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Abstract: This research is driven by the need to find a valid approach for the most difficult problems remaining 

in the neuroscience – the explanation of the dynamic relationships between different brain regions and the 

explanation of the partial coherence of EEG signals. In this regard, our paper advocates for the field-theoretical 

approach, which is able to link experimentally observed human brain local EEG signal dynamics with the 

proposed coupled oscillator energy exchange model (COEEM).  The reasoning behind the proposed COEEM 

model application is based on an energy exchange and synchronization simulation in a localized brain area 

using (i) the coupled oscillators approach, (ii) a novel coupled oscillators’ phase-locking mechanism (PLM) 

and (iii) a unique and very narrow spectral band prognostication and superposition method. Based on the 

promising forecasting results obtained for the real EEG signals, we infer that the oscillatory model presented 

here is potentially able to explain the dynamic relationships between different brain regions and the explanation 

of the partial coherence of EEG signals. 
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1 Introduction 
Recent years have witnessed an explosion of interest 

and activity in the area of human brain research. For 

instance, the Human Brain Project in the EU and the 

Brain Mapping Project (BRAIN initiative) in the US 

are just two examples of large scale research 

programs [1], [2], which are dedicated to brain 

simulation, neuroinformatics, high performance 

computing, medical informatics, brain imaging and 

mapping, neuromorphic computing,  neurorobotics,  

etc. These advances in theoretical and experimental 

methods and techniques [3] not only help to reveal 

brain disease states but also broaden conceptual 

knowledge of processes taking place in the brain. 

For many decades neuroscientists have been 

building various brain imaging methods 

(EEG/MEG/fMRI) [4] and computational 

neuroscience simulations models, which could 

simulate experimentally observed data [5, 6]. 

However, just few modeling results were obtained, 

which are attempting to simulate the oscillating 

phenomena of synchronized neural networks [7, 8]. 

But these theoretical simulations of coupled 

oscillators are poorly grounded on the experimental 

observations.  

Despite such efforts, one of the most difficult 

problems remains – the explanation of the dynamic 

relationships between different brain regions [9]. 

Another problem is the explanation of the partial 

coherence of EEG signals [10]. In this regard, some 

research focuses on analyses of the relationship 

among neural signals, using partial directed 

coherence [11]. One of the more promising areas of 

research close to our work is the study of the brain 

oscillation control of one single-neuron activity, 

which attempts to uncover the temporal relationship 

between brain oscillations and single-neuron 

activity [12]. Hence, in our research we made an 

attempt not only to refine the coupled oscillators’ 

modeling approach but also to test its validity on the 

real EEG data, i.e. to check whether our model is 

capable to predict EEG dynamics for short and even 

for long (few seconds) periods.   

Historically, linear regression models were 

mostly used for the forecasting of EEG time series. 

For instance, autoregressive (AR), moving average 

(MA), and autoregressive moving average (ARMA) 

models are still quite often employed [13, 14, 15]. In 

most cases, these models are applied for the 

forecasting of epilepsy or other mental diseases 

from the EEG time series analyses. Linear 

regression models, however, have certain limitations 

for the forecasting of highly nonlinear data [13].  
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After careful revision of the above-mentioned 

prognostication methods and models, we have 

elaborated a completely different approach, i.e. 

oscillation-based modeling and prognostication of 

short (several ms) and long time series (several 

seconds) of real EEG signals. We created and 

employed an iterative COEEM (coupled oscillator 

energy exchange model) scheme for the short time 

prognostication using fourth-order Runge-Kuta 

algorithms (RK4) with the non-filtered spectral 

range 1-512 Hz (including noise) EEG data. For the 

long time prognostication we used (i) filtered EEG 

data of 1-38 Hz (without power noise) and (ii) 

superposition of prognostication results for very 

narrow spectral bands of 0.01-0.1 Hz.  

For the sake of clarity we would like to note, that 

the COEEM model was created in the context of a 

larger scheme of multi-agent systems (MAS) 

simulation research [16, 17], i.e. in the framework 

of the multidisciplinary OSIMAS paradigm, which 

aims to model social agents as oscillatory systems 

(see http:\osimas.ksu.lt). Within the framework of 

this project we investigate opportunities to make use 

of a biologically inspired approach, where basic 

human mind states can be represented in the form of 

the EEG oscillations. Based on the EEG 

experimental findings, we are looking for ways to 

model (i) human (social agent) mind states in terms 

of distributions of characteristic oscillations and (ii) 

transitions between basic mind states in terms of 

redistributions of characteristic oscillations.  

In order to establish relationship between 

experimentally measured EEG signal oscillations 

and conceptually described oscillating agents in the 

OSIMAS paradigm, we have created the coupled 

oscillations based COEEM model. Investigation and 

further refinements of this biologically inspired 

experimental model helped to define features of our 

artificially constructed oscillating agent model 

(OAM) in the OSIMAS paradigm. Hence, 

oscillation based modeling of human brain EEG 

signals oscillations, using a refined Kuramoto model 

[10], not only helps to specify the oscillating agent 

model [16, 17] but also significantly contributes to 

EEG prognostication research, which is the major 

topic of this particular paper. 

This article is organized as follows: Section 2 

describes the COEEM setup and phase-locking 

mechanism. Section 3 describes the COEEM model 

and the very narrow spectral band prognostication 

technique. Section 4 describes the experimental 

setup and our findings. Finally, Section 5 provides 

conclusions. 

 

 

2 The COEEM Setup and Phase-

Locking Mechanism 
The coupled oscillator energy exchange model 

(COEEM) estimates energy fluctuations in the 

localized brain area. In this regard, the COEEM 

model is a coupled oscillator energy exchange 

model. Equations (1) using the COEEM model 

describe the evolution of complex amplitudes of 

oscillators. The energy of each oscillator is 

proportional to the modulus squared of the complex 

amplitude. In general, energy exchange takes place 

between all oscillators, despite internal or external 

division. In the COEEM model, though, we model 

energy exchange between the inner and outer 

system of oscillators. Hence, the EEG signal is 

modeled as the total energy change of an internal 

oscillator system over time. 

In the COEEM model, neuron is modeled as an 

oscillator, which has a phase and a complex 

amplitude. Thus, modeling the energy exchange 

between groups of neurons is replaced by the model 

of the energy exchange between groups of 

oscillators. These oscillators are coupled with each 

other in a relationship function that can be freely 

chosen. This model is similar to the Kuramoto 

model, where the same coupling equations of 

oscillators are used. As in the Kuramoto model, we 

use the sinus coupling function of oscillators. In 

short, the COEEM model investigates systems of 

coupled oscillators, where each oscillator is 

characterized by an angular frequency wi, see (1). 

This frequency is also emitted in a form of the field, 

which enables the energy exchange between the 

oscillators. Therefore, coupling constants were 

chosen equal to wj, see (1). The COEEM model 

equations are as follows: 

 
,)sin(

,1







 N

ijj
jiji

i ww
t

 

                                          (1) 

 
,)sin(

,1







 N

ijj
jijjii

i wAwA
t

A  

where Ai is the complex amplitude of the i-th 

oscillator (the amplitude  Ai is itself a complex 

number), θi – the phase of the i-th oscillator, wi– the 

angular frequency of the i-th oscillator, and t – the 

temporal coordinate. 
Therefore, here we have 2N linear equations 

for the phases and complex amplitudes of the 

oscillators. The system Eq. (1) of 2N linear 

equations describes the temporal evolutions of the 
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phases and the complex amplitudes of the 

oscillators. The system Eq. (1) consists of two 

phases: the oscillator phase 
i

  and the radiated field 

complex amplitude phase arg (Ai). In this case, the 

energy of an oscillator is proportional to the 

modulus squared of the complex amplitude Ai (Ai 

describes the EEG signal). We are modeling this 

signal as a radiated field (Ai is proportional to 

radiated field) using the system of internal 

oscillators. In this case, oscillators are coupled via 

the phase differences between them. The phase 

differences between phases of the radiated fields 

(sin(arg (Ai)-arg (Aj))) are not used for the coupling. 

In this way, we can get the temporal evolution of the 

energy of each oscillator. Thus, we can evaluate the 

energy redistribution between oscillator groups after 

a certain time. 

The phase difference between two oscillators 

describes the energy exchange mechanism between 

them: the energy exchange process takes place 

between oscillators where the phase difference is 

not equal to zero (if the phase difference is zero, 

then energy exchange is absent).  

Hence, we study the temporal EEG signal 

dynamics recorded from a single channel. Since the 

surface area of one EEG channel electrode is 

relatively small when compared to the total surface 

area of the head, we can say that the analyzed EEG 

signal is generated by only a very small part of all 

neurons. Therefore, we explore two different size 

groups of oscillators, which form a single closed 

oscillator group, i.e. a closed system U consisting of 

two open systems W and w:  

 U W w  ,   

 
U W w

N N N  ,  (2)                        

where U is a closed global system, W – an external 

open system, w – an internal open system, 
U

N  – the 

number of global oscillators, 
W

N  – the number of 

external oscillators, 
w

N  – the number of internal 

oscillators. 

Note that for a closed system the energy 

conservation law is valid and that for each of the 

two open systems the energy conservation law is not 

valid: 

 
U W w

E E E  ,                           (3) 

where 
U

E  – the energy of the global system, 
W

E  – 

the energy of the external system, 
w

E  – the energy 

of the internal system. 

One of the two open oscillator groups we call the 

internal system, and the other – the external system. 

Note, that the number of external oscillators is much 

higher. In this case, we calculate the energy 

exchange between the internal and the external 

oscillators, where each oscillator exchanges energy 

with any other remaining oscillator. 

Principal scheme of the COEEM performance 

investigation includes calibration, optimization, 

validation and forecasting stages, see Fig. 1. 

Calibration was performed for a different number of 

iterations (see iterative scheme below). For our 

further estimates, we used a setup with the number 

of iterations 16 because under such conditions the 

COEEM curve is sufficiently calibrated to the 

experimental EEG curve. Then, we applied 

optimization stage to find an optimal number of 

calibrated external oscillators. For this particular 

EEG data set it equaled 5. Validation and 

forecasting stages are described in the next sections. 

 

 
Fig. 1. Principal scheme of the COEEM 

performance investigation 

 

COEEM has not been performed to model the 

connectivity distant brain areas. In fact, COEEM 

model calculations are localized at a chosen EEG 

channel area around 1cm in diameter. Therefore, 

there is no sense in calculating signal delays. In 

principle, the COEEM model is not designed for the 

accurate topological imaging of brain activity across 

large areas of the skull. Instead, it provides an 

approximate model, which allows us to 

prognosticate the temporal evolution of a real EEG 

signal at the chosen localized area in the brain. 

 The time-evolution of the simulated EEG data is 

modeled as the total energy fluctuations of an 

internal oscillator (or their system). The dependence 

of energy on time is derived as follows: the modulus 

squared of the EEG data is integrated over the 

intervals of a certain short time. For the internal 

oscillators, the dependence of energy on time is 

obtained by summing up the energies of all the 

internal oscillators at certain moments. The COEEM 

model uses experimentally measured EEG data and 

finds the time dependences of the amplitudes and 

phases of the external and internal oscillators.  

The iterative scheme is as follows: 

Step 1. The phases and amplitudes of all the 

oscillators are assigned random values. The 

distribution functions of random values are similar 

to the uniform distribution. That is, all random 
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numbers are generated with approximately equal 

probability. 

Step 2. The amplitudes of all the oscillators are 

normalized to the total energy of all the internal 

oscillators. Hence, we then get the amplitudes and 

phases of all the oscillators at t=t1. 

Step 3. We solve the COEEM model equations by 

using the RK4 method (see the next section). The 

solution gives the amplitudes and phases of all the 

oscillators after time-step t  at t=t2. 

Step 4. The amplitudes of all the internal oscillators 

are replaced in such a way that the total energy of 

the internal oscillators is equal to the value of the 

EEG power at t=t2: 

            

))]t(Aarg(iexp[
N

)t(E
A 2k

w

2EEG'
k 

 (4) 

                                                                          

Step 5. We solve the COEEM model equations by 

using the RK4 method (back propagation: 

:t t   ). After this step, we have the modified 

amplitudes and phases of all the oscillators at t=t1. 

Step 6. We reset these modified amplitudes of the 

internal oscillators to the initial values at t=t1
1
. 

In the third section, we discuss how to improve 

COEEM model for prognostication of long periods. 

Whereas, our simulation results are presented in the 

fourth section. 

 

 

3 COEEM Used with Narrow 

Spectral Bands Superposition 

Approach 
COEEM model originally was designed for 

prognostication of EEG signals of broad spectral 

ranges but short periods (several miliseconds). In 

this section, though, we use the COEEM model for 

prognostication of EEG signals with close to 

constant frequencies and maximums of amplitudes 

for long periods (several seconds). Actually, EEG 

signals’ amplitudes and frequencies have small 

fluctuations only for very narrow spectral widths 

(bands). Therefore, our idea is to apply COEEM 

prognostication model for broad spectral ranges, 

using superposition of narrow spectral bands 

prognostication results, see Fig. 2.  

 

                                                 
1
 We cannot replace the amplitudes of internal oscillators because 

the initial conditions of internal oscillators must remain the same in 

the first layer. 

 
Fig. 2. Principal scheme of narrow spectral bands 

superposition approach, which is used for long time 

prognostication. 

 

This methodology consists of the following 

steps: 

Step 1. Original EEG signal is transformed to the 

spectral representation using fast Fourier 

transformation (FFT). 

Step 2. The obtained spectral representation is 

divided into N equally sized narrow spectral bands. 

Step 3. After filtration and inverse fast Fourier 

transformation (IFFT) for each narrow spectral 

band, we obtain N temporal EEG signals. 

Step 4. Each temporal EEG signal (N) is 

prognosticated employing COEEM. 

Step 5. Fast Fourier transformation is applied for 

each prognosticated temporal EEG signal in order to 

get N spectral representations. 

Step 6. Superposition is applied for the obtained N 

spectral representations. 

Step 7. After inverse fast Fourier transformation of 

the superposed spectral representation, we obtain 

prognosticated temporal EEG signal for the wide 

spectral range. 

 In the section below, we present COEEM model 

applications with and without the above-described 

principal scheme.  

 

 

4 The Results of the COEEM 

Simulation for Short and Long 

Periods 
Our EEG experimental results, discussed below, 

were obtained using the BioSemi ActiveTwo Mk2 

system with 64 channels. The time-density of the 

recorded signals from the head surface of 

participants was 1024 points per second for all 64 

channels. 
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For the illustration of obtained results below, we 

picked few experimental EEG signal sets: (A), (B), 

(C) and (D). EEG signal (A) corresponds to the state 

of thinking; EEG signal (B) corresponds to the state 

of deep relaxation; EEG signal (C) corresponds to 

the state of deep relaxation with oddball audio 

signals; EEG signal (D) corresponds to the state of 

thinking with oddball audio signals.  

Below, we offer a step-by-step description of the 

optimization procedure and the results of the short 

time prognostication (up to 92 ms) using COEEM 

model for the non-filtered EEG signal (A).   

In the calibration stage, the COEEM simulated 

curve became sufficiently close to the experimental 

EEG curve. In this way, we found the time 

dependences of the amplitudes and phases of the 

external and internal oscillators. 

After proper calibration, we can state that the 

COEEM simulated curve, which is generated by one 

internal oscillator, well matches with the 

experimental EEG curve, see Fig. 3. Our findings 

revealed that each external uncalibrated oscillator 

could radically change the COEEM generated 

signal.  

Hence, we calibrated all external oscillators 

using the chosen EEG data range [0, 1388] ms. 

After proper calibration, the COEEM simulated 

curve was fitted to the experimental curve in the 

chosen data range. At the end of the calibration step 

we depicted the data range [268, 1000] ms for 

validation of the prognostication results. Using the 

test and trial method, we observed better 

prognostication results applying this particular data 

range, though it can be freely chosen. 

It should also be noted that not all calibrated 

external oscillators were used for the 

prognostication. For this reason, we applied another 

optimization step to find an optimal number of 

calibrated external oscillators. We used time interval 

[1388, 1398] ms to find an optimal number of 

calibrated oscillators. For this particular EEG data 

set it equaled 5. 

The best prognostication estimates in terms of 

Pearson correlation coefficient and MSE were 

obtained when the number of the calibrated external 

oscillators equals to 5. The best obtained correlation 

coefficient for the prognostication period 35 ms 

equals 0.80 and for period 92 ms equals 0.76. In 

other cases the correlation coefficients are less than 

0.19. 

Next, we present results of the prognostication 

for the experimental EEG data using the optimized 

(calibrated) COEEM model. Prognostication results 

were obtained starting from the 1398 ms time mark, 

see Fig. 3.  

 

  
Fig. 3. Calibration (R1), optimization (R2) and 

prognostication (R3) of the COEEM curve vs. the 

original non-filtered EEG data. Number of the 

calibrated external oscillators equals to 5 in case (a), 

to 15 in case (b), and to 0 in case (c).  

 

As we already mentioned, in order to effectively 

prognosticate EEG signals for long periods of time, 

we (i) filtered out noise (leaving 1-38 Hz spectral 

range), (ii) applied COEEM for the narrow spectral 

bandwidths (0.01-0.1Hz)  prognostication, (iii) 

performed superposition of the obtained 

(prognosticated) narrow bandwidth spectra, (iv) 

used an inverse Fourier transformation to obtain 

prognostication of the temporal EEG signal in the 

spectral range (1-38 Hz), see Fig. 2.  

The prognostication correlation coefficient for 

this narrow bandwidth equals 0.9944. In this way, 

we got good prognostication results for just one 

narrow spectral bandwidth. For instance, in the case 

of the 1-38 Hz spectral range, we would have 370 

such narrow spectral bands. All these narrow 

spectral bands have to be prognosticated using 

COEEM. Then the prognostication results are 

superpositioned (see Fig. 2) and with the help of the 

Fourier transform inversed back to the time scale.  

   We did this procedure for longer, i.e. 3s 

duration filtered (1-38Hz) EEG signals. We used 

R1=12s for calibration, R2=1s for optimization and 

R3=3s for prognostication. The whole spectral range 

(1-38 Hz) was divided into the 0.07 Hz almost 

monochromatic spectral bandwidths. Then we made 

prognostications for each narrow band and 

superpositioned these results to get a wide (1-38Hz) 

spectral range. Below the presented prognostication 

results illustrate different brain waves and mind 

states for the whole spectral range, see Fig. 4.  

Correlation coefficients between the 

prognosticated curve and the original EEG signal at 

frequency range 1-4 Hz for cases (A), (B) and (C) 

are respectively 0.9590, 0.9840 and 0.9961, see 
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Table I. Very similar values of correlation 

coefficients are obtained for the same EEG signals 

at the other frequency ranges: from 8 to 13 Hz and 

from 1 to 38 Hz, see Table I. As we can see from 

Table I, the largest value of the prognostication 

correlation coefficient equals 0.9961 at the 

frequency range 1-4 Hz and the smallest value 

equals 0.9297 at the frequency range 8-13 Hz.  

In short, high values of the correlation 

coefficients show that prognoses of a 3 second time 

period at different ranges of frequencies for all three 

EEG signals (A), (B) and (C) is quite accurate, i.e. 

we obtain good matching between the COEEM 

prognosticated data and the original EEG data, Fig. 

4 and Table I. 

 

Table 1. Correlation coefficients for various states 

and frequency ranges (prognostication period 3 s) 

States 

Correlation coefficients 

1-4 Hz 8-13 Hz 1-38 Hz 

(A) 0.959 0.9589 0.9821 

(B) 0.984 0.9297 0.9562 

(C) 0.9961 0.9952 0.9893 

 

 

 
Fig. 4. Filtered EEG signals (A), (B) and (C) in the 

frequency range 1-38 Hz: calibration (R1), 

optimization (R2) and prognostication (R3) range. 

Prognostication period 3 s.  

 

For the effective implementation of the proposed 

approach, we also investigated how prognostication 

results depend on the chosen narrow spectral 

bandwidth, which is used to get almost 

monochromatic waves for the narrow band 

prognostication, see Fig. 5. 

 

 
 Fig. 5. Dependence of prognostication correlation 

coefficient from the size of spectral bandwidth for 

states (A), (B) and (C) at frequency range 1-38 Hz 

and prognostication time period 3s.  

 

Fig. 5 indicates that the correlation coefficient 

acquires values between 0.92 and 0.99, when the 

spectral bandwidth is less than 0.1 Hz (see bottom 

graph). It therefore seems obvious, that for better 

prognostication results we have to choose a narrow 

bandwidth, which in this illustrated example  ranges 

from 0.05 to 0.07 Hz, see Fig. 5. Contrary, in the 

case of a 0.7 Hz bandwidth, prognostication 

correlation may be lower than 0.2. As we can see 

from the same figure, very similar tendencies hold 

for all cases (A), (B) and (C), see Fig. 5. 

Next, we present a few prognostication results, 

applying the same procedure of superposition to 

filtered (1-38Hz) very long, i.e. 28s time periods.  

Fig. 6 illustrates prognostication correlation 0.9829 

between the COEEM and real EEG data curves. The 

bottom graph in Fig. 6 illustrates almost perfect 

matching between the prognosticated and real EEG 

signal (C) at the end of the prognostication period. 
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Fig. 6. Prognostication of the EEG signal (C) at 

frequency range 1-38 Hz for R3=28 s time period 

(R1=36s, R2=1s). 

 

The above example illustrates that the 

prognostication correlation coefficient is very high 

0.9829 even for quite long prognostication periods. 

Another example at Fig. 7 illustrates 

prognostication correlation 0.9640 between the 

COEEM and real EEG data curves for the signal 

(D). 

 

 
Fig. 7. Prognostication of the EEG signal (D) at 

frequency range 1-38 Hz for R3=28 s time period 

(R1=36s, R2=1s).   

 

Regarding the relation between the 

prognostication period and the correlation 

coefficient, we conducted an additional 

investigation, which is presented in the Fig. 8. 

 

  
Fig. 8. Relation between prognostication period and 

correlation coefficient for EEG signals (A), (C) and 

(D) at frequency range 1-38 Hz. 

 

In sum, based on the results presented in this 

section, the authors argue that the proposed COEEM 

model is outperforming the other EEG 

prognostication results provided at [13, 14]. Our 

online virtual lab for the interactive testing and 

modeling of the proposed COEEM approach is 

available at http://vlab.vva.lt/ (login as Guest, 

password: guest555). 

Hence, coupled oscillators energy exchange 

model (COEEM) reveals huge potential not only for 

applications in the computational neuroscience 

simulations but also in practical cases related with 

the recognition  and prediction of various kind of 

cognitive diseases like epilepsy, sleep disorders, 

encephalopathies, stroke and other focal brain 

disorders [4,18,19,20].  

 

 

5 Concluding Remarks 
This article introduces the novel coupled oscillator 

energy exchange model (COEEM) which simulates 

experimentally observed human brain EEG signal 

dynamics. The reasoning behind the COEEM model 

construction is based on an energy exchange and 

synchronization simulation in a localized brain area.  

Our research provides not only refinement details 

of the coupled oscillators’ modeling approach but 

also tests its validity on the real EEG data. In this 

way, we perform the robust test whether our model 

is capable to predict EEG dynamics for short and 

even long (few seconds) periods. 

In the first experimental research stage, short 

time EEG signal prognostications (up to 92 ms) of 

non-filtered EEG signals provided correlations to 

the order of 0.76-0.8.  
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Hence, in the second research stage, we applied 

this improved COEEM scheme for prognostication 

of filtered (1-38Hz) 3s time periods. In short, quite 

high values of the correlation coefficients (0.92-

0.99) at different ranges of frequencies were 

obtained for all three investigated EEG signals (A), 

(B) and (C).  

We also investigated how prognostication results 

depend on the chosen narrow spectral bandwidth. 

We found that for better prognostication results we 

have to choose as narrow a bandwidth as possible, 

i.e. in our case in the range of 0.05 to 0.07 Hz. 

We also applied the improved COEEM scheme 

for the prognostication of filtered (1-38Hz) very 

long, i.e. 28s time periods. In sum, the 

prognostication correlation coefficient remained 

very high (0.96-0.98) even for quite long 

prognostication periods. 

Like all pioneering studies, COEEM needs 

thorough further investigation with other sets of 

EEG data. However, initial experimental validation 

results provide potentially very intriguing insights 

about the oscillatory nature of the mind states and 

very promising coupled oscillator based research 

direction in the field of computational 

neuroscience simulations. 
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