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Abstract: - A method of texture analysis based on using the Kullback-Leibler divergence is discussed. A digital 
image is described by a discrete probability distribution. We consider a group of direct multifractal transforms 
relating to the distribution and for two given images calculate a vector of Kullback-Leibler divergences 
between the initial distributions and their direct multifractal transforms. The method is illustrated on the 
example of the Serpinsky carpet. Numerical experiments were performed for the Brodatz textures and for two 
classes of biomedical preparation images — healthy kidney and kidney with chronic pyelonephritis. In each 
class divergence vectors between pairs of images are calculated and then the average divergence vector is 
formed. This vector is considered as a classification sign for the class. The experiments were performed both 
in gray scale and HSV palette  (component wise) and showed that for different classes average divergence 
vectors are substantially different in each color component. The method may be successfully applied for 
classification of biomedical preparation images. 
 
 
Keywords: - Direct multifractal transform, discrete probability distribution, Kullback-Leibler divergence, 
texture analysis. 
 
1 Introduction 
 
1.1 Review 
The problem of analysis and classification of digital 
images having structural features (textures) is very 
important and actual. Regarding textures, literature 
contains examples of images having both regular 
and irregular structure. Hence to analyze such 
images one have to use a number of methods — 
statistical, fractal, multifractal, morphological, 
spectral ones. 

Any method of textural analysis results in 
obtaining a numerical characteristic (or a feature 
set) that may be used as a classifying sign to refer 
the images under investigations to some classes. 

Methods of morphological analysis are based on 
the concepts of the set theory [8,19]. They allow us 
to find out objects and contours of different types or 
localize clusters of pixels having close intensities. 
Many experimental studies show that morphological 
approach is appropriate for images with irregular 
structures (e.g for images of living tissues or viscera 
images). As a rule, such methods lead to better 
results when combining with filtration. Now 
morphological methods are widely used for analysis 
of MRI and ultrasonic diagnostics images [14], and 

in combining with segmentation [1]. 
The structure of any digital image is defined by 

pixel intensities. One of well-known statistical 
analysis methods consists in obtaining Gray Level 
Cooccurence Matrix from the intensity matrix 
[9,10] and calculation some statistical features (the 
Haralick characteristics or so called second-order 
statistics). 

Fractal analysis methods are based on the 
assumption that the number of boxes needed to 
cover a complex set A is proportional to the box size 
in a power d. When tending the box size to zero one 
may obtain a sequence of approximate values for d. 
The limit of the sequence is called fractal dimension 
of the set A. The most widely used fractal 
dimensions are box-counting dimensions and the 
Minkovsky dimension [6]. 

But for images with complex structures it may be 
insufficient to have only fractal dimension as a 
characteristic. Such images are supposed to be a 
union of several intertwined fractal subsets, being 
each of them has its own fractal dimension. This 
approach leads to multifractal analysis. For a given 
digital image it is reasonable to relate a measure 
distribution that describes densities of different 
parts of the image. With this object in view the 
image is partitioned on a set of boxes by a given 
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size, and for every box its measure is calculated. In 
the simple case the measure of the box is defined as 
the sum of pixel intensities, but sometimes various 
filters may be applied [22]. The obtained 
distribution is normed. The set of fractal dimensions 
of the subsets forms multifractal spectrum. It may 
be calculated by the method of direct determination 
[5] or by using Regny spectrum [21].  

 It is very often several methods should be 
applied to classify textural images. For example in 
[15] to detect mild glaucoma stage the author 
applies discrete wavelet transform and then 
calculates statistical signs for obtained wavelet 
coefficients matrix. The detailed survey and 
bibliography on this subject are given in [20].  

 
 

1.2 Entropy characteristics 
One can observe that since any digital image 

may be represented by pixel intensities and a 
discrete probability distribution, to obtain an image 
characteristic means to extract the information 
described by this distribution. In information theory 
the notion information was originally concerned 
with Shannon entropy. Later A. Regny introduced a 
set of entropies depending on a real parameter α, 
which goes into the Shannon entropy when α tends 
to unity. As it was mentioned in [13], “one of the 
fundamental observation of information theory is 
that the most general functional form for the mean 
transmitted information (i.e., information entropy) 
is that of Regny”. A. Bashkirov [4] also supposed to 
consider namely Regny entropy as statistical 
characteristic of complex systems. Moreover, he 
proved that for systems with power-series 
distribution the Regny entropies for α < 1 are 
mostly representative. Basing on these entropies one 
can obtain the Regny spectrum — a set fractal 
dimensions depending on a real parameter α. 

We note that many problems concerning a 
measure distribution are formulated in entropy 
terms. Thus, in the paper [7] authors use Regny 
entropy to distinguish types of polyps images. The 
authors of [16] consider the image entropy as a 
characteristic of the image focusing: the minimal 
entropy value corresponds to the best focusing 
image. 

There is a large class of research tasks that may 
be formulated by the following way: for given 
restrictions to find a distribution that maximizes (or 
minimizes) Regny entropy. Examples of the 
solution of such problems are given in [4,21]. 

One more example is connected with a 

construction of a stationary flow on a graph. Now it 
is widely accepted that textural images may be 
considered as phase portraits of complex dynamical 
systems in some points of time. For dynamical 
systems various types of invariant sets are subjects 
of much interest. By analyzing phase portraits we 
may find so called stationary states of a process, 
being the existence of such states means the 
existence of invariant sets. This way in [2] a method 
of a classification of images relating to a substance 
propagation process was proposed. The image is 
considered as a lattice formed by pixels of given 
intensities. Then the oriented graph corresponding 
to the image is constructed by the following way. 
The number of vertices is equal to the number of 
pixels. Every vertex has the weight equal the pixel 
intensity. It is connected with its neighbours 
(depending on neighbourhood type), and all the 
edges outcoming from the vertex have the value of 
its weight divided on the number of neighbours. The 
constructed flow is normed. Hence we obtain 
Markov chain on the graph: for every vertex its 
weight equals sum of weights of outcoming edges. 
Denoting the initial distribution on graph edges by 

ijp we find such a distribution iju  that the flow on 
the graph be stationary: for every vertex the sum of 
weights of incoming edges equals the sum of 
weights of outcoming ones. It is well known that 
such a problem has a solution if there is a cycle on a 
graph. Moreover, this solution minimizes weighted 

entropy ∑−=
ji ij

ij
ij u

p
uug

,

ln)( . It is weighted 

entropy that is used as a classifying sign when 
images relating to different doses of a substance are 
analyzed. In fact, weighted entropy may be 
considered as a time that is required for a 
distribution process to achieve a stationary state.  

If a given image has complex multifractal 
structure we may assume that there are several 
distributions on this set. Each of them may be 
obtained as the solution of an extremum problem 
for Regny entropy. It is worth noting that namely on 
this way of reasoning one can obtain the connection 
between Regny spectrum and multifractal spectrum 
[6]. In literature this connection is known as the 
Legendre transform [21].  

Images with different structures may have 
identical entropy characteristics, because the 
entropy does not depend on the order of component 
in a probability distribution vector, and this order 
defines the structure of the image. For example two 
Serpinsky carpets constructed by different methods 
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but having the same number of black and white 
cells have the same entropy. (It is interesting to note 
that they have the same similarity dimensions). 

In such cases it is reasonably to use Regny 
divergences (called also α-divergences). We note 
that by analogy with fractal dimension we should 
calculate a set of Regny divergences for more 
accurate analysis and classification. The advantages 
of such a technic are demonstrated in [11] when 
analyzing images with different structures.  

The results of many studies convincingly show 
that when analyzing digital images the dealing with 
a vector of signs leads to more accurate results. For 
example, in [18] the authors applied fractal 
signature method to analyze textures. It is based on 
the construction of a sequence of special blankets 
[6] for the image and calculation a numerical 
characteristic (fractal signature) which is closely 
connected with the Minkovsky dimension. Every 
such a blanket corresponds to an image obtained 
from a given one by resolution changing. The vector 
of fractal signatures is the image characteristic, and 
the distance between two images may be defined as 
the Euclidean distance between their vectors. In [3] 
the method was successfully applied to classify the 
biomedical preparations images of 4 classes.  

In this work we propose to obtain a vector 
characteristic of an image which is constructed by 
the following way. We consider both a given 
measure distribution and its direct multifractal 
transform [21], which is a renormalization of the 
given measure. Such transforms form a group, and 
the set of measures is the group transitivity class. 
For two given distributions we construct their direct 
multifractal transforms and calculate Kullback-
Leibler divergences between both initial 
distributions and their renormalizations. The 
obtained divergence vectors may be considered for 
comparing given images.  

The method is illustrated by the Serpinsky carpet 
example. For two methods of the carpet 
construction we obtain the sets having the same 
entropy, but Kullback-Leibler divergence between 
them is nonzero. Moreover, we obtain the 
estimation of Kullback-Leibler  divergence on kth 
step of direct multifractal transform that shows that 
the divergence grows as a linear function of k. 
Numerical experiments were performed for images 
from Brodatz album (presented both in grayscale 
and HSV palette). Our method successfully 
distinguishes textures that have close structures. 
The images from two classes of biomedical 
preparations (presented both in grayscale and HSV 
palette) were studied as well. In every class the 

average divergence vector on every color 
component was calculated. Experiments showed 
that for different classes the rates of growth of these 
vectors are substantially different, that allows 
considering them rates as a classifying sign. 

 
 

2 Main concepts 
 
2.1 Regny entropies 
Let a discrete probability distribution },{ ipp =  

,0≥ip ∑ = 1ip , ni ,...,1=  be given. Following 

[4] we define the Regny entropy of order α  as  

∑−
=

n
ippH

1
.ln

1
1)( α

α α
                            (1) 

It is known [13] that the entropy is nonincreasing 
function of α. When α tends to 1 the Regny entropy 
turns into Shannon entropy. The most generally 
used Regny entropies are  

npH ln)(0 =  (Hartley entropy), 

∑−= n
ii pppH

11 ln)( (Shannon entropy), 

∑−=
n

ippH
1

2
2 ln)( , 

ii ppH maxln)( −=∞ (min-entropy).            (2) 
It is easy to note that entropy characteristics do 

not depend on the position of components ip in the 
distribution vector .p In other words, using them 
one cannot distinguish between two images with 
different structures but having the same number 
values kp . 
 
 
2.2 Regny divergences 
Let p  and q  be discrete probability distributions. 
Define Regny (or α -) divergences as 

∑ −

−
=

n
ii qpqpD

1
1ln

1
1),( αα

α α
.                   (3) 

The Kullback-Leibler divergence (for α =1) is 
defined as 

∑=
n

i

i
i q

ppqpD
1

1 ln),( .                                (4) 

 
 
2.3 Direct multifractal transform 
Consider a distribution }{ ipp =  that defines some 
measure on the image and consider the following 
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direct multifractal transform 
∑

=

i

k
i

k
i

k p
ppf )(  [21]. 

It is easy to understand that such transforms form a 
group, because 

,

,
2121
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kkkk

fIdf

fff

=

=





 

.

,

1

1

fId

Idff
k

k

=

=

 

Every transform results in a renormalization of 
the initial measure and we can consider a new 
image relating to the transform. The set of measures 
is the group transitivity class. Hence we analyze not 
only initial image, but a set of its modifications as 
well.  

For a given p we denote the measure obtained by 
means of kf  as )(kp . In [21] the author considers 
the set of Kullback-Leibler divergences between the 
initial measure p and )(kp , namely 

∑ ∑+−=
i i

k
iii pppkkppD lnln)1())(,(1 . 

Hence the obtained vector is a characteristic of 
the image by means of the initial measure 
transform, and may be used for different images 
comparing. However, for two types of the Serpinsky 
carpet these vectors turn to be the same. 

 
 

2.4 Divergences between direct multifractal 
transforms 
Consider the following method to compare 
distributions p and q . We construct their 
multifractal transforms )(kp and )(kq , and 
calculate 

k
i

i

k
i

i
i

k
i

k
i

i

k
i

k
i

q

q

p
p

p
pkqkpD

∑
∑ ∑∑

= ln))(),((1 . (5) 

As a result we obtain a sequence of Kullback-
Leibler divergences for a given initial measure and 
its transforms. This vector is a characteristic of the 
class transitivity of the group. For different initial 
measures their transitivity classes are different, 
hence this vector may be used as a classifying sign.  
 
 
3 Example: Serpinsky carpet 
Consider the following example. Let us construct 
the Serpinsky carpet (the first step) by two ways. 

We take unit square, divide every side onto 7 parts 
and obtain 49 small squares. Then delete 9 small 
squares as shown on Fig.1. 
 

               
               
               
               
               
               
               

 
Fig. 1 Two types of the Serpinsky carpet (the first step of 

the construction) 
 
We see that the obtained images have different 

structures. According to (1) entropy characteristics 
do not allow distinguishing between the images. In 
addition, as it was marked in [12], these images 
have the same similarity dimension, 

namely
7ln
40ln

=sD .  

In this case the distribution vector is the union of 
vectors constructed on the first step. Hence the 
entropy characteristics will be the same. 

In what follows we need some denotations. Let 
us suppose that for the Serpinsky carpet the 
normalized intensity (measure) of a small black 
square is b , and the measure of white square is w , 
so that 1940 =+ wb . We suppose that w is a small 
number and wmb = , where m is a real number. 

To calculate the Kullback-Leibler divergence for 
the example we have to find the sum of divergence 
between rows of the matrix constructed in 
accordance with images: every square is coded by 
b or w . Divergences for 1 and 7 rows are equal 
zero, because the rows are identical. Denoting the 
divergence in thk rows by ),(1 qpDk we have 

,ln3),(,ln3),( 3
1

2
1 mwqpDmbqpD −==

 
,ln3),(,ln)(2),( 5

1
4
1 mwqpDmwbqpD −=−=

 
mbqpD ln3),(6

1 = . 
So,  

mwbqpD ln)(8),(1 −=                                (6) 
and two types of the Serpinsky carpet are different 
images. 

On the second step on the Serpinsky carpet 
construction we have to repeat the described 
procedure for every of black squares. The results 
are shown on Fig. 2 (Figure after [17].) 
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Fig. 2 Two types of the Serpinsky carpet (the second step 
of the construction) 

 
Taking into account the results for the first step 

it is not difficult to obtain that the Kullback-Leibler 
divergence is equal to 72/49* ),(1 qpD . 

Now we perform direct multifractal transform 
and calculate the divergences  in accordance with 
(5). 

For the Serpinsky carpets ∑∑ =
i

k
i

i

k
i qp , 

because the images have the same number of black 
and white squares. By (6) for initial distribution we 
have 

m
m

bqpD ln)11(8),(1 −= . 

In this case (5) has the form 

.ln))(),((1 ∑∑
=

i i

ik
i

i

k
i q

pp
p

kkqkpD  

By using (6) we have 

m
m

b
q
pp k

k

i i

ik
i ln)11(8ln −=∑ ,  

and finally 

m
mu

kkqkpD k
k

ln)11(8))(),((1 −= , 

where kk m
u 940 += .  

For k  large enough 

mkkqkpD ln
5

))(),((1 ≈ ,  

i.e. the divergence increases proportionally  to k .  
 
 
4 Numerical experiments 
The experiments were performed for textures from a 
standard test set (Brodatz textures, [23]) and for 
images of biomedical preparations. The choice of 
the size of a partition box depends on the size of a 
given image. It should be noted that for any image 

the smaller the box size the more the Kullback-
Leibler divergence is. But experiments show that 
the results are similar for different box sizes: for 
close textures the divergence vector grows 
insignificantly, but for different structures it grows 
rather fast. Hence we chose box size depending on 
the image size — 50x50 for Brodatz textures and 
100x100 for biomedical preparations images. 
 
 
4.1 Images from the Brodatz album 
To verify the proposed algorithm we use texture 
from the set of Brodatz textures, both for grayscale 
and colored images. All the images have size 
640x640 pixels. The size of a partition box is 
50x50. Our experiments show that the method 
results in good separation of different images. 
Below we give the results of calculation of the 
divergence vector between pictures D78 and D79 
when they are given in gray scale and in color. The 
colored images are presented in RGB palette. We 
also used HSV palette. On Fig. 3 the images D78 
(a) and D79 (b) in grayscale are given. Table 1 
shows the divergence vector between them. 
 

     
a                                     b 

Fig. 3 Images D78 (a) and D79 (b) in gray scale 
 

k ))(),((1 kqkpD  

1 0,017049 
2 0,017049 
3 0,067669 
4 0,151078 
5 0,266670 
6 0,414185 
7 0,593832 
8 0,806294 
9 1,052580 

10 1,333669 
11 1,649993 

 
Table 1. Divergence vector for images D78 and D79 

 
On Fig. 4 the same images are given in RGB 

palette, and tables 2 and 3 show the divergence 
vectors calculated in RGB and HSV palettes 
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component wise. 
 

     
a                                     b 

Fig. 4 Images D78 (a) and D79 (b) in RGB palette 
 
 

k )(1 RD  )(1 GD  )(1 BD  
1 0,015394 0,008653 0,003876 
2 0,061776 0,034376 0,015479 
3 0,139415 0,076780 0,034738 
4 0,248687 0,135476 0,061557 
5 0,390258 0,210109 0,095827 
6 0,565166 0,300391 0,137435 
7 0,774654 0,406108 0,186274 
8 1,019675 0,527137 0,242240 
9 1,300092 0,663434 0,305240 

10 1,613808 0,815033 0,375189 
 

Table 2. Divergence vectors for each component of RGB 
palette 

 
 

k )(1 HD  )(1 SD  )(1 VD  
1 0,000889 0,019703 0,004105 
2 0,003553 0,079310 0,016407 
3 0,007974 0,179190 0,036850 
4 0,014121 0,319025 0,065358 
5 0,021953 0,497670 0,101842 
6 0,031426 0,713158 0,146214 
7 0,042495 0,962840 0,198389 
8 0,055114 1,243614 0,258294 
9 0,069237 1,552172 0,325862 

10 0,084821 1,885218 0,401040 
 
Table 3. Divergence vectors for each component of HSV 

palette 
 
 
4.2 Biomedical Preparations Images  
Experiments were performed for two classes of 
biomedical preparations images: healthy and 
chronic pyelonephritis kidneys, being each class 
contains 12 images. The images were obtained by 
microscope AxioCam MRc5 of the company Carl 
Zeiss Microimaging GmbH. All the images were 
made with 200-fold zoom, represented in RGB and 
have size 2584х1936 pixels. 

A preliminary classification was performed by 
an expert. The size of partition cell is 100x100.  
All the images are represented both in grayscale and 
HSV palette (component wise). 

At first we compare two images from different 
classes: left picture (health kidney) is supposed to 
have the distribution p, and right picture (kidney 
with pyelonephritis) — q. The results of calculation 
in grayscale are given below. 

 

 

 
a                                        b 

 
Fig. 5 Healthy kidney (a) and kidney with chronic 

pyelonephritis (b) 
 
 

k ))(),((1 kqkpD  

1 0,004716 
2 0,003112 
3 0,012435 
4 0,027942 
5 0,049594 
6 0,077345 
7 0,111138 
8 0,150907 
9 0,196580 
10 0,248079 
11 0,305319 

 
Table 4. Divergence vector for images from different 

classes 
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Fig. 6 Two images of healthy kidney 

 
On Fig. 6 the images belonging to the class of 

healthy kidneys are shown. The results in Table 5 
demonstrate that for images with similar structures 
the divergences vector grows more slowly.  

 
k ))(),((1 kqkpD  
1 0,000221   
2 0,001309   
3 0,005241   
4 0,011801   
5 0,020994   
6 0,032820   
7 0,047279   
8 0,064366   
9 0,084076   

10 0,106399   
11 0,131323  

 
Table 5. Divergence vector for images from the same 

class 
 
 

4.3 Divergence vectors for a class  
Hence we may use a rate of the divergence vector 
growth as a classification sign for a class of images. 
For two classes of images (each contains 12 
elements) we calculated divergence between pairs 
(i,i+1), (where i=1..11) of images and using them 
obtained the average vector (DA) – the vector of 
arithmetical means.  As experiments show, the 
change of the comparison order does not effect on 
the divergence significantly, hence we do not take 
into account comparisons in order (i+1,i). 
Calculation were performed for each component of 
HSV palette. Class of images of healthy kidney is 
denoted by class0, and the images of kidney with 
pyelonephritis – class1.  
In the table below results of calculation for class0 
are given. 

 
k )(HDA  )(SDA  )(VDA  
1 0,025537 0,000669 0,000165 
2 0,102807 0,002678 0,000657 
3 0,231442 0,006028 0,001468 
4 0,409872 0,010727 0,002590 
5 0,635992 0,016786 0,004016 
6 0,907214 0,024225 0,005738 
7 1,219883 0,033064 0,007750 
8 1,568659 0.043336 0,010045 
9 1,946487 0,055075 0,012616 

10 2,345339 0,068326 0,015457 
 

Table 6. Components of DA vector for the class0  
 

Below we show the results for the class of 
kidney with chronic pyelonephritis images. 

 
k )(HDA  )(SDA  )(VDA  
1 0,161711 0,002897 0,002943 
2 0,540739 0,011607 0,011643 
3 1,047320 0,026194 0,025896 
4 1,637891 0,046767 0,045493 
5 2,288850 0,073479 0,070219 
6 2,986059 0,106519 0,099860 
7 3,720182 0,146113 0,134202 
8 4,484515 0,192516 0,173036 
9 5,273950 0,246013 0,216158 

10 6,084430 0,306904 0,263371 
 

Table 7. Components of DA vector for the class1 
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Fig.7 Comparing DA vectors  – H component  
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Fig.8 Comparing DA vectors  – S component  
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Fig.9 Comparing DA vectors — V component  
 
 
5 Conclusion 
The described method is a natural generalization of 
the Kullback-Leibler divergence application. We 
consider not only an initial distribution of pixel 
intensities, but the distributions obtained by the 
group of multifractal transforms. Hence we obtain 
an additional set of images which is connected with 
a given one. By considering modifications of a 
given image we use additional information and 
obtain more grounded classification sign — the 
growth rate of the average divergence vector for a 
class. For different classes these vectors are 
substantially different (as in gray scale as in any 
component of RGB and HSV palettes), which 
allows applying the proposed method to analyze and 
classify complex textures. 
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