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Abstract: A brief introduction of algorithms for the statistical identification of markers from a set of spectral
courses is the topic of our paper. Partial results, demonstrated by pictures, are very promising. The proposed
algorithm is generally applicable for an arbitrary problem of marker identification by tests in a set of quantifying
dependences.

Key–Words:Marker, biomarker, regression, tests of hypotheses, software

1 Introduction
The rapid development of genomic and proteomic
methods led to an enormous increase in experimen-
tal data. To be able to extract answers to important
questions from these data, it is necessary to find an
effective bio-statistical method for their processing.
Application of advanced methodologies is necessary
to give us more detailed, structured information.

A (dependence) biomarker, or (dependence) bi-
ological marker, is a (dependence) indicator of a bi-
ological state. It is a characteristic that is objec-
tively measured and evaluated as a (dependence) indi-
cator of normal biological processes, pathogenic pro-
cesses, or pharmacologic (dependence) responses to
a therapeutic intervention. It is used in many scien-
tific fields. The presence and concentration of certain
biomarker molecules is then identified and measured.
That is why our proposed algorithm based exclusively
on classical statistical decision making with the help
hypotheses testing may facilitate prediction of certain
clinical aspects of diseased patients.

Medical and biological research often deals with
miscellaneous dependences. A particular experimen-
tal problem in which dependences are dealt with is

then, in terms of the previous paragraph, described by
the means of regression functionsη 1(x), η 2(x), . . . ,
ηM (x) [13], [14].

Very often, the problem is specified in such a way
that the first group of experimental dependences mod-
els the data measured inthe group of diseased patients
and the second group of experimental dependences
models the data measured inthe group of healthy pa-
tients. Spectral methodsrepresent a large class of
physical methods which are based ontwo dimensional
dependences. We denote the group of spectral de-
pendences which model the data of the type“group
of diseased patients“by the regression functions
diseasedη 1(x), diseasedη 2(x), . . . , diseasedηMdiseased

(x)
and the group of spectral dependences which model
the data of the type“group of healthy patients“by the
regression functionshealthyη 1(x), healhyη 2(x), . . . ,
healthyηMhealthy

(x). The quantityx is a real indepen-
dent variable that may represent time, effective mass
in the case of MS1, etc. Then the total number of de-

1mass spectroscopy; especially by the use of spectral methods,
is a monitored process that can take place in some relatively very
narrow spectral region (in relation to the whole possible magni-
tude)
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pendences or the total number of regression functions
is

M = Mdiseased +Mhealthy.

In this paper,a new regression algorithm for sta-
tistical identification of markers from a set of spec-
tral coursesis described. There aredefinition mat-
ters presented in section2. There isa model “set
of multiple linear regressions”presented in section
2.1 which serves as an initial basis of whole algo-
rithm. Section2.2 deals with a more narrow model
for our purpose - model“a set of orthogonal poly-
nomial regressions”, i.e., practically with model“a
set of spectral courses”. Section2.3 deals with the
newly well-established statistical tool“the definition
matrix” which simplifies the definition of various sta-
tistical tests of dependences. For the solution of the
problem, key principals are presented in section3.
Some numerical-mathematical aspects of used algo-
rithms (and their solution with the help of“highly ef-
fective algorithm for orthogonalization”) are referred
to in section3.1. Section3.2, named“identification
of markers by simultaneous tests in a set of quantify-
ing dependences”, deals with compliance to the fun-
damentalbiophysical principlesat the algorithm ap-
plication. There areexperimental resultspresented in
section4. Description of“biomarker pictorial exem-
plifications on real data”is presented in section4.1.
Section4.2 deals with very promising results ofiden-
tifying biomarker areas in SELDI-TOF mass spectra
of data which has been obtained from 10 patients suf-
fering from renal cell carcinoma.

2 Def nitions

2.1 The model “A set of multiple linear re-
gressions”

The beginning of the algorithmic study described be-
low is based on following test criterion:

λF =
(r −Rβ̂)′(RCR′)−1(r −Rβ̂)/J

(y −Xβ̂)′(Σ−1
⊗ I) (y −Xβ̂)/ (MT −K)

∼F(J, MT−K),

C = [X ′(Σ−1
⊗ I)X]−1 ,

(1)
for the standard statistical model called the
“Disturbance-Related Sets of Regression Equa-
tions”
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(or brieflyy = Xβ + e) for the null hypothesis

H0 : Rβ = r, (3)

where the form of theR(J×K)matrix of constants and
the form of ther(J×1) vector of constants in rela-
tion (3) concretizethe null hypothesisH0. Dimen-
sion K of regression vectorβ is given as a sum of
single regression vectorsβ1, β2, . . . ,βM , i.e. K =
ΣM
i=1(Ki + 1). The covariance matrixΩ of the joint

disturbance vectore is given byΩ = Σ ⊗ I and so
Ω

−1 = Σ
−1

⊗ I [6], [12].
It is important that it is possible to test arbitrary

linear mutual relations among particular multiple lin-
ear regressions in (2) with the help of the test criterion
(1).

2.2 The model known as “A set of orthogonal
polynomial regressions”

It is necessary to approach model (2) more narrowly
for our purpose (namely)“the statistical identification
of markers from a set of spectral courses”. Every mul-
tiple linear regression in model (2) is interpreted as
an orthogonal polynomial regression describing one
appropriate spectral course. Thus, we can test (with
the help of (3) appropriately modified) arbitrary lin-
ear mutual relations among particular spectral courses
[13], [14].

2.3 The def nition matrix

When we summarize the values of regression func-
tions (polynomial regressions) into the vector

η (x)=(η 1(x), η 2(x), . . . , ηM (x))′, (4)

we can formally transcribe a null hypothesis (3) into
the form

H0 : kη (x) = r (x) ,

where an abscissax is the arbitrary value of used spec-
tral independent variable and

k =











k1, 1 k1, 2 . . . k1, M

k2, 1 k2, 2 . . . k2, M
...

...
. ..

...
kJ, 1 kJ, 2 . . . kJ, M











is the so calleddefinition matrix[14]. Definition ma-
trix k expresses generally all conceivable linear mu-
tual relations among regression functions (4).
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3 Main idea

3.1 A highly effective algorithm for orthogo-
nalization

Computational practice showed that the currently used
Gram-Schmidt’s polynomials [5], [19] are not able to
provide satisfactory measure of orthogonality. For our
purpose – the polynomial approximation of a set of
spectral courses – we had to use special, outstandingly
efficient algorithms [1], [5], [7] - [10], [16], [18].

3.2 Identif cation of markers using simulta-
neous tests in a set of quantifying depen-
dences

As substantial limitation while using the“Test of the
Hypothesis That One Group of Dependences is Con-
sistent with Another Group of Dependences”[14] is
that the null hypothesisH0 : k(J×M)η(M×1)(x) =

r(J×1)(x) can be rejected in favour of the double-
sided alternative that at leastone of the J linear re-
lationsk(J×M)η(M×1)(x) = r(J×1)(x) is not valid.
However, the biophysical principlesof the problem
force the experimenter to assume that changes in
the concentration of a given biomarker arenatu-
ral, i.e., complete. It means that the experimenter
would need to reject the null hypothesisH0 :
k (J×M)η (M×1)(x) = r(J×1)(x) in favour of the
double-sided alternative that allJ linear relations
k (J×M)η (M×1)(x) = r(J×1)(x) together are not
valid. Resulting from these necessities is the fact that
mutual conformity is availableonly and onlyin the
cases where the number of tested linear relations is
J = 1.

It emerges from these reasons that instead of test-
ing one null hypothesisH0 : k (J×M)η (M×1)(x) =

r(J×1)(x), we must testκ simultaneous null hypothe-

sesHj
0 : kj

(1×M)η (M×1)(x) = r
j

(1×1)(x) = r
j (x),

where the index for thejth simultaneous null hypoth-
esis isj = 1, 2, . . . , κ. The size of the numberκ, the
concrete form ofdefinition row vectorskj

(1×M) and

elementsr j (x) is then dependent on whether our data
are paired, unpaired or combined. This means that
(for a given abscissax) the appropriatesimultaneous
null hypotheses are rejected when un-equalities

pj(x) < α/κ, j = 1, 2, . . . , κ,
p(x) = pj′(x) = maxj=1,2,...,κ pj(x) < α/κ,

(5)
are simultaneously valid. Along with this condition,

the appropriatepower analysis-un-equalities

1− βj(x) ≥ convention limit , j = 1, 2, . . . , κ,
1− β(x) = 1− βj′(x),

(6)
must be fulfilled.

The requested power of the test (in other words
the convention limit) depends on the test significance
levelα: 1− βreq(α = 0.05) = 0.8 and1− βreq(α ≤

0.01) = 0.95 [3], [4].
For test significance levelsα greater thanα =

0.05, the requested powers of the test are1−βreq(α =
0.1) = 0.6125, possibly1−βreq(α = 0.2) = 0.2375.

4 Experiments

4.1 Pictorial exemplif cations of real data,
Figures 1-9

The potential biomarker areaswere obtained by the
proposed data-treatment of the mass spectral data,
measured with the aim ofidentifying renal cell carci-
noma biomarkers. Two experimental groups (diseased
and healthy, i.e. red and blue) are demonstrated in fig-
ures. Pentagrams “⋆” : discrete courses of the mea-
sured (renal cell carcinoma)spectrum; pentagrams
“⋆”: discrete courses of the measured (not from renal
cell carcinoma) spectrum; solidlines: statistical esti-
mations of the courses offunction dependencesbased
on the experimental courses of “⋆” and “⋆”.

Conventional decisionmaking conditions (5) and
(6) are satisfied in the whole measurement range at all
the 1st-9th figures. The physical unit of the indepen-
dent variable (effective mass) in all pictures is Dal-
ton. The physical unit of the dependent variable (in-
tensity of mass-spectrum) in all pictures is as a %. Ap-
propriate potential biomarker areas are then located
around thex-ordinates of appropriate dependent vari-
able maximums.
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Figure 1. See very detail comments in the section “Picto-
rial exemplificationsof real data, Figures 1-9”.
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Figure 2. See very detail comments in the section “Picto-
rial exemplificationsof real data, Figures 1-9”.
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Figure 3. See very detail comments in the section “Picto-
rial exemplificationsof real data, Figures 1-9”.
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Figure 4. See very detail comments in the section “Picto-
rial exemplificationsof real data, Figures 1-9”.
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Figure 5. See very detail comments in the section “Picto-
rial exemplificationsof real data, Figures 1-9”.
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Figure 6. See very detail comments in the section “Picto-
rial exemplificationsof real data, Figures 1-9”.
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Figure 7. See very detail comments in the section “Picto-
rial exemplificationsof real data, Figures 1-9”.
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Figure 8. See very detail comments in the section “Picto-
rial exemplificationsof real data, Figures 1-9”.
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Figure 9. See very detail comments in the section “Picto-
rial exemplificationsof real data, Figures 1-9”.

4.2 Identifying biomarker areas in SELDI-
TOF mass spectra

A large set of (normalized) mass spectral data, mea-
sured with the aim ofidentifying renal cell carcinoma
biomarkers, was subjected to the algorithm described
above. A group of data was obtained from 10 patients
suffering from renal cell carcinoma. One group of
data was obtained from renal cell carcinoma tissue,
the second group of data was obtained from the same
patients but from healthy (i.e. not renal cell carci-
noma) tissue. Naturally,the paired versionof the pro-
posed algorithm was used here. Spectra were divided
into segments containing 200 points. The findings
of the alreadydiscovered biomarker“αB-crystallin”2

[11] by the proposed algorithmwas confirmed. The
proposed algorithm isvery sensitive, because addi-
tional potential biomarker areashave been found. It
managed to find at least 12 cases of otherbiomarker

2Ciphergen-software [2]

areas. See figures 1-93.

5 Discussion and conclusions

There is no doubt at present that computerized tech-
nologies in medicine and biological research, e.g. pro-
teomics and genomics, need new approaches. This pa-
per deals with“The Regression Algorithm for Statis-
tical Identification of Markers From a Set of Spectral
Courses”in cases where data error disturbances have
a normal distribution.

The proposed algorithm works in practice very
well. At first sight, this property of the algorithm
could appear rather unexpected, considering the very
rigorous necessary requirements for the simultaneous
testing (1) of the appropriatep(x)-values.

The discovered principles are generally usable
in analogical spectroscopy studies, i.e., not only for
treatment of MS for the purpose of biomarker identifi-
cation. They are even generally applicable to the arbi-
trary problem of marker identification (used in miscel-
laneous branches of human activity) by simultaneous
tests in a set of quantifying dependences.

With the help of an appropriate mass spectra
database analysis, the proposed methodological ap-
proach will lead to the construction ofa clinic run-
ning systemwhich will allow statistical decision mak-
ing concerning suspicion of disease in patients[17],
[18].
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