜇(𝐵(𝑥, 𝑟)) = ∑ 𝐼(𝑦)𝑦∈𝐵(𝑥,𝑟) .             (5) 
 

2. 𝜇(𝐵(𝑥, 𝑟)) — the sum of Laplacians in the 

square with side 𝑟 and center 𝑥. 

 

𝜇(𝐵(𝑥, 𝑟)) = ∬ ∇2(𝐼(𝑦))𝑑𝑦, 
 

where ∇2 — the Laplace operator. 

In discrete case in accordance with [10] we have 

 

𝜇(𝐵(𝑥, 𝑟)) = ∑ 𝐿(𝑦)𝑦∈𝐵(𝑥,𝑟) ,                (6) 
 

where 𝐿(𝑦) = 8𝐼(𝑦) − ∑ 𝐼(𝑧)𝑧∈𝐵(𝑦,2)\𝑦 . 

It was shown in [5] that namely using Laplacian 

resulted in the separation of classes of connective 

tissues in accordance with obtained spectra.  

 

3.3 Application to Classification Problem 
The density 𝑑(𝑥) is obtained as the slope of the line 

fitted to the data {log 𝑟, log 𝜇(𝐵(𝑥, 𝑟))} by the least 

square method. Then we take a discrete set {𝛼𝑖} 

from an interval (1,2) and find for each 𝛼𝑖 the point 

set 𝐸(𝛼𝑖, 𝜀) (𝜀 = 0.1) according to (4). This set 

contains all the pixels whose densities are close to 

𝛼𝑖. Fractal dimensions 𝑓(𝛼𝑖) may be computed by 

two methods: capacity dimension and the 

Minkovsky dimension. 

Consider two classes of biomedical images — 

healthy liver and fatty liver disease. Each class 

contains 20 images. Color images were transformed 

to grey scale. Applying the described method we 

constructed level sets and calculated their fractal 

dimensions (both capacity and Minkovsky 

dimensions) for all the images. Then the average 

multifractal spectrum for each class was calculated. 

The experiments were performed for two methods 

of the measure choice. 

Samples of healthy liver and fatty liver disease 

images are shown on Fig.1. 

 

  
 

a                                         b 

 

Fig.1 Images of healthy liver (a) and fatty liver disease 

(b). 

 

When choosing the measure of the square as the 

sum of pixel intensities we obtained graphics of 

average multifractal spectra (using Minkovsky 

dimension) which are shown on Fig.2.  

 

 
 

Fig.2 Graphics of average multifractal spectrum 

calculated by using Minkovsky dimension for two 

classes of liver images: 1— healthy liver, 2 — fatty 

liver desease. Box measure is the sum of pixel 

intensities. 

 

Calculation of average multifractal spectrum 

with using capacity dimension lead to a similar 

result: average spectra for different classes are not 

separated. 

At the same time calculations based on the 

measure with Laplacian allowed us to separate the 

graphics, as Fig.3 illustrates. 
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Fig.3 Graphics of average multifractal spectrum 

calculated by using Minkovsky dimension for two classes 

of liver images: 1— healthy liver, 2 — fatty liver disease. 

Box measure is calculated by using Laplacian. 

 

 

3.4 Application to Segmentation Problem 
 It is easy to see that the level sets imaging is a kind 

of segmentation, where pixels are grouped in 

accordance with the sign defined density function 

values. Hence multifractal approach in addition to 

calculation of multifractal spectrum allows us to 

perform segmentation easily. In this case we obtain 

a set of segmented images. Thus, to obtain imaging 

for a level set 𝐸(𝛼, 𝜀) (we denote it 𝐸(𝛼) for 

brevity) we should calculate density function for 

every pixel and form a new image, where pixels 

having density function values in interval [𝛼, 𝛼 + 𝜀)  
are marked by black color. For all obtained level 

sets we calculate their fractal dimensions and obtain 

multifractal spectrum. Such a characteristic may be 

considered as a classification sign for a class of 

images. It should be noted that results depend on the 

measure choice. 

 For the image of healthy liver (Fig. 1, a) we 

constructed level sets for two methods of the 

measure choice. When using the first method of 

measure calculation we obtain only two essential 

level sets — for 𝛼 = 1.4 and 1.6. (Fig. 4) All the 

rest are practically empty. 

 

        
a                                                 b 

 

Fig.4 Level sets for the image of healthy liver: (a) — 𝛼 

=1.4, (b) 𝛼 =1.6. Box measure is the sum of intensities. 

 

When using the measure with Laplacian we 

obtain another distribution of density function and 

hence another collection of level sets. In this case 

the level sets containing more pixels are obtained 

for 𝛼 =1.1 and  𝛼 = 1.3 

 

       
 

a                                                b 

 

Fig.5 Level sets for the image of healthy liver: (a) — 𝛼 

=1.1, (b) 𝛼 =1.3. Box measure is calculated by using 

Laplacian. 

 

Thus, for image segmentation by using level sets 

the measure choice is inessential, because in any 

case we obtain a visual set of images characterizing 

an initial image. 

It should be noted that the performance of the 

described algorithm is not very high: for the image 

with size 2500x2000 pixels run time required for 

construction of a level set is approximately 45 

seconds. Hence to obtain several sets (in accordance 

with the 9 selected intervals of density function) we 

need more than 6 minutes. 

 

 

4 Modification of the Base Method 
It is easy to note that to obtain level sets we should 

use values of density function. Hence in 

segmentation problem we do not need to calculate 

multifractal spectrum. (For the classification 

problem both density function and multifractal 

spectrum are important numerical characteristics.) 

As the computing this function for every point of 

the image may be time-consuming we calculate it 

for a small base cell. As distinct from the base 

method we do not construct a set of binary level sets 

corresponding different intervals of density function 

value, but obtain one image in grayscale, where 

cells are colored in accordance with the value of its 

density function. 

Let 𝑙 be a side of a base cell, the measure (the 

sum of pixel intensities) of  𝑖th cell be 𝜇𝑖(𝑙), and 

density function — 𝛼𝑖 .  
In this case for segmentation we partition the 

image into 𝑛  base cells by size 𝑙 × 𝑙 and for 
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𝑖 = 1, 2, … , 𝑛   calculate 𝜇𝑖(𝑙), select 

neighbourhoods of base cells by size (𝑙 + 2) × (𝑙 +
2) and (𝑙 + 4) × (𝑙 + 4), calculate 𝜇𝑖(𝑙 + 2), 𝜇𝑖(𝑙 +
4). By the least square method using points 

(𝑙𝑛 𝑙, 𝑙𝑛 𝜇𝑖(𝑙)), (𝑙𝑛(𝑙 + 2), 𝑙𝑛 𝜇𝑖(𝑙 + 2)), (𝑙𝑛( 𝑙 +
4), 𝑙𝑛 𝜇𝑖(𝑙 + 4)) calculate approximate values 𝛼𝑖. 

Mark base cells with close values of 𝛼𝑖 by the same 

color. 

The number of colors is selected by the user and 

the result depends on the range of exponent values. 

 

 

5 Numerical experiments 
The experiments were performed for images from 

Brodatz album [20] and biomedical preparations 

images including high resolution ones. For color 

images numerical characteristics were obtained for 

all components of RGB palette. The number of 

colors used for segmentation was selected in 

accordance with the range of fractal signatures (the 

method of fractal signature) and the range of density 

function for base cells (the method of multifractal 

spectrum calculation). To test the reliability of 

obtained results the method of edge detection from 

MATLAB package was applied. The results show 

that for complex textures considered methods are 

more preferable. 

The table below shows the results of 

performance comparison for based and modified 

methods for different image sizes. In the base 

method the time of calculation of one level set is 

given. One should note that the modified method 

leads to better results both due to increasing the size 

of base cell and the construction only one 

segmented image instead of several level sets.  

 
Image size 

Time (sec) \ 
428x431 640x640 2584х1936 

Base 

method 
26 31 45 

Modified 

method 
0.031 0.062 1.87 

 

Table 1 Performance of based and modified methods 

 

 

5.1 Brodaz Album 
Grey scale images by size 640х640 were 

considered. Results of application of fractal 

signature method and modified method of 

calculation of density function are illustrated below. 

The side of partition box was selected equal 5 for 

both methods. 

 

         
 

a                                   b 

 

 
c 

Fig. 6 Results of experiments: a — the initial image; b — 

application of fractal signature method (𝑙 = 5); c — 

application of multifractal method (𝑙 = 5). 

 

 

5.2 Bone Tissue with Osteoporosis 
We applied our methods to images of bone tissue 

with osteoporosis. Initial images were segmented 

for different components of RGB palette and for 

greyscale variant of the initial image. The following 

illustrations show the best variant. 

We note that the pictures c (results of application 

of the multifractal method) are shown in the larger 

scale than a and b for better illustrations of the 

method advantages. 

 

5.2.1 G component of RGB 

The image size is 700x606. The results of 

segmentation are shown for G component. The cell 

side is equal to 2, the number of colors for 

segmentation is 3. 

 

   
 

a                                  b 
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c 

 

Fig.7 a — the initial image; b — application of fractal 

signature method (𝑙 = 2); c — application of multifractal 

method (𝑙 = 2). 

 

5.2.2 R component of RGB 

The image size is 428x321. The results are shown 

for R component. The side of cell is equal to 2, the 

number of colors for segmentation equals 3. 

 

   
                     a                                      b 

 

 

 
                                       c 

Fig.8 a — the initial image; b — application of fractal 

signature method (𝑙 = 2); c — application of multifractal 

method (𝑙 = 2). 

 

 

5.3 High Resolution Images 
We considered high resolution images of biomedical 

preparations (liver tissue) and compare the results 

with results of the edge detection method from 

MATLAB package. The images were obtained by 

microscope AxioCam MRc5 of the company Carl 

Zeiss Microimaging GmbH. All the images were 

made with 200-fold zoom, represented in RGB and 

have size 2584х1936 pixels. Experiments showed 

that for these images segmentation for G component 

of RGB is preferable. We show results of 

segmentation for the image of fatty liver disease and 

the image of liver with plethora. The illustrations 

demonstrate advantages of fractal methods for high 

resolutions images with complex structure 

comparing with edge detection method. 

 

5.3.2 Liver with plethora 

 

   
 

a                                        b 

 

   
 

c                                     d 

 

Fig.9 a — the initial image; b — application of fractal 

signature method (𝑙 = 5); c — application of multifractal 

method (𝑙 = 5); d — edge detection method (MATLAB). 

 

 

6 Conclusion 
Image segmentation may be obtained as an 

additional result of fractal or multifractal analysis. 

These methods allow us to calculate numerical 

characteristics that are input data for a classification 

problem. Moreover, the partitioning an image into 

parts in accordance with these data leads to easy 

segmentation algorithm. Run time for segmentation 

of high resolution images with large size is in 

average 1.5 sec, which makes possible their using in 

diagnostics. Experiments show that these methods 

are often more preferable for high resolution images 

than classical segmentation algorithms. 
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