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Abstract: -A novel automated method for the classification of the physiological condition of the carotid artery 
in 2D ultrasound image sequences is introduced. Unsupervised clustering was applied for the segmentation 
process in which both spatial and temporal information was utilized. Radial distension is then measured in the 
inner surface of the vessel wall, and this characteristic signal is extracted to reveal the detailed radial motion of 
the variable inner part of the vessel wall that is in contact with flowing blood. Characteristic differences in this 
time signal were noticed among healthy young, healthy elderly and pathological elderly cases. The discrete 
Fourier transform of the radial distension signal is then computed, and the area subtended by the transform is 
calculated and utilized as a diagnostic feature. The method was tested successfully and could differentiate 
among the categories of patients mentioned above. Therefore, this computer-aided method would significantly 
simplify the task of medical specialists in detecting any defects in the carotid artery and thereby in detecting 
early cardiovascular symptoms. The significance of the proposed method is that it is intuitive, semi-automatic, 
reproducible, and significantly reduces the reliance upon subjective measures. 
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1 Introduction 
 

According to Gebel [1], 30% of global deaths are 
caused by cardiovascular diseases. Serious 
cardiovascular events, such as myocardial infarction 
and left ventricular hyperthrophy can be caused by 
arterial stiffness [2], because the elasticity of the 
walls of the arteries has a large impact on the blood 
pressure and the afterload. Increased arterial 
stiffness (e.g. as a result of coronary heart disease) 
causes increased systolic blood pressure and pulse 
pressure, in addition to increased mechanical load 

on the heart [3]. 
Ageing is usually associated with degradation of 

arterial structure and function, such as increased 
arterial stiffness [4-6]. Recent studies show that 
decreased arterial elasticity appears early, even 
before any clinical symptoms or atherosclerotic 
plaques [7‐9]. 

Therefore, there is an urgent need for early and 
accurate diagnosis of cardiovascular diseases. In 
general, existing diagnosis methods relied upon 
invasive procedures. One such method was Wave 
Intensity (WI) analysis, introduced by Parker et al. 
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in 1990 [10]. The wave intensity signal was defined 
as the product dPxdU, where dP and dU represent 
the change in pressure and flow, respectively, inside 
a given blood vessel. However, the clinical use of 
the WI method was limited because both of the two 
required parameters (dP and dU) were measured 
invasively. 

Recently, another technique, known as Wave 
Intensity Wall Analysis (WIWA), was introduced 
[11]. The idea of WIWA was to estimate the 
changes in pressure (dP/dt) and flow (dU/dt) by 
measuring the strain rate of the arterial wall in the 
radial and longitudinal direction, respectively. 
While WIWA provides a non-invasive method 
(using 2D ultrasound image sequences of the carotid 
artery) for studying blood flow and pressure in the 
carotid artery based on the principle of conservation 
of mass and momentum, there are several 
disadvantages in this approach. 

Traditional WI analysis relies upon 
simultaneously measureing both blood pressure and 
flow-velocity which is a nontrivial task [12]. Since 
WI is defined as the product of these two measured 
quantities, it is very sensitive to noise [12]. 
Furthermore, the WIWA method estimates these 
quantities from ultrasound image sequences [11] 
and suffers from inaccuracy due to the difficulty in 
estimating longitudinal strain. Therefore, it sounds 
reasonable to simplify the analysis by limiting it to 
measuring the radial distension only. 

Many methods perform local radial-motion 
measurements of arterial stiffness by estimating 
distensibility, compliance, elastic modulus or 
stiffness index. However, the validity and 
reproducibility of these measurements show large 
variation [13-14]. Despite that the main goal of most 
recent research is to develop methods that can 
measure deviations from normality, there is still no 
such method which is free of limitations.Azar and 
Hamid Muhammed [15] used a self-organizing 
neural-network to automatically track the motion of 
the wall of the carotid artery in ultrasound image 
sequences. However, that approach suffered from 
the heavy computational load that was required by 
the self-organizing neural-network. In addition, the 
goal was to achieve an algorithm for a more 
efficient and practical WIWA approach, that could 
automatically produce WIWA signatures of good 
quality (i.e. can be used to achieve more accurate 
diagnosis). Therefore, this approach also suffered 
from the limitations of WIWA technique. 

This paper describes time-domain and frequency-
domain approaches for automating the diagnosis of 
the condition of the carotid artery from ultrasound 
image sequences, by estimating the radial distension 
only. Since WI analysis is a time domain method, it 
would be useful to transform the measured time 
signals into the frequency domain to get a more 

compact description of the dynamics of these 
signals. 

The main contributions of this work are: 
• A time domain method based on radial 

distension is designed and applied to 
differentiate among the radial motion of the 
carotid artery in three categories of cases; 
healthy young, healthy elderly and 
pathological elderly patients. The proposed 
approach is able to demonstrate clear 
differences in the characteristics of these 
motion-descriptive curves and can aid 
medical specialists in diagnosing the 
physiological condition of the 
cardiovascular system. 
 

• A frequency domain method is designed to 
further quantify the differences among these 
three classes or categories of cases. A 
spectral feature is utilized as a measure to 
automatically classify any given case of 
these classes. 
 

• The proposed approach is simple, non-
invasive, reproducible, and presents 
objective measures (both in time and 
frequency domains) to aid in achieving 
accurate diagnosis. 

 
 

2 Materials and Methods 

2.1 Datasets of Ultrasound Image Sequences 

Two datasets of ultrasound image sequences were 
used in this study. The first one was provided by 
School of Technology and Health, STH, at Royal 
Institute of Technology, KTH (in collaboration with 
Karolinska Institute, KI), Stockholm, Sweden. It 
consisted of nine healthy young cases (31-45 years 
old) and eight elderly cases (62-70 years old) where 
two of them were suffering from coronary artery 
disease. The second data set consisted of totally 34 
ultrasound image sequences; 14 healthy elderly 
cases (56-69 years old) in addition to 20 patients 
(61-73 years old) suffering from coronary heart 
disease. This dataset was provided by the Division 
of Cardiology at Rafik Hariri University Hospital, 
Beirut, Lebanon. 

All experimental studies were approved by the 
local ethics committees in both Stockholm (Sweden) 
and Beirut (Lebanon) and all participants gave their 
informed consent to participate. 
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2.2Image Segmentation 
Extracting vessel walls in an ultrasound image 
sequence, is a challenging problem mainly due to 
the low signal-to-noise ratio, unclear boundaries, 
and varying intensities and shapes across the frames. 
Therefore, in order to segment these images 
properly, it is necessary use of both spatial and 
temporal information in the image sequence. Figure 
(1) shows a typical image of carotid artery stenosis 
(CAS), marked by a white ellipse, where the artery 
gets narrower and its walls become thicker. 

At first, the k-means clustering algorithm was 
implemented to segment each image into three 
classes (k=3). Three spatial/textural features (mean 
value, standard deviation, and entropy) were 
computed in a square neighborhood around each 
pixel, and used as an input to the k-means 
algorithm. Figure (2) shows the segmentation result 
of the frame shown in Figure (1). 

In the result presented in Figure (2), it is not easy 
to recognize vessel wall boundaries from other 
boundaries. Even a skilled human operator cannot 
distinguish any characteristic differences by 
inspecting the result of processing only one 
stationary image (i.e. one frame of the ultrasonic 
image sequence). However, the segmentation 
process gets significantly easier when temporal 
information is used. Obviously, when the images are 
set in sequence, motion allows us to differentiate 
between vessel walls and other tissues, because it is 
mainly the vessel walls that move while other 
boundaries are relatively static. For this purpose, the 
standard deviation, of pixel values across the frames 
in the image sequence, is utilized to find the vessel 
walls’ pixels which have relatively high standard 
deviation values. 

By this way, the most prominent vessel walls will 
be selected; i.e. the one that is most dynamic (by 
choosing the boundaries with high standard 
deviation) and most visible (when using the k-
means algorithm). Figure (3) shows this vessel wall 
of the image in Figure (1) and its segmentation 
result in Figure (2). 

 
 

2.3Automated Region Selection 
 

Initially, in [11] and [15], the user is given the 
choice of identifying and cropping a region of 
interest (ROI) in the first frame as shown in Figure 
(4). One of the problems with this method of manual 
ROI-selection is that the user may not be able to 
identify the best location that would give a clear 
radial distension signal. This problem was 
encountered by the authors in [11] when using the 
GE EchoPAC software. 
 

 
 

Fig. 1.Carotid artery ultrasound image. The white 
ellipse marks a stenosis. 

 
 

 
 

Fig. 2. Segmentation by using k-means, with k=3. 
 
 

 
 

Fig. 3.Extracted vessel wall. 
 
 

The user would have to often try out several 
different locations on the vessel wall before 
obtaining an acceptable radial distension signal from 
which a WI signal with “classical” apparent 
characteristics is derived. 
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Fig. 4.Manual cropping of a region of interest (ROI) 
marked by a white rectangle. 
 
 
 

 
 

Fig. 5. Regions overlapping midway are assigned 
along the longitudinal direction of the vessel wall. 

 
 
 

 
 

Fig. 6. The region with the largest mean radial 
variation is automatically selected (marked by a 
white rectangle). 
 
 
 

To circumvent this problem in this paper, region 
selection was automated based on systematic 
assignment and evaluation of different overlapping 
regions along the vessel wall. The method proceeds 
by, at first, effectively isolating the internal section 
of the vessel wall that is in contact with the flow of 
blood. Then, a series of regions are assigned along 
the longitudinal direction of the vessel wall in a 
manner such that they overlap midway as shown in 
Figure (5). 

In the evaluation task, the mean radial variation 
for each region is calculated temporally across the 
frames. Finally, the region with the largest mean 
radial variation is selected as marked by a white 
rectangle in Figure (6). The selected region would 
be the best candidate from which to obtain a radial 
distension signal of good quality. 
 
 
3 Experimental Results 
 

3.1 Time Domain Analysis: Method 
description, experimental results and 
discussion 
 

The basic concept is to obtain, from the selected 
region extracted as described previously, a time 
dependent signal showing the variation of the lower 
(inner) vessel boundary in terms of radial position. 
Figure (7a) illustrates such a signal, aligned with the 
corresponding Echo-Cardio-Graphy ECG signal in 
Figure (7b), for the case of a young healthy 
individual. 

The peaks in Figure (7a) are a result of the vessel 
wall boundary distending upward then downward. 
For this young healthy case (Y1), it can be easily 
noticed that the peaks mainly arrive in three 
consecutive pairs. The motion of the carotid artery 
was recorded for three heartbeats as indicated by the 
corresponding ECG signal in Figure (7b); thus each 
pair of peaks occurs within one ECG cycle (shortly 
after the QRS complex). It can be noticed that the 
secondary peak within each pair is almost equal in 
amplitude to the primary peak. Thus, within each 
ECG cycle, the vessel wall performs an up-down 
motion twice in almost an identical fashion. This 
characteristic pair-of-peaks of the radial distension 
signal is observed in all nine young healthy cases 
examined. Figures (8) and (9) illustrate the young 
healthy cases Y2 and Y3. 

We may conclude from these findings that young 
healthy patients exhibit a clear and almost equal 
double-peak at the highest level of the radial 
distension curve. The double peak is an indication 
that the vessel wall is non-rigid and flexible enough 
to exhibit an up-down motion twice before 
completely relaxing to its initial position. 
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On the other hand, this characteristic pair-of-
peaks seems to be absent in all cases of elderly 
patients who participated in this study. Figure (10) 
shows the radial distension curve and the 
corresponding ECG signal for a healthy elderly 
patient (case E1). Here in Figure (10a) it is possible 
to notice only one main peak which appears shortly 
after the QRS complex of the corresponding ECG 
cycle in Figure (10b). In this case, it is evident that 
the secondary peak is almost absent in the radial 
distension curve. A possible explanation is that the 
vessel wall is stiff and unable to return upwards a 
second time before descending back to its initial 
position. 

Another elderly case, but this time a pathological 
one, suffering from coronary artery disease (EP1), is 
shown in Figure (11). From the result of this case 
and all other pathological elderly patients (suffering 
from coronary artery disease) who were examined, 
we may conclude that in such cases the secondary 

peak is always either absent or, in best case, 
significantly weaker in amplitude than the primary 
peak. In addition, more irregular radial distension 
profiles were obtained in the cases of pathological 
elderly patients when compared to healthy elderly 
cases. 

These characteristic differences in the radial 
distension curve (among the three categories of 
cases considered in this study) can aid medical 
specialists in easily identifying problems in the 
carotid artery and obtaining an idea on the stiffness 
of the artery. Certainly, such curves are much easier 
to interpret and can help in giving a clearer insight 
into the motion of the vessel wall than what can be 
obtained from only observing an ultrasound image 
sequence of the carotid artery. In addition, these 
radial distension curves are extracted from the 
ultrasound image sequences in an automated manner 
as illustrated in the previous sections. 

 
 
 

 
 

Fig 7. (a) Radial distension profile for the young healthy case Y1. (b) The corresponding ECG signal. 
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Fig. 8. (a) Radial distension profile for the young healthy case Y2. (b) The corresponding ECG signal. 
 
 

 
 

Fig 9. (a) Radial distension profile for the young healthy case Y3. (b) The corresponding ECG signal. 
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Fig. 10. (a) Radial distension profile for the elderly case E1. (b) The corresponding ECG signal. 
 
 
 

 
 

Fig. 11. (a) Radial distension profile for thepathological elderly case EP1. (b) The corresponding ECG signal. 
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3.2 Frequency Domain Analysis: Method 
description, experimental results and 
discussion 

The time domain approach discussed so far is 
completely automated, however the end result is a 
radial distension curve, that can be analyzed by a 
medical expert, in addition to visually inspecting the 
ultrasound image sequence. To help further quantify 
and automate the decision process, a useful feature 
has to be derived from the radial distension signals. 
As a first task for this purpose, the time domain 
signal is transformed into the frequency domain via 
the Discrete Fourier Transform (DFT). Figure (12) 
shows the DFT results of one healthy young case 
(Y1) and one healthy elderly case (E1). 

Note that the first element of each DFT result, 
which is the DC value, is discarded from all 
calculations, since it is scale dependent. The area 
subtended by the transform is then calculated (i.e. 
for the range of normalized frequencies 0 < f ≤ 1) 
and utilized as a diagnostic feature to differentiate 
among different cases. 

Furthermore, in the last step, all frequency 
elements above a normalized frequency of 0.15 are 
also discarded and the corresponding areas are 
calculated, for normalized frequencies greater than 0 
and up to 0.15 (0 < f ≤ 0.15). The new spectral-area 
measure (which is less biased by useless high 
frequency components with respect to our purpose) 
is also utilized as a diagnostic feature. The latter 
measure can be used to achieve a more efficient 
differentiation among the three classes of cases 
considered in this study. 

Both of these two variants of the frequency 
domain analysis method are tested against all cases 
of the two datasets. The resulting spectral-area 
values (for normalized frequencies  0< f ≤ 1  and    0 

< f ≤ 0.15) are presented in Figure (13). It can be 
easily observed that both of the two spectral-area 
features are dominantly higher in value in healthy 
young cases than in healthy as well as pathological 
elderly patients. Furthermore, both features are 
higher in healthy elderly cases than pathological 
elderly patients. 

For normalized frequencies 0 < f ≤ 1, all elderly 
cases had feature values below 12.1, whereas all 
young cases had values above 18.4. Therefore, a 
threshold value of 15.25 may be used to 
differentiate between young and elderly cases. 
While for normalized frequencies 0 < f ≤ 0.15, a 
threshold value of 10.3 can be used to perform this 
differentiation, because all elderly cases had feature 
values below 8, while all young cases had values 
above 12.6. 

It can be easily noticed that the derived feature 
values (i.e. the spectral area measures) for the young 
group are better separated from those derived for the 
elderly group, when only considering the 
normalized frequencies 0 < f ≤ 0.15. 

When considering only the elderly groups, 
threshold values of 6.75 and 4.4 can be used to 
differentiate between healthy and pathological 
patients for the two features derived for the 
normalized frequencies0 < f ≤ 1 and 0 < f ≤ 0.15, 
respectively. 

Here also, better separation is obtained between 
the feature values of these two groups of elderly 
patients, when using the normalized frequencies     0 
< f ≤ 0.15. The feature values for all pathological 
cases are below 6.3 and 3.6 when considering the 
normalized frequencies0 < f ≤ 1 and 0 < f ≤ 0.15, 
respectively. While, the corresponding values are 
above 7.2 and 5.2, respectively, for the healthy 
cases.

 

 
 

Fig. 12. Discrete Fourier transform results, for the young case Y1 (green curve) and for the elderly case E1 
(blue curve). 
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Fig. 13. Feature values (spectral area values) forhealthy young cases,healthy elderly cases and pathological 
elderly cases, for normalized frequencies 0 < f ≤ 1 (green curve)and  0< f ≤ 0.15 (blue curve). The thresholds 
that were selected and used to differentiate among these three categories or classes when considering each of 
the two cases of normalized frequencies are shown as two green horizontal lines for 0< f ≤ 1 and as two blue 
horizontal lines for 0 < f ≤ 0.15. 

 
 
 

4 Conclusion 
 
In this study, a novel approach for automating the 

classification of the physiological condition of the 
carotid artery in 2D ultrasound image sequences 
was presented. The new approach utilizes the radial 
distension properties of the inner vessel wall of the 
carotid artery to obtain insight about the stiffness of 
the artery and its relaxation capacity with time. This 
can aid medical specialists in assessing the 
condition of the carotid artery. 

To facilitate further such an assessment, two 
relevant features were derived from the discrete 
Fourier transform of the radial distension signal and 
these were utilized to automatically differentiate 
among healthy young, healthy elderly and 
pathological elderly cases. Suitable threshold values 
were identified and used for classification. A 
thresholding classifier, which used two threshold 
values, was utilized for each of the two derived 
features discussed previously to differentiate among 
the three classes or categories in this study. 

With enough data samples (i.e. ultrasonic videos) 
as input, a more advanced classifier such as a 
support vector machine may be constructed to 

automatically differentiate between for example two 
classes of healthy and pathological patients based on 
deriving and using these two spectral-area features. 

This computer-aided method would significantly 
simplify the task of medical specialists in detecting 
any defects in the condition of the carotid artery and 
thereby in detecting cardiovascular symptoms. This 
opens up the possibility for the use of machine 
learning in the automatic classification of different 
arterial characteristics among different categories of 
patients. 

The elegance and efficiency of the proposed non-
invasive time-domain and frequency-domain 
methods stem from a number of desired properties 
that these methods enjoy, such as that they are 
intuitive, straightforward, simple, semi-automatic 
(supervised since the threshold values were 
identified and chosen by the user or the operator of 
this system), reproducible, and reduces the reliance 
upon subjective measures significantly. 
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