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Abstract: A brief introduction of algorithms for the statistical identification of markers from a set of spectral

courses is the topic of our paper. Partial results, demonstrated by pictures, are very promising. The proposed

algorithm is generally applicable for an arbitrary problem of marker identification by tests in a set of quantifying

dependences.

Key—Words:Marker, biomarker, regression, tests of hypotheses, software

1 Introduction

The rapid development of genomic and proteomic

methods led to an enormous increase in experimen-
tal data. To be able to extract answers to important
guestions from these data, it is necessary to find an
effective bio-statistical method for their processing.

Application of advanced methodologies is necessary
to give us more detailed, structured information.

A (dependence) biomarker, or (dependence) bi-
ological marker, is a (dependence) indicator of a bi-
ological state. It is a characteristic that is objec-
tively measured and evaluated as a (dependence) indi-
cator of normal biological processes, pathogenic pro-

cesses, or pharmacologic (dependence) responses tq

a therapeutic intervention. It is used in many scien-
tific fields. The presence and concentration of certain
biomarker molecules is then identified and measured.
That is why our proposed algorithm based exclusively
on classical statistical decision making with the help
hypotheses testing may facilitate prediction of certain
clinical aspects of diseased patients.

Medical and biological research often deals with
miscellaneous dependences. A particular experimen-
tal problem in which dependences are dealt with is
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then, in terms of the previous paragraph, described by
the means of regression functions(z), n2(z), ...,
nu () [13], [14].

Very often, the problem is specified in such a way
that the first group of experimental dependences mod-
els the data measuredtime group of diseased patients
and the second group of experimental dependences
models the data measuredtire group of healthy pa-
tients. Spectral methodsepresent a large class of
physical methods which are basedta dimensional
dependences. We denote the group of spectral de-
pendences which model the data of the tygeup
of diseased patients'by the regression functions
diseasednl(w), diseasean(-r): «+ +» diseased "M giscased (35)
and the group of spectral dependences which model
the data of the typtgroup of healthy patients'by the
regression functionSecaichy”1(%), heathy?2(x), ..,
healthy IMpearny (£)- ThE quantityz is a real indepen-
dent variable that may represent time, effective mass
in the case of M etc. Then the total number of de-

'mass spectroscopy; especially by the use of spectral methods,
is a monitored process that can take place in some relatively very
narrow spectral region (in relation to the whole possible magni-
tude)
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pendences or the total number of regression functions
is
M = Mgiseased + Mhealthy-

In this paper,a new regression algorithm for sta-
tistical identification of markers from a set of spec-
tral coursesis described. There amefinition mat-
ters presented in sectio@. There isa model “set
of multiple linear regressions’presented in section
2.1 which serves as an initial basis of whole algo-
rithm. Section2.2 deals with a more narrow model
for our purpose - modela set of orthogonal poly-
nomial regressions”, i.e., practically with mod&h
set of spectral courses”. Sectiah3 deals with the
newly well-established statistical totthe definition
matrix” which simplifies the definition of various sta-
tistical tests of dependences. For the solution of the
problem, key principals are presented in section
Some numerical-mathematical aspects of used algo-
rithms (and their solution with the help tfighly ef-
fective algorithm for orthogonalization”) are referred
to in section3.1. Section3.2, named‘identification
of markers by simultaneous tests in a set of quantify-
ing dependences”, deals with compliance to the fun-
damentalbiophysical principlesat the algorithm ap-
plication. There arexperimental resultpresented in
sectiond4. Description of‘biomarker pictorial exem-
plifications on real data’is presented in sectiofl.
Sectiord.2 deals with very promising results afen-
tifying biomarker areas in SELDI-TOF mass spectra
of data which has been obtained from 10 patients suf-
fering from renal cell carcinoma.

2 Def nitions

2.1 The model “A set of multiple linear re-
gressions”

The beginning of the algorithmic study described be-
low is based on following test criterion:

___ (r—RP)(RCR)'(r—RpB)/J
(y—-XpyE'el) (y-XB)/ (MT - K)
Cc=XxX'(z"eoDnX],

~F ur-K0),

(1)
for the standard statistical model called the
“Disturbance-Related Sets of Regression Equa-
tions”

Y1 X B1 €]
Y2 X Bs €3
. = . + .
Yn Xn Bu en
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(or brieflyy = X 3 + e) for the null hypothesis

Ho . RB =T, (3)
where the form of thé? ;. xmatrix of constants and
the form of ther(;,,) vector of constants in rela-
tion (3) concretizethe null hypothesig{y. Dimen-
sion K of regression vectog is given as a sum of
single regression vectofs,;, By, ..., 3y, 1.e. K =
¥M . (K; + 1). The covariance matrif of the joint
disturbance vectoe is given by2 = ¥ ® I and so
Q'=x"1wI][6][12].

It is important that it is possible to test arbitrary
linear mutual relations among particular multiple lin-
ear regressions in (2) with the help of the test criterion

(D).

2.2 The model known as “A set of orthogonal
polynomial regressions”

It is necessary to approach model (2) more narrowly
for our purpose (namelyjhe statistical identification

of markers from a set of spectral courses”. Every mul-
tiple linear regression in model (2) is interpreted as
an orthogonal polynomial regression describing one
appropriate spectral course. Thus, we can test (with
the help of (3) appropriately modified) arbitrary lin-
ear mutual relations among particular spectral courses
[13], [14].

2.3 The def nition matrix

When we summarize the values of regression func-
tions (polynomial regressions) into the vector

77(37):(771(37)7772(95)’777M(CC))/: (4)
we can formally transcribe a null hypothesis (3) into
the form

Hy:kn(zx)=r(x),

where an abscissais the arbitrary value of used spec-
tral independent variable and

ki1 k1,2 kv, m
ko 1 ko 2 ko, v
ki1 kjo kv

is the so calledlefinition matrix[14]. Definition ma-
trix k expresses generally all conceivable linear mu-
tual relations among regression functions (4).
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3 Main idea the appropriatpower analysis-un-equalities
3.1 A highly effective algorithm for orthogo- 1= Bj(x) = convention limit, j=1,2,...,,
nalization 1—-B(z) =1-Bj(z), ©

Computational practice showed that the currently used Must be fulfilled. _
Gram-Schmidt's polynomials [5], [19] are not able to The requested power of the test (in other words
provide satisfactory measure of orthogonality. For our the convention limjtdepends on the test significance
purpose — the polynomial approximation of a set of levela: 1 — freq(a = 0.05) = 0.8 andl — freq(or <
spectral courses — we had to use special, outstandingly 0-01) = 0.95 [3], [4].

efficient algorithms [1], [5], [7] - [10], [16], [18]. For test significance levels greater tham =
0.05, the requested powers of the test Brel,qq (o =

0.1) = 0.6125, possiblyl — freq(a = 0.2) = 0.2375.
3.2 Identif cation of markers using simulta-
neous tests in a set of quantifying depen- 4 Experiments
dences

e _ _ 4.1 Pictorial exemplif cations of real data,
As substantial limitation while using thH&est of the

Hypothesis That One Group of Dependences is Con- Figures 1-9
sistent with Another Group of Dependencgs$4] is The potential biomarker areasvere obtained by the
that the null hypothesigy : k(janmx1)(z) = proposed data-treatment of the mass spectral data,
r(sx1)(7) can be rejected in favour of the double- measured with the aim adientifying renal cell carci-
sided alternative that at leaghe of the J linear re- noma biomarkers. Two experimental groups (diseased
Iationsk(JxM)n(Mxl)(x) = 7(sx1)(z) is not valid. and healthy, i.e. red and blue) are demonstrated in fig-
However, the biophysical principle®f the problem ures. Pentagrams:™ : discrete courses of the mea-
force the experimenter to assume that changes in sured (renal cell carcinomagpectrum; pentagrams
the concentration of a given biomarker anatu- “x": discrete courses of the measured (not from renal
ral, i.e., complete. It means that the experimenter cell carcinoma) spectrum; sollthes: statistical esti-
would need to reject the null hypothesH, : mations of the courses @ifinction dependencdmsed
k(7xanm sy (x) = rsx1)(z) in favour of the on the experimental courses of*“and “x”.
double-sided alternative that all linear relations Conventional decisiomaking conditions (5) and
k(JxM)n(Mxl)(x) = 7(sx1)(7) together are not (6) are satisfied in the whole measurement range at all
valid. Resulting from these necessities is the fact that the -9 figures. The physical unit of the indepen-
mutual conformity is availabl®enly and onlyin the dent variable (effective mass) in all pictures is Dal-
cases where the number of tested linear relations is ton. The physical unit of the dependent variable (in-
J =1 tensity of mass-spectrum) in all pictures is as a %. Ap-
It emerges from these reasons that instead of test- propriate potential biomarker areas are then located
ing one null hypothesig]; : k(JX]w)’r’(MXI)(;L‘) = around th_e<—ordinates of appropriate dependent vari-
r(7x1)(), we must tesk simultaneous null hypothe- able maximums. T
seng : k'j(lxM)n(Mxl)(:p) = r?lxl)(az) = ri(z), LT —
where the index for thg'" simultaneous null hypoth- R I Ao sy
esisisj = 1,2,...,x. The size of the numbey, the 2 F
concrete form ofdefinition row vectorsk%1 M) and e

,_‘
I
o

elements (z) is then dependent on whether our data
are paired, unpaired or combined. This means that
(for a given abscissa) the appropriatsimultaneous
null hypotheses are rejected when un-equalities

dependent variable
.

. 5 .

5 & &

T

©
o
T

©
T

p] (l‘) < Oé/K/’ ] = 1’ 27 e Ky 175 175 175 176 1765 177 1775 178 17es 179
ple) = py (@) = mazjiz..n ps(e) < afr
(5) Figure 1. See very detail comments in the section “Picto-
are simultaneously valid. Along with this condition, rial exemplificationsof real data, Figures 1-9”.
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dependent variable
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figure061: EXPERIMENTAL DEPENDENCES
T T T
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Figure 2. See very detail comments in the section “Picto-
rial exemplificationf real data, Figures 1-9”.

figure063: EXPERIMENTAL DEPENDENCES
T T
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Figure 3. See very detail comments in the section “Picto-
rial exemplificationf real data, Figures 1-9”.

figure107: EXPERIMENTAL DEPENDENCES
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Figure 4. See very detail comments in the section “Picto-
rial exemplificationsof real data, Figures 1-9”.
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figure143: EXPERIMENTAL DEPENDENCES
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Figure 5. See very detail comments in the section “Picto-
rial exemplificationsf real data, Figures 1-9”.

figure147: EXPERIMENTAL DEPENDENCES
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Figure 6. See very detail comments in the section “Picto-

rial exemplific

ationof real data, Figures 1-9”.

figure149: EXPERIMENTAL DEPENDENCES
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Figure 7. See
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very detail comments in the section “Picto-

rial exemplificationsof real data, Figures 1-9”.
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figure179: EXPERIMENTAL DEPENDENCES
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Figure 8. See very detail comments in the section “Picto-
rial exemplificationf real data, Figures 1-9”.

figure183: EXPERIMENTAL DEPENDENCES
T T T
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Figure 9. See very detail comments in the section “Picto-
rial exemplificationf real data, Figures 1-9”.

4.2 Identifying biomarker areas in SELDI-
TOF mass spectra

A large set of (normalized) mass spectral data, mea-
sured with the aim oidentifying renal cell carcinoma
biomarkers, was subjected to the algorithm described
above. A group of data was obtained from 10 patients
suffering from renal cell carcinoma. One group of
data was obtained from renal cell carcinoma tissue,
the second group of data was obtained from the same
patients but from healthy (i.e. not renal cell carci-
noma) tissue. Naturallyhe paired versiomwf the pro-
posed algorithm was used here. Spectra were divided
into segments containing 200 points. The findings
of the alreadydiscovered biomarkefo B-crystallin™

[11] by the proposed algorithiwas confirmed. The
proposed algorithm isery sensitive, because addi-
tional potential biomarker areabave been found. It
managed to find at least 12 cases of othiemarker

2Ciphergen-software [2]
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areas. See figures 139

5 Discussion and conclusions

There is no doubt at present that computerized tech-
nologies in medicine and biological research, e.g. pro-
teomics and genomics, need new approaches. This pa-
per deals witHThe Regression Algorithm for Statis-
tical Identification of Markers From a Set of Spectral
Courses”in cases where data error disturbances have
a normal distribution.

The proposed algorithm works in practice very
well. At first sight, this property of the algorithm
could appear rather unexpected, considering the very
rigorous necessary requirements for the simultaneous
testing (1) of the appropriaez)-values.

The discovered principles are generally usable
in analogical spectroscopy studies, i.e., not only for
treatment of MS for the purpose of biomarker identifi-
cation. They are even generally applicable to the arbi-
trary problem of marker identification (used in miscel-
laneous branches of human activity) by simultaneous
tests in a set of quantifying dependences.

With the help of an appropriate mass spectra
database analysis, the proposed methodological ap-
proach will lead to the construction @af clinic run-
ning systemvhich will allow statistical decision mak-
ing concerning suspicion of disease in patiefig],

[18].

Acknowledgements: This work was supported by

the Czech Science Foundation (grant No. P304
/10/0868) and by the European Regional Devel-
opment Fund (RECAMO; CZ 1.05/2.1.00/03.0101).
This study was supported by the programs PRVOUK
P37/01, PRVOUK P37/09 and GACR P303/12/P536.

References:

[1] Arnoldi, W.E., The principle of minimized it-
eration in the solution of the matrix eigenvalue
problem.Quart. Appl. Math.9, 17-29 (1951).

[2] Ciphergef® Biosystems, Inc., ProteinChip soft-
ware 3.1. Operation Manual (2002).

SNumbers obiomarker aeasin particular figures: f.1: 1, f.2:
1,13:1,f4: 2,1f5:1,f6: 2,1f7: 2,18: 1, f.9: 1. Notdlum-
bers of figures irheadings of particular figures (e.g. “figure063”
and the like) are order numbers of particular (200 points) original
spectral segments.

Issue 1, Volume 10, January 2013



WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Cohen, J. Statistical Power Analysifor the Be-
havioral ScienceMahwah, New Persey: "2
edn Lawrence Erlbaum (1988).

Daly, L.E., Bourke, G.J.,Interpretation and
Uses of Medical StatisticOxford: Blackwell
Science 8 edn; 276-279 (2000).

Forsythe, G.E.Generation and Use of Orthog-
onal Polynomials for Data-fitting on a Digital
Computer,J Soc Indust Appl Math5, 74-88
(1957).

Gatignon, H., Statistical Analysis of Manage-
ment Data.Kluwer Academic Publishers (New
York, Boston, Dordrecht, London, Moscow)
(2003).

Gautschi, W.,Orthogonal polynomials: com-
putation and approximation. Numerical Mathe-
matics and Scientific Computation. Oxford Sci-
ence Publications. Oxford University Press, New
York (2004).

Giraud, L., Langou, J., Rozloznik, M., On the
loss of orthogonality in the Gram-Schmidt or-
thogonalization procesComputers & Mathe-
matics with Applicationss0, 1069-1075 (2005).

Giraud, L., Langou, J., Rozloznik, M., van den
Eshof, J., Rounding error analysis of the clas-
sical Gram-Schmidt orthogonalization process.
Numer. Math. 101, 87-100 (2005).

Higham, N.J.,Accuracy and stability of nu-

merical algorithms. Second edition. Society for
Industrial and Applied Mathematics (SIAM),

Philadelphia (2002).

Holcakova, J., Hernychova, L., Bouchal, P.,
Brozkova, K., Zaloudik, J., Valik, D., Nenutil,

R., Vojtesek, B.Jdentification ofaB-crystallin,

a biomarker of renal cell carcinoma by SELDI-
TOF MS, The International Journal of Biologi-
cal Markers, Italy: Wichtig editore, 23, 1, 48-53
(2008).

Judge, G.G, Griffiths, W.E, Hill, R.C, Lutkepohl,

H., Tsoung-Chao, L.The Theory and Practice

of Econometrics]. Wiley, New York (1985).

Knizek, J., Sindelar, J., Beranek, L., \Vojte-
sek, B., Nenutil, R., Brozkova, K., Drazan, V.,
Hubalek, M. & Kubacek, L.Power function for
tests of null hypotheses on mutual linear regres-
sion functions’ relations International Journal
of Applied Mathematics & Statistics, Volume
2; Number S08; Bull. Stat. Econ., ISSN 0973-
7022. pp. 26-33 (2008).

E-ISSN: 2224-2902

40

[14]

[15]

[16]

[17]

[18]

[19]

Jiri Knizek, Ladislav Beranek, Pavel Bouchal,

Borivoj Vojtesek, Rudolf Nenutil, Pavel Tomsik
Knizek, J., Sindelar, J., Pulpan, Z., Vojtesek, B.,
Nenutil, R., Brozkova, K., Drazan, V., Hubalek,
M. & Beranek, L., Test of the Hypothesis That
One Group of Dependences is Consistent with
Another Group of Dependences, International
Journal of Applied Mathematics & Statistics,
\Volume 2; Number AO08; Bull. Stat. Econ., ISSN
0973-7022. pp. 2-18 (2008).

Knizek, J., Sindelar, J., Vojtesek, B., Bouchal,
P., Nenutil, R. & Beranek, L.ldentification

of Markers by Simultaneous Tests in a Set of
Quantifying Dependences, International Journal
of Statistics & Economics (formerly known as
the “Bulletin of Statistics & Economics”), A10,
Volume 5 [Special], Number A10. pp. 12-20
(2010).

Knizek, J., Tichy, P., Beranek, L., Sindelar, J.,
Vojtesek, B., Bouchal, P., Nenutil, R. & Dedik,
O.,Note on Generating Orthogonal Polynomials
and Their Application in Solving Complicated
Polynomial Regression Tasks, International Jour-
nal of Mathematics and Computation, ISSN
0974-570X (Online), ISSN 0974-5718 (Print),
Vol. 7; No. J10; June 2010. pp. 48-60 (2010).
Knizek, J., Sindelar, J., Vojtesek, B., Bouchal,
P., Nenutil, R., Beranek, L. & Dedik, OUsing
Markers to Aid Decision Making in Diagnostics,
International Journal of Tomography & Statis-
tics, ISSN 0973-7294 (Online), ISSN 0972-9976
(Print), W11, Volume 16, Number W11. pp. 41-
55 (2011).

Knizek, J., 2011b,Marker Statistics I.: Re-
gression analysis of dependences in medicine
and molecular biology, VDM Publishing House
Ltd., Mauritius (2011).

Ralston, A.,A First Course in Numerical Anal-
ysis, McGraw Hill Book Company, New York
(2973).

Issue 1, Volume 10, January 2013





