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Abstract:- This paper deals with the construction of piecewise analytic approximate solutions for nonlinear initial
value problems modeled by a system of nonlinear ordinary differential equations. In real world several biological
and environmental parameters in the predator-prey model vary in time. Thus, non-autonomous systems are impor-
tant to be studied. We show the effectiveness of the method for autonomous and non-autonomous predator-prey
systems. The method we have used is called the differential transformation method which has some suitable prop-
erties such as accuracy, low computational cost, easiness of implementation and simulation as well as preserving
properties of the exact theoretical solution of the problem. The accuracy of the method is checked by numerical
comparison with fourth-order Runge-Kutta results applied to several predator-prey examples.

Key–Words: Differential transformation method, Population dynamics, Nonlinear differential system, Predator-
prey system.

1 Introduction

The modeling biological systems is commonly based
on systems of nonlinear ordinary differential equa-
tions. Mathematical models and their simulation are
important to understand qualitatively and quantita-
tively these systems. The study of biological phe-
nomena such as harvesting of populations and avail-
ability of biological resources is relevant for the eco-
logical life and for several human activities such as
forestry, fishery and others. Therefore, it is impor-
tant to investigate models that include interactions be-
tween species. The predator-prey models are one of
the most well known and were constructed indepen-
dently by Lotka(1925) and Volterra(1926) [1]. There

are many different kind of predator-prey models in
the mathematical ecology literature including continu-
ous and discrete models, and several works have been
devoted to investigate these models regarding peri-
odicity, global stability boundedness and others fea-
tures [2]. It is important to remark that realistic mod-
els often require the effects of the changing environ-
ment giving rise to non-autonomous nonlinear ordi-
nary differential equation systems. The aim of this
paper is to investigate numerically the reliability and
convenience of the differential transformation method
(DTM ) applied to predator-prey models governed by
the following two-dimensional system of nonlinear
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ordinary differential equations{
ẋ1(t) = f(x1(t), x2(t), a1(t), · · ·, an(t)),
ẋ2(t) = g(x1(t), x2(t), b1(t), · · ·, bn(t)),

(1)

where x1(t), x2(t) represent the population densities
at time t of prey and predator respectively and the
positive functions ai(t), bi(t) generally give relative
measures of the effect of dimensional parameters [1].
Due to the structure of the functions f and g, the so-
lution of system (1) is not trivial, therefore it is nec-
essary to develop reliable numerical techniques to ob-
tain their numerical solutions. The numerical solu-
tion of predator-prey models has been treated in sev-
eral papers in order to investigate numerically the re-
liability and efficiency of different methods. For in-
stance in [3, 4, 5, 6] the Adomian method has been
tested numerically using a predator-prey model. Ad-
ditionally, in [7] He’s variational method was studied
and applied to a predator-prey model. The nonstan-
dard finite difference schemes has been applied also
to the predator-prey model [8]. In [9] the DTM was
applied to a predator-prey model with constant coeffi-
cients over a short time horizon. However in this pa-
per, in order to illustrate the accuracy of the method,
DTM is applied to autonomous and non-autonomous
predator-prey models over long time horizons and the
obtained results are compared with the fourth-order
Runge-Kutta method, and when are available with the
analytical exact solutions. It is shown that the DTM
is easy to apply and its numerical solutions preserve
the properties of the continuous models, such as pe-
riodic behaviors. In addition this method is applied
directly to the nonlinear ordinary differential equa-
tion system without requiring linearization, discretiza-
tion or perturbation. The DTM was first proposed
by Zhou [10], and its main application therein is to
solve initial value problems in electrical circuits and
has been applied to solve a variety of problems that
arise from differential equations [11, 12, 13, 14]. The
Michaelis-Menten equation that describes the rate of
depletion of the substrate of interest has been solved
using the DTM in [15] and authors show that the
DTM is accurate and easy to apply for this particular
differential equation.

The DTM develops from the differential equa-
tion system with initial conditions a recurrence equa-
tion system that finally leads to the solution of a sys-
tem of algebraic equations as coefficients of a power
series solution. It is important to remark that the
DTM does not evaluate the derivatives symbolically;
instead, it calculates the relative derivatives by an it-
eration procedure described by the transformed equa-
tions obtained from the original equations using dif-
ferential transformation. In order to improve the rate

of convergence and improve the accuracy of the cal-
culations, it is convenient to divide the entire domain
H into n sub-domains. The main advantage of do-
main split process is that only a few series terms are
required to compose the solution in a small time in-
terval Hi. Thus, the system of differential equations
can then be solved in each sub-domain. Thus, after
the recurrence equation system has been solved, each
solution xj(t) can be obtained by a finite-term Taylor
series. Unlike the conventional high order Taylor se-
ries method which requires a lot of symbolic compu-
tations, the DTM is performed iteratively [14]. How-
ever, the method have some drawbacks, which can be
overcome by splitting the domain region into subinter-
vals in order to obtain accurate solutions [12, 14]. In
addition, some complex nonlinear models are difficult
to be solved by the DTM . In [16] it has been pro-
posed a new formula for these complex models. The
DTM has been applied recently to integral equation
systems [17]. Furthermore, the DTM was introduced
recently in the area of random differential equations
[18]. In particular has been used to solve the Riccati
random differential equation in [19].

The number of sub-domains n has to be chosen in
an appropriate form in order to obtain accurate solu-
tions. Similar methods choose the value of n and the
number of terms to obtain a given admissible global
error given a priori. Other related works have pro-
posed a strategy with few terms in each subinterval
and a high number of sub-domains n [20]. Here,
we follow a similar strategy only to show the ef-
fectiveness of the DTM for autonomous and non-
autonomous predator-prey systems.

Since, several biological and environmental pa-
rameters in the predator-prey model vary in time, non-
autonomous systems are important to be studied. In
this paper three predator-prey models are considered
in order to study numerically the reliability of the
DTM applied to these type of models.

The organization of this paper is as follows. In
Section 2, basic definitions of the DTM and some ba-
sic properties of the DTM are presented. Section 3 is
devoted to present the numerical results of the applica-
tion of the method to different predator-prey systems.
Comparisons between the DTM and the fourth-order
Runge-Kutta (RK4) solutions are shown. Finally in
Section 4 discussion and conclusions are presented.
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2 Basic definitions and properties
of differential transformation
method

For clarity of presentation of the DTM , we summa-
rize the main issues of the method that may be found
in [10].

Definition 1 Let x(t) be analytic in the time domain
D, then it has derivatives of all orders with respect to
time t. Put

φ(t, k) =
dkx(t)

dtk
, ∀t ∈ D. (2)

For t = ti, then φ(t, k) = φ(ti, k), where k be-
longs to a set of non-negative integers, denoted as the
K domain. Thus, (2) can be rewritten as

X(k) = φ(ti, k) =

[
dkx(t)

dtk

]
t=ti

(3)

where X(k) is called the spectrum of x(t) at t = ti.

Definition 2 Suppose that x(t) is analytic in the time
domain D, then it can be represented as

x(t) =

∞∑
k=0

(t− ti)
k

k!
X(k). (4)

Thus, the equation (4) represents the inverse transfor-
mation of X(k).

Definition 3 If X(k) is defined as

X(k) = M(k)

[
dkx(t)

dtk

]
t=ti

(5)

where k ∈ Z ∪ {0}, then the function x(t) can be
described as

x(t) =
1

q(t)

∞∑
k=0

(t− ti)
k

k!

X(k)

M(k)
, (6)

where M(k) ̸= 0 and q(t) ̸= 0. M(k)is the weighting
factor and q(t) is regarded as a kernel corresponding
to x(t).

Note, that if M(k) = 1 and q(t) = 1, then
Eqs. (3) and (4) and (5) and (6) are equivalent.
From the definitions above, we can see that the
concept of differential transformation is based upon
the Taylor series expansion. Note that, the orig-
inal functions are denoted by lowercase and their
transformed functions are indicated by uppercase let-
ter. The DTM can solve a system of differen-
tial equations of the form ẋ(t) = f

(
x(t), t

)
t ∈

[a, b], with the initial condition x(a) = xa, where
x(t) = (x1(t), x2(t), ..., xj(t), ..., xn(t))T (T trans-
posed) and that are well-posed. Thus, applying the
DTM , a system of differential equations in the do-
main of interest can be transformed to a system of
algebraic equations in the K domain and each xj(t)
can be obtained by a finite-term Taylor series plus a
remainder, i.e.,

xj(t) =
1

q(t)

n∑
k=0

(t− ti)
k

k!

Xj(k)

M(k)
+Rn+1

=

n∑
k=0

(
t

H

)k

Xj(k) +Rn+1, (7)

where

Rn+1 =

∞∑
k=n+1

(
t

H

)k

Xj(k), and

Rn+1 → 0, as n → ∞.

For practical problems of numerical simulation, the
computation interval [0,H] is not always small, and
to accelerate the rate of convergence and improve the
accuracy of the calculations, it is convenient to divide
the entire domain H into n sub-domains. The main
advantage of domain split process is that only a few
Taylor series terms are required to compose the solu-
tion in a small time interval Hi, where H =

∑n
i=1Hi.

It is important to remark that, Hi can be chosen ar-
bitrarily small if it is necessary. Thus, the system
differential equation can then be solved in each sub-
domain. The approach described above is known as
the D spectra method. Considering the function xj(t)
in the first sub-domain (0 ≤ t ≤ t1, t0 = 0), the one-
dimensional differential transformation is given by

xj(t) =
n∑

k=0

(
t

H0

)k

Xj
0(k), (8)

where Xj
0(0) = xj0(0). Therefore, the differential

transformation and system dynamic equations can be
solved for the first sub-domain and Xj

0 can be solved
entirely in the first sub-domain. The end point of func-
tion xj(t) in the first sub-domain is xj1, and the value
of t is H0. Thus, xj1(t) is obtained by the DTM as

xj1(H0) = xj(H0) =

n∑
k=0

Xj
0(k). (9)

Since that xj1(H0) represents the initial condition in
the second sub-domain, then Xj

1(0) = xj1(H0). In
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this way the function xj(t) can be expressed in the
second sub-domain as

xj2(H1) = xj(H1) =
n∑

k=0

Xj
1(k). (10)

In general form, the function xj(t) can be expressed
in the i− 1 sub-domain as

xji (Hi) = xji−1(Hi−1) +
n∑

k=1

Xj
i−1(k) = Xj

i−1(0)

+
n∑

k=1

Xj
i−1(k), i = 1, 2, ..., n.

Using the D spectra method described above, the
functions xj(t) can be obtained throughout the entire
domain, for all j.

The operation properties of the differential
transformation

Let us consider q(t) = 1, M(k) = Hk

k! and x1(t),
x2(t), x3(t) three uncorrelated functions with time
t and X1(k), X2(k), X2(k) are the corresponding
transformed functions. Let c1, c2 ∈ R, in Table 1 we
show a list of the transformation properties that are
useful in this paper.

Table 1: Differential transformation conversion (i de-
notes the i-th split domain)

Original function ⇐⇒ Transformed function

c1x1(t)± c2x2(t) c1X1(k)± c2X2(k)

c1 c1δ(k)

x1(t)x2(t) X1(k) ∗X2(k)=
k∑

l=0
X1(l)X2(k − l)

x1(t)x2(t)x3(t)
k∑

k2=0

k2∑
k1=0

X3(k1)X2(k2 − k1)X3(k − k2)

z(t) = x1(t)/x2(t) Z(k) =
X1(k)−

k−1∑
l=0

Z(l)X2(k−l)

X2(0)

dnx1(t)
dtn

(k+1)(k+2)···(k+n)
Hn

i
X1(k + n)

x1(t) = cos(ωt+ α)
(Hiω)k

k!
cos

(
πk
2

+ α+ 2πiHi

)

3 Numerical solutions on predator-
prey systems

In this section, the differential transformation tech-
nique is applied to solve three different nonlinear dif-
ferential equations systems representing predator-prey
models. Thus, from the properties given in Section 2,
the corresponding spectrum can be determined for the
system (1) as

X1(k + 1) =

Hi

k + 1
F

(
X1(k), X2(k), A1(k), · · ·, An(k)

)
,

X2(k + 1) =

Hi

k + 1
G

(
X1(k), X2(k), B1(k), · · ·, Bn(k)

)
,

(11)
where the initial conditions are given by X1(0) =
x1(0) and X2(0) = x2(0).

3.1 Example 1

The first model presents the problem in which some
rabbits and foxes are living together, where foxes eat
the rabbits and rabbits eat clover, and there is an in-
crease and decrease in the number of foxes and rab-
bits [3]. The model is represented analytically by the
following ordinary differential equation system:

ẋ1(t) = a1x1(t)− a2x1(t)x2(t),

ẋ2(t) = −b1x2(t) + b2x1(t)x2(t). (12)

Thus, using the properties of the DTM the spectrum
of system (12) is given by

X1(k + 1) =
Hi

k + 1

{
a1X1(k)

− a2

k∑
k1=0

X1(k1)X2(k − k1)

}
,

X2(k + 1) =
Hi

k + 1

{
−b1X2(k)

+ b2

k∑
k1=0

X1(k1)X2(k − k1)

}
. (13)

This is a classic predator-prey system with peri-
odic solution if a1b1 > 0. In Figure 1 it can be seen
that the DTM reproduces the correct periodic behav-
ior of the prey and predator populations. In Table 2 we
present the absolute differences between the 3-term
DTM solutions on time steps h = 0.1, 0.001 and

WSEAS TRANSACTIONS on BIOLOGY 
and BIOMEDICINE Gilberto Gonzalez-Parra, Abraham J. Arenas, Myladis R. Cogollo

E-ISSN: 2224-2902 82 Issue 2, Volume 10, July 2013



the fourth-order Runge-Kutta solution on time step
h = 0.001. These results show the numerical consis-
tency of the DTM . Furthermore, as expected the ac-
curacy of the solution is increased when the time step
is decreased. For the time step size h = 0.001, DTM
and Runge-Kutta present very well concordance.

Fig. 1: Dynamics of the model (12), when a1 = 1,
a2 = 1, b1 = 1, b2 = 1, x1(0) = 3 and
x2(0) = 2. DTM solution is obtained using 3 terms
and Hi = 0.2.

3.2 Example 2

The second model considers the problem that the
predator in the model is not of commercial impor-
tance. The prey is subjected to constant effort har-
vesting and the harvesting activity does not affect the
predator population directly. Predator population is
indirectly reduced by the availability of the prey to
the predator. Furthermore a simple logistic growth for
prey population is assumed [6]. This model is repre-
sented by the following system,

ẋ1(t) = x1(t)(1− x1(t))− bz(t)− rx1(t), (14)

ẋ2(t) = cz(t)− ex2(t), (15)

where

z(t) =
x1(t)x2(t)

x1(t) + x2(t)
.

From (14) and using the properties of the DTM

Table 2: Comparison of the solutions obtained with
3-term DTM (Hi = 0.1, 0.001) and RK4 method
(h = 0.001) for system (12).

∆ = |DTM0.1 −RK40.001|

Time ∆x1 ∆x2

0.00 .0000E + 00 .0000E + 00

1.00 .4076E − 02 .1069E − 02

2.00 .4545E − 02 .1041E − 02

3.00 .4226E − 02 .7633E − 03

4.00 .3726E − 02 .4890E − 03

5.00 .3240E − 02 .2857E − 03

6.00 .2833E − 02 .1562E − 03

7.00 .2510E − 02 .8176E − 04

8.00 .2251E − 02 .4168E − 04

9.00 .2035E − 02 .2094E − 04

10.00 .1849E − 02 .1044E − 04

∆ = |DTM0.001 −RK40.001|

Time ∆x1 ∆x2

0.00 .0000E + 00 .0000E + 00

1.00 .4421E − 04 .1155E − 04

2.00 .4887E − 04 .1111E − 04

3.00 .4524E − 04 .8067E − 05

4.00 .3982E − 04 .5121E − 05

5.00 .3465E − 04 .2970E − 05

6.00 .3037E − 04 .1615E − 05

7.00 .2699E − 04 .8417E − 06

8.00 .2427E − 04 .4280E − 06

9.00 .2200E − 04 .2147E − 06

10.00 .2003E − 04 .1069E − 06

WSEAS TRANSACTIONS on BIOLOGY 
and BIOMEDICINE Gilberto Gonzalez-Parra, Abraham J. Arenas, Myladis R. Cogollo

E-ISSN: 2224-2902 83 Issue 2, Volume 10, July 2013



Fig. 2: Dynamics of the model (14), when b = 0.8,
c = 0.2, e = 0.5, r = 0.9, x1(0) = 0.5 and
x2(0) = 0.3. DTM solution is computed using 3
terms and Hi = 0.1.

one gets the recurrence system,

X1(k + 1) =
Hi

k + 1

{
(1− r)X1(k)− bZ(k)

−
k∑

k1=0

X1(k1)X1(k − k1)

}
,

X2(k + 1) =
Hi

k + 1

{
−cZ(k)− eX2(k)

}
where

Z(k) =
X1(k)X2(0)

X1(0) +X2(0)

+

k−1∑
k1=0

((
X1(k1) + Z(k1)

)
X2(k − k1)

X1(0) +X2(0)

+
Z(k1)X1(k − k1)

X1(0) +X2(0)

)
,

for k ≥ 1 and,

Z(0) =
X1(0)X2(0)

X1(0) +X2(0)
.

In Figure 2 a noteworthy observation is that prey
and predator species can become extinct simultane-
ously for some values of the parameters, regardless of
the initial values. The obtained solution with DTM
reproduces the correct dynamics of model (14). In Ta-
ble 3 we present the absolute differences between the

3-term DTM solutions on time steps h = 0.1, 0.001
and the fourth-order Runge-Kutta solution on time
step h = 0.001. These results show well concordance
between both methods. As in the previous example
the accuracy of the solution is increased when the time
step is decreased. For the time step size h = 0.001,
DTM and fourth-order Runge-Kutta presents very
well concordance.

3.3 Example 3

The last considered model is a Lotka-Volterra model
represented by a nonautonomous ordinary differential
equation system. In this model time varying values
for the growth rate of the prey, the efficiency of the
predator is ability to capture prey, the death rate of
the predator and the growth rate of the predator are
considered. It is important to remark that since in this
problem coefficients are time varying careful attention
must be paid in order to obtain the correct recurrence
equation system of the model. This model has also
been used to test power series, Adomian and hybrid
methods in other works [4, 7]. The aforementioned
model is described by the following ordinary differ-
ential equation system,

ẋ1(t) = a1(t)x1(t)− a2(t)x1(t)x2(t),

ẋ2(t) = −b1(t)x2(t) + b2(t)x1(t)x2(t). (16)

Thus, the spectrum of (16) is given by

X1(k + 1) =
Hi

k + 1

{ k∑
k1=0

A1(k1)X1(k − k1)

−
k,k1∑

k1,k2=0

A2(k1)X1(k1 − k2)X2(k − k1)

}
,

X2(k + 1) =
Hi

k + 1

{
−

k∑
k1=0

B1(k1)X2(k − k1)

+

k,k1∑
k1,k2=0

B2(k1)X1(k1 − k2)X2(k − k1)

}
.

For the numerical simulations of the model (16),
we take a1(t) = 4 + tan(t), a2(t) = exp(2t),
b1(t) = −2, b2(t) = cos(t), x1(0) = −4 and
x2(0) = 4. The exact solution for these coefficients
is x1(t) = − 4

cos(t) , x2(t) = 4 exp(−2t). In Figure 3
it can be observed that the DTM reproduce the cor-
rect dynamic behavior of predator-prey system (16)
and the obtained solution has well accuracy. In Ta-
ble 4 it is presented the absolute differences between
the analytical and the DTM (5 and 10 terms) solution.
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Table 3: Comparison of the solutions obtained with
3-term DTM (Hi = 0.1, 0.001) and RK4 method
(h = 0.001) for system (14).

∆ = |DTM0.1 −RK40.001|

Time ∆x1 ∆x2

0.00 .0000E + 00 .0000E + 00

1.00 .4076E − 02 .1069E − 02

2.00 .4545E − 02 .1041E − 02

3.00 .4226E − 02 .7633E − 03

4.00 .3726E − 02 .4890E − 03

5.00 .3240E − 02 .2857E − 03

6.00 .2833E − 02 .1562E − 03

7.00 .2510E − 02 .8176E − 04

8.00 .2251E − 02 .4168E − 04

9.00 .2035E − 02 .2094E − 04

10.00 .1849E − 02 .1044E − 04

∆ = |DTM0.001 −RK40.001|

Time ∆x1 ∆x2

0.00 .0000E + 00 .0000E + 00

1.00 .4421E − 04 .1155E − 04

2.00 .4887E − 04 .1111E − 04

3.00 .4524E − 04 .8067E − 05

4.00 .3982E − 04 .5121E − 05

5.00 .3465E − 04 .2970E − 05

6.00 .3037E − 04 .1615E − 05

7.00 .2699E − 04 .8417E − 06

8.00 .2427E − 04 .4280E − 06

9.00 .2200E − 04 .2147E − 06

10.00 .2003E − 04 .1069E − 06

As it can be observed, the accuracy of the DTM in-
crease when number of terms are increased, as it was
expected. In this example, we increase the number of
terms since the system is nonautonomous and is more
complex. However, the computational work necessary
to solve numerically this example with the DTM is
less than the multistage Adomian method and compa-
rable to the fourth-order Runge-Kutta method.

Fig. 3: Dynamics of the model (16) using 5-term
DTM with Hi = 0.1.

4 Discussion and conclusions
In this paper, the DTM has been applied to predator-
prey nonlinear ordinary differential equations models.
In order to obtain very accurate solutions, the domain
region has been splitted in subintervals and the ap-
proximating solutions are obtained in a sequence of
time intervals. The DTM develops from the differ-
ential equation system with initial conditions a recur-
rence equation system that finally leads to the solu-
tion of a system of algebraic equations as coefficients
of a power series solution. Moreover, the DTM does
not evaluate the derivatives symbolically and this give
advantages over other methods such as Taylor, power
series or Adomian method.

In order to illustrate the efficiency and reliabil-
ity of the DTM three different predator-prey models
were considered. The obtained results of the present
method are in excellent agreement with those obtained
by the fourth-order Runge-Kutta method and with the
analytical solutions when these were available. The
calculated results show the reliability and efficiency of
the method. The method has the advantage of giving a
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Table 4: Absolute errors of the DTM (5-term and 10-
term) solutions to system (16).

Time |DTMx1 − Exact| |DTMx2 − Exact|

5-term 5-term

0.00 .0000E + 00 .0000E + 00

0.10 .1761E − 07 .1761E − 07

0.20 .4259E − 07 .4259E − 07

0.30 .8947E − 07 .8947E − 07

0.40 .1925E − 06 .1925E − 06

0.50 .4483E − 06 .4483E − 06

0.60 .1174E − 05 .1174E − 05

0.70 .3627E − 05 .3627E − 05

0.80 .1422E − 04 .1422E − 04

0.90 .8145E − 04 .8145E − 04

1.00 .9237E − 03 .9237E − 03

Time |DTMx1 − Exact| |DTMx2 − Exact|

10-term 10-term

0.00 .0000E + 00 .0000E + 00

0.10 .4440E − 15 .4440E − 15

0.20 .3996E − 14 .3996E − 14

0.30 .1998E − 13 .1998E − 13

0.40 .8792E − 13 .8792E − 13

0.50 .4054E − 12 .4054E − 12

0.60 .2246E − 11 .2246E − 11

0.70 .1668E − 10 .1668E − 10

0.80 .1909E − 09 .1909E − 09

0.90 .4308E − 08 .4308E − 08

1.00 .3257E − 06 .3257E − 06

functional form of the solution within each time inter-
val. Furthermore, the analytical form allows to study
in a easier way the effect that biological parameters
have on the dynamics of predators and preys. This is
not possible in purely numerical techniques like the
Runge-Kutta method, which provides solution only at
discrete times.

Based on the numerical results it can be con-
cluded that the DTM is a mathematical tool which
enables to find accurate analytical solutions for
predator-prey models represented by nonlinear ordi-
nary differential equation systems. Furthermore, high
accuracy can be obtained without using large com-
puter power.
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