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Abstract: Noise accompanying measurements using the high resolution array-comparative genomic hybridization
(HR-CGH) array strongly affects estimates of the copy number variations (CNVs) and results in segmental errors
as well as in jitter in the breakpoints. Based on the probabilistic analysis and algorithm designed, we show that
jitter in the breakpoints can be well approximated with the discrete skew Laplace distribution if the local signal-
to-noise ratios (SNRs) exceed unity. Using this distribution, we propose an algorithm for computing the estimate
upper and lower bounds. Some measurements and estimates tested using these bounds show that the higher probe
resolution is provided the more segmental accuracy can be achieved and that larger segmental SNRs cause smaller
jitter in the breakpoints. Estimates of the CNVs combined with the bounds proposed may play a crucial role for
medical experts to make decisions about true chromosomal changes and even their existence.
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1 Introduction

It is known that the deoxyribonucleic acid (DNA)
of a genome essential for human life often demon-
strates structural changes called copy-number varia-
tions (CNVs) associated with disease such as can-
cer [1]. The sell with the DNA typically has a num-
ber of copies of one or more sections of the DNA
that results in the structural chromosomal rearrange-
ments - deletions, duplications, inversions and translo-
cations of certain parts [2]. Small such CNVs are
present in many forms in the human genome, includ-
ing single-nucleotide polymorphisms, small insertion-
deletion polymorphisms, variable numbers of repeti-
tive sequences, and genomic structural alterations [3].
If genomic aberrations involve large CNVs, the pro-
cess was shown to be directly coupled with cancer
and the relevant structural changes were called copy-
number alterations (CNAs) [4]. A brief survey of
types of chromosome alterations involving copy num-
ber changes is given in [5]. The copy number repre-
sents the number of DNA molecules in a cell and can
be defined as the number of times a given segment of
DNA is present in a cell. Because the DNA is usually
double-stranded, the size of a gene or chromosome is
often measured in base pairs. A commonly accepted
unit of measurement in molecular biology is kilobase
(kb) equal to 1000 base pairs of DNA [6]. The hu-
man genome with 23 chromosomes is estimated to
be about 3.2 billion base pairs long and to contain

20000 − 25000 distinct genes [1]. Each CNV may
range from about one kb to several megabases (Mbs)
in size [2].

One of the techniques employing chromosomal
microarray analysis to detect the CNVs at a resolution
level of 5–10 kbs is the array-comparative genomic
hybridization (aCGH) [7]. It was reported in [8] that
the high-resolution CGH (HR-CGH) arrays are accu-
rate to detect structural variations (SV) at resolution of
200 bp. In microarray technique, the CNVs are often
normalized and plotted as log2 R/G = log2 Ratio,
where R and G are the fluorescent Red and Green
intensities, respectively [9]. An annoying feature of
such measurements is that the Ratio is highly contam-
inated by noise which intensity does not always al-
low for correct visual identification of the breakpoints
and copy numbers and makes most of the estimation
techniques poor efficient if the number of segmental
readings is small. It was shown in [10] that sufficient
quality in the CNVs mapping can be achieved with
tens of millions of paired reads of 29–36 bases at each.
Deletions as small as 300 bp should also be detected
in some cases. For instance, arrays with a 9-bp tiling
path were used in [8] to map a 622-bp heterozygous
deletion. So, further progress in the probe resolution
of the CNVs measurements is desirable.

Typically, a chromosome section is observed with
some average resolution r̄, bp and M readings in the
genomic location scale. The following distinct prop-
erties of the CNVs function were recognized [2, 5]:
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1) It is piecewise constant (PWC) and sparse with
a small number L of the breakpoints (edges) il, l ∈
[1, L], on a long base-pair length. The breakpoints are
places as 0 < i1 < · · · < iL < r̄M and can be united
in a vector

I = [i1 i2 . . . iL]T ∈ RL . (1)

Sometimes, the genomic location scale is repre-
sented in the number of readings n ∈ [1,M ] with
a unit step ignoring “bad” or empty measurements,
where n represents the nth reading. In such a scale,
the nlth discrete point corresponds to the ilth break-
point in the genomic location scale and the points
placed as 0 < n1 < · · · < nL < M can be united
in a vector

N = [n1 n2 . . . nL]T ∈ RL . (2)

An advantage of N against I is that it facilitates the
algorithm design. However, the final estimates are
commonly represented in the genomic location scale.

2) Its segments with constant copy numbers aj ,
j ∈ [1, L+1], are integer, although this property is not
survived in the log2 Ratio. The segmental constant
changes can also be united in a vector

a = [a1 a2 . . . aL+1]T ∈ RL+1 , (3)

in which aj characterizes a segment between ij−1 and
ij on an interval [ij−1, ij − 1].

3) The measurement noise in the log2 Ratio is
highly intensive and can be modeled as additive white
Gaussian.

The estimation theory offers several useful ap-
proaches for piecewise signals such as those generated
by the chromosomal changes. One can employ the
wavelet-based [11, 12] filters, robust estimators [12],
adaptive kernel smoothers [13, 14], maximum likeli-
hood (ML) based on Gauss’s ordinary least squares
(OLS), penalized bridge estimator [15] and ridge re-
gression [16] (also known as Tikhonov regulariza-
tion), fussed least-absolute shrinkage and selection
operator (Lasso) [17], the Schwarz information crite-
rion-based estimator [18, 19], and forward-backward
smoothers [20–22].

We also find a number of solutions developed es-
pecially for needs of bioinformatics. Efficient algo-
rithms for filtering, smoothing and detection were pro-
posed in [11,12,19,23–28]. Methods for segmentation
and modeling were developed in [10, 18, 24, 29–32].
Sparse representation based on penalized optimiza-
tion and Bayesian learning were provided in [33–38].
These results show that a small number of readings Nj

per a segment aj in line with large measurement noise
remain the main limiters of accuracy in the estimation

Figure 1: Simulated genome segmental changes with a
single breakpoint at nl = 50 and segmental variances σ2

l =
0.333 and σ2

l+1 = 0.083 corresponding to segmental SNRs
γl = 1.47 and γl+1 = 5.88: (a) measurement and (b) jitter
pdf. The jitter pdf was found by applying a ML estimator
via a histogram over 104 runs.

of CNVs. Picard et al. have shown experimentally
in [29] that each segmental estimate is accompanied
with errors and each breakpoint has jitter which can-
not be overcome by any estimator.

For clarity, we generalize an experiment con-
ducted in [29] in Fig. 1. Here, a chromosomal part
having two constant segments al = 0.7 and al+1 = 0
and a breakpoint nl = 50 is simulated in the pres-
ence of discrete white Gaussian noise having segmen-
tal variances σ2

l = 0.333 and σ2
l+1 = 0.083 (Fig. 1a).

For the local segmental signal-to-noise ratios (SNRs)

γ−l =
∆2

l

σ2
l

, γ+
l =

∆2
l

σ2
l+1

, (4)

where ∆l = al+1 − al is a local segmental change, it
corresponds to γ−l = 1.47 and γ+

l = 5.88.
The breakpoint location nl was detected in Fig. 1

using a ML estimator [22] (one can employ any other
estimator). Measurements and estimations were re-
peated 104 times with different realization of noise.
Then the histogram was plotted for the detected break-
point locations and normalized to have a unit area.
The jitter probability density function (pdf) obtained
in such a way is sketched in Fig. 1b. Even a quick
look at this figure assures that jitter at a level of 0.01
(jitter probability of 1%) has 10 points to the left (left
jitter) and 2 points to the right (right jitter). In other
words, with the probability of 99%, the breakpoint nl

can be found at any point between n = 40 and n = 52

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Jorge Munoz-Minjares, Jesus Cabal-Aragon, Yuriy S. Shmaliy

E-ISSN: 2224-2902 53 Volume 11, 2014



that may be too rough for medical conclusions, espe-
cially if r̄ is large. Let us add that simple averaging
which is optimal for the estimation of PWC changes
between the breakpoints is able to reduce the noise
variance by the factor of Nl. Noise reduction may
thus also be insufficient for medical applications if Nl

is small. So, effect of noise needs more investigations
and the CNVs estimate bounds are required.

2 Jitter in the Breakpoints

In follows from the experiment conducted in [29] and
supported by Fig. 1 that jitter in the breakpoints plays
a critical role in the estimation of the CNVs. Large jit-
ter may cause wrong conclusions about the breakpoint
locations. On the other hand, it may cause extra errors
in the determination of segmental changes especially
if Nl and segmental SNRs occur to be small.

2.1 Laplace-Based Approximation

The results published in [29] and our own investiga-
tions provided in [39] and generalized in Fig. 1b show
that jitter in the breakpoints has approximately the
skew Laplace distribution. The discrete skew Laplace
distribution was recently derived in [40],

p(k|dl, ql) =
(1− dl)(1− ql)

1− dlql

{
dk

l , k > 0 ,

q
|k|
l , k 6 0 ,

(5)

where dl = e
−κl

νl ∈ (0, 1) and ql = e
− 1

κlνl ∈ (0, 1)
and in which κl > 0 and νl > 0 are coefficients de-
fined by the process. Below, we shall show that (5) can
serve as a reasonably good approximation for jitter in
the breakpoints of PWC signals such as that shown in
Fig. 1a if the segmental SNRs exceed unity.

Let us consider N neighboring to nl readings in
each segment. We may assign an event Alj meaning
that all measurements at points nl − N 6 j < nl

belong to lth segment. Another event Blj means that
all measurements at nl 6 j < nl + N − 1 belong to
(l+1)th segment. We think that a measured value be-
longs to one segment if the probability is larger than
if it belongs to another segment. Because noise is
Gaussian and the segmental variances are different,
the Gaussian pdfs cross each other in two points, αl

and βl. The events Alj and Blj can thus be specified

as follows:

Alj is





(αl < xj) ∧ (xj < βl) , σ2
l > σ2

l+1 ,

xj > αl , σ2
l = σ2

l+1 ,
αl < xj < βl , σ2

l < σ2
l+1 ,

(6)

Blj is





βl < xj < αl , σ2
l < σ2

l+1 ,

xj < αl , σ2
l = σ2

l+1 ,
(xj < αl) ∧ (xj > βl) , σ2

l > σ2
l+1 .

(7)

The inverse events meaning that at least one of the
points do not belong to the relevant interval are Ālj =
1−Alj and B̄lj = 1−Blj .

Both Alj and Blj can be united into two blocks

Al = {Al(il−N)Al(il−N+1) . . . Al(il−1)} ,

Bl = {Bl(il)Bl(il+1) . . . Bl(il+N−1)} .

We think that if Al and Bl occur simultaneously then
the breakpoint nl will be jitter-free. However, there
may be found some other events which do not obliga-
torily lead to jitter. We ignore such events and define
approximately the probability P (AlBl) of the jitter-
free breakpoint as

P (AlBl) = P (Ail−N . . . Ail−1Bil . . . Bil+N−1) .
(8)

The inverse event P̄ (AlBl) = 1−P (AlBl) meaning
that at least one point belongs to another event can be
called the jitter probability.

In white Gaussian noise, all the events are inde-
pendent and (8) thus can be rewritten as

P (AlBl) = PN (Al)PN (Bl) , (9)

where, following (6) and (7), the probabilities P (Al)
and P (Bl) can be specified as, respectively,

P (Al) =





1−
αl∫
βl

pl(x)dx , σ2
l > σ2

l+1 ,

∞∫
αl

pl(x)dx , σ2
l = σ2

l+1 ,

βl∫
αl

pl(x)dx , σ2
l < σ2

l+1 ,

(10)

P (Bl) =





αl∫
βl

pl+1(x)dx , σ2
l > σ2

l+1 ,

αl∫
−∞

pl+1(x)dx , σ2
l = σ2

l+1 ,

1−
βl∫
αl

pl+1(x)dx , σ2
l < σ2

l+1 ,

(11)

where pl(x) = 1√
2πσ2

l

e
− (x−al)

2

σ2
l is Gaussian density.
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Let us now think that jitter occurs at some point
nl ± k, 0 6 k 6 N , and assign two additional blocks
of events

Alk = {Ail−N . . . Ail−1−k} ,

Blk = {Bil+k . . . Bil+N−1} .

The probability P−
k , P−

k (AlkĀl(il−k) . . . Āil−1Bl)
that jitter occurs at kth point to the left
from nl (left jitter) and the probability
P+

k , P+
k (AlB̄l(il+1) . . . B̄l(il+k−1)Blk) that

jitter occurs at kth point to the right from nl (right
jitter) can thus be written as, respectively,

P−
k = PN−k(Al)[1− P (Al)]kPN (Bl) , (12)

P+
k = PN (Al)[1− P (Bl)]kPN−k(Bl) . (13)

By normalizing (12) and (13) with (9), we arrive
at a function that turns out to be independent on N :

fl(k) =





[P−1(Al)− 1]|k| , k < 0 , (left)
1 , k = 0 ,

[P−1(Bl)− 1]k , k > 0 . (right)
(14)

Further normalization of fl(k) to have a unit area
leads to the pdf pl(k) = 1

φl
fl(k), where φl is the sum

of the values of fl(k) for all k,

φl = 1 +
∞∑

k=1

[ϕA
l (k) + ϕB

l (k)] , (15)

where ϕA
l (k) = [P−1(Al) − 1]k and ϕB

l (k) =
[P−1(Bl) − 1]k. Now observe that, in the approxi-
mation accepted, fl(k) converges with k only if 0.5 <

P̃ = {P (A), P (B)} < 1. Otherwise, if P̃ < 0.5,
the sum φl is infinite, fl(k) cannot be transformed to
pl(k), and the lth breakpoint cannot be detected. Con-
sidering the case of 0.5 < P̃ = {P (A), P (B)} < 1,
we conclude that ln P̃ < 0, ln(1 − P̃ ) < 0, and
ln(1 − P̃ ) < ln P̃ . Next, using a standard relation
∞∑

k=1

xk = 1
x−1−1

, where x < 1, and after little trans-

formations we bring (15) to

φl =
P (Al) + P (Bl)− 1

[1− 2P (Al)][1− 2P (Bl)]
. (16)

The jitter pdf pl(k) associated with the lth break-
point can finally be found to be

pl(k) =
1
φl





[P−1(Al)− 1]|k| , k < 0 ,
1 , k = 0 ,

[P−1(Bl)− 1]k , k > 0 ,

(17)

where φl is specified by (16) and 0.5 <
{P (Al), P (Bl)} < 1. By substituting ql =
P−1(Al)−1 and dl = P−1(Bl)−1, we find P (Al) =
1/(1 + ql) and P (Bl) = 1/(1 + dl), provide the
transformations, and finally go from (17) to the dis-
crete skew Laplace distribution (5) in which κl and
νl still need to be connected to (17). To find κl and
νl, below we consider three points k = −1, k = 0,
and k = 1. By equating (5) and (17), we first
obtain (1−dl)(1−ql)dl

1−dlql
= 1

φl

1−P (Bl)
P (Bl)

for k = 1 and
(1−dl)(1−ql)ql

1−dlql
= 1

φl

1−P (Al)
P (Al)

for k = −1 that gives us

νl = 1−κ2
l

κl ln µl
, where

µl =
P (Al)[1− P (Bl)]
P (Bl)[1− P (Al)]

. (18)

For k = 0, we have (1−dl)(1−ql)
1−dlql

= 1
φl

and trans-

form it to an equation x2
l − φl(1+µl)

1+φl
x − 1−φl

1+φl
µl = 0,

which proper solution is

xl =
φl(1 + µl)
2(1 + φl)

(
1−

√
1 +

4µl(1− φ2
l )

φ2
l (1 + µl)2

)
(19)

and which xl = µ
− κ2

l
1−κ2

l
l gives us

κl =

√
ln xl

ln(xl/µl)
. (20)

By combining νl with (19), we also provide a simpler
form for νl, namely

νl = − κl

ln xl
. (21)

The discrete skew Laplace distribution (5) can
thus be used to represent jitter in the breakpoints sta-
tistically.

Now substitute the Gaussian pdf to (10) and (11),
provide the transformations, and find

P (Al) =





1 + 1
2 [erf(gβ

l )− erf(gα
l )] , γ−l < γ+

l ,
1
2erfc(gα

1 ) , γ−l = γ+
l ,

1
2 [erf(gβ

l )− erf(gα
l )] , γ−l > γ+

l ,
(22)

P (Bl) =





1
2 [erf(hα

l )− erf(hβ
l )] , γ−l < γ+

l ,
1− 1

2erfc(hα
l ) , γ−l = γ+

l ,

1 + 1
2 [erf(hα

l )− erf(hβ
l )] , γ−l > γ+

l ,
(23)

where gβ
l = βl−∆l

|∆l|

√
γ−l
2 , gα

l = αl−∆l
|∆l|

√
γ−l
2 , hβ

l =

βl
|∆l|

√
γ+

l
2 , hα

l = αl
|∆l|

√
γ+

l
2 , erf(x) is the error func-

tion, erfc(x) is the complementary error function. If
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γ−l 6= γ+
l , the coefficients αl and βl are defined by

αl, βl =
alγ

−
l − al+1γ

+
l

Γl
∓|∆l|

Γl

√√√√γ−l γ+
l + 2Γl ln

√
γ−l
γ+

l

(24)
where Γl = γ−l − γ+

l . For γ−l = γ+
l , set αl = ∆l/2

and βl = ±∞. Using (22) and (23), below we investi-
gate errors inherent to the Laplace-based approxima-
tion.

2.2 Errors in Laplace-Based Approximation

To realize how well the discrete skew Laplace dis-
tribution (5) fits real jitter distribution with differ-
ent SNRs, we consider a measurement of length M
with one breakpoint at n = K and two neighbor-
ing segments with known changes al and al−1. The
segmental variances σ2

l and σ2
l−1 of white Gaussian

noise are supposed to be known. In the ML estima-
tor, the mean square error (MSE) is minimized be-
tween the measurement and the CNVs model in which
the breakpoint location is handled around an actual
value. Thereby, the breakpoint location is detected
when the MSE reaches a minimum. In our experi-
ments, measurements were conducted 104 times for
different noise realizations and the histogram of the
estimated breakpoint locations was plotted. Such a
procedure was repeated several times and the esti-
mates were averaged in order to avoid ripples. Nor-
malized to have a unit area, the histogram was ac-
cepted as the jitter pdf. The relevant algorithm can
easily be designed to have as inputs al, al−1, segmen-
tal SNRs γ−l and γ+

l , M , K, and the number of point
K1 around K covering possible breakpoint locations.
The algorithm output is the jitter histogram “Jitter”.
An analysis was provided for typical SNR values pe-
culiar to the CNVs measurements using the HR-CGH
arrays. As a result, we came up with the following
conclusions:

1) The Laplace approximation is reasonably ac-
curate in the lower bound sense if the SNRs exceed
unity, (γ−l , γ+

l ) > 1. Figure 2 sketches the Laplace
pdf and the experimentally found pdf (circled) for the
case of γ−l = 1.4 and γ+

l = 1.38 taken from real mea-
surements. Related to the unit change, the approxima-
tion error was computed as ε,% = (ML estimate −
Laplace approximation)×100. As can be seen, εmax

reaches here about 10% at n = K (Fig. 2b). That
means that the Laplace distribution fits measurements
well for the allowed probability of jitter-free detec-
tion of 90%. It narrows the jitter bounds with about
±2 points for 99%. Observing another example illus-
trated in Fig. 3 for γ−l = 9.25625 and γ+

l = 2.61186,

Figure 2: The jitter pdf approximated using the discrete
skew Laplace distribution and found experimentally (cir-
cled) using a ML estimator over 104 runs for γ−l = 1.4 and
γ+

l = 1.38: (a) pdfs and (b) approximation errors.

we infer that the Laplace distribution fits the process
with very high accuracy if SNR À 1.

2) The approximation error may be large in the
sense of the narrowed jitter bounds if SNR < 1.

3) The jitter bounds commonly cannot be deter-
mined correctly for (γ−l , γ+

l ) ¿ 1.

3 Estimate Bounds

The upper bound (UB) and lower bound (LB) peculiar
to the estimate confidential interval can now be found
implying segmental white Gaussian noise and accept-
ing the discrete skew Laplace-based jitter distribution
in the breakpoints.

3.1 Segmental Errors

In white Gaussian noise environment, simple averag-
ing is most efficient between the breakpoints as be-
ing optimal in the sense of the minimum produced
noise. Provided the estimate n̂l of the breakpoint lo-
cation nl, simple averaging applied on an interval of
Nj = nj − nj−1 readings from nj−1 to nj − 1 gives
the following estimate for the lth segmental change

âj =
1

Nj

nj−1∑
v=nj−1

yv , (25)
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Figure 3: The jitter pdf approximated using the discrete
skew Laplace distribution and found experimentally (cir-
cled) using a ML estimator over 104 runs for γ−l = 9.25625
and γ+

l = 2.61186: (a) pdfs and (b) approximation errors.

which mean value is E{âj} = aj and variance is

σ̂2
j =

σ2
j

Nj
. (26)

The UB for segmental estimates can be formed in

the θ-sigma sense as âUB
j = E{âj} + θ

√
σ2

j

Nj
, where

θ > 1 is commonly integer. However, neither an ac-
tual aj = E{âj} nor multiple measurements neces-
sary to approach aj by averaging are available. We
thus specify UB and LB approximately as

âUB
j

∼= âj + θ

√
σ2

j

Nj
, (27)

âLB
j

∼= âj − θ

√
σ2

j

Nj
. (28)

where θ = 1 guarantees an existence of true changes
between UB and LB with the probability of 68.27% or
error probability of κ = 0.3173 that is 31.73%; θ = 2
of 95.45% or κ = 0.0555 that is 5.55% and θ = 3 of
99.73% or κ = 0.0027 that is 0.27%.

3.2 Jitter Bounds

The jitter left bound (JLB) JL
l and the jitter right

bound (JRB) JR
l can be determined with respect to

nl as follows. Because a step is unity with integer k,
we specify the jitter probability at the kth point using
(5) as

Pk(γ−l , γ+
l ) = p[k|d(γ−l , γ+

l ), q(γ−l , γ+
l )] . (29)

We then equate (29) to κ and solve it for the right and
left jitter to have, respectively,

kR
l =

⌊
νl

κl
ln

(1− dl)(1− ql)
κ(1− dlql)

⌋
, (30)

kL
l =

⌊
νlκlln

(1− dl)(1− ql)
κ(1− dlql)

⌋
, (31)

where bxc means the maximum integer equal to or
lower than x. The JLB and JRB can be defined with
respect to nl as JL

l = nl−kL
l and JR

l = nl+kR
l . Now

observe that nl is unknown and use the estimate n̂l. If
it happens that n̂l lies at the right bound, then the true
nl can be found kR

l points to the left. Otherwise, if n̂l

lies at the left bound, then il can be found kL
l points

to the right. Approximate JLB and JRB are thus the
following

JL
l

∼= n̂l − kR
l , (32)

JR
l

∼= n̂l + kL
l . (33)

Note that κ in (30) and (31) should be specified
in the θ-sense as in (27) and (28).

3.3 UB and LB Masks and Algorithm

By combining (27), (28), (32), and (33), the UB mask
BU

n and the LB mask BL
n can now be formed to outline

the region for true genomic changes. The relevant al-
gorithm was designed in [41]. Its inputs are measure-
ments yn, breakpoints estimates n̂l, tolerance param-
eter θ, number L of the breakpoints, and number of
readings M . At the output, the algorithms produces
two masks: BU

n and BL
n .

The UB and LB masks have the following basic
applied properties:

• The true CNVs exist between BU
n and BL

n with
the probability determined in the θ-sigma sense.

• If BU
n or BL

n covering two or more breakpoints is
uniform, then there is a probability of no changes
in this region.

• If both BU
n and BL

n covering two or more break-
points are uniform, then there is a high probabil-
ity of no changes in this region.
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We notice again that the jitter bounds in BU
n and

BL
n may have enough accuracy if (γ−l , γ+

l ) > 1.
They may be considered in the lower bound sense if
(γ−l , γ+

l ) < 1. However, the approximation error is
commonly large if (γ−l , γ+

l ) < 0.5. For details, see
Section 2.2.

4 Applications

In this section, we test some CNVs measurements and
estimates by the UB and LB masks computed in the
three-sigma sense, θ = 3, using the algorithm [41].
Because the algorithm can be applied to any CNVs
data with supposedly known breakpoints, we choose
the 1st chromosome measured using the HR-CGH ar-
ray in [28] and available from [42].

The CNVs structure has 34 segments and 33
breakpoints. Most of the segments have the SNRs
exceeding unity meaning that the UB and LB masks
will have enough accuracy. The SNRs in segments
â18 and â21 range between 0.5 and unity which means
that real jitter can be here about twice larger. The re-
maining segments â23, â28, â31 and â32 demonstrate
the SNR below 0.5 that means that the jitter bounds
cannot be estimated with sufficient accuracy. We just
may say that jitter can be much larger in the relevant
breakpoints.

Let us consider the CNVs measurements and esti-
mates in more detail following Fig. 4. As can be seen,
there are two intervals with no measurements between
the breakpoints î15 and î16 and the breakpoints î28 and
î29. A part of measurements covering the breakpoints
from î5 to î14 is shown in Fig. 5a. Its specific is that
the segmental SNRs are all larger than unity and the
masks thus can be used directly for practical appli-
cations. The masks suggest that errors in all of the
segmental estimates reach tens of percents. In fact, â5

and â10 are estimated with error of about 50%. Error
exceeds 30% in the estimates â7, â9, â12, and â13. A
similar problem can be observed in the estimates of
almost all of the breakpoints in which left and right
jitter reaches several points.

A situation even worse with a part of the chromo-
some covering the breakpoints from î17 to î26. The
segmental errors exceed 50% here over almost all
segments. Furthermore, the UB is placed above LB
around î17, î20, and î22. That means that there is a
probability that these breakpoints do not exist. On the
other hand, estimates in the part covering î24–̂i26 are
not reliable. Thus there is a probability of no changes
in this region as well.

5 Concluding Remarks

Effect of measurement noise on the HR-CGH array-
based estimates of the CNVs naturally results in seg-
mental errors and jitter in the breakpoints due to typ-
ically low SNRs. Errors can be so large that medical
expert would hardly be able to arrive at correct con-
clusions about real CNVs structures irrespective of the
estimator used. Two rules of thumb for designers of
measurement equipment are thus the following: the
higher probe resolution the more segmental accuracy
and the larger segmental SNRs the lower jitter in the
breakpoints.

Because of large noise, estimates of the CNVs
may bring insufficient information to experts and must
be tested by UB and LB masks. To form such masks,
the jitter distribution must be known. We have shown
that jitter in the breakpoints can be modeled using
the discrete skew Laplace distribution if the segmen-
tal SNRs exceed unity. Otherwise, the approximation
errors can be large and more profound investigations
of jitter will be required. The UB and LB masks pro-
posed in this paper in the θ-sigma sense outline the
region within which the true changes exist with a high
probability (99.73% in the three-sigma sense). Pro-
vided the masks, information about CNVs is more
complete and sometimes can be crucial for medical
experts to make a correct decision about true struc-
ture. Testing some measurements and estimates by
the UB and LB masks has revealed large errors ex-
ceeding (30...50)% in many segments. It was also
demonstrated that jitter in some breakpoints is redun-
dantly large for making any decision about their true
locations. We finally notice that further investigations
must be focused on the jitter statistics at low SNR val-
ues that is required to sketch a more correct proba-
bilistic picture of the CNVs.
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