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Abstract: The paper investigates a dynamical model of plasmid-bearing, plasmid-free competition in the
chemostat with general specific growth rates. Based on a feedback control, global stabilization of the dynamics
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the productivity of the chemostat. Results from computer simulation are reported to illustrate the theoretical
studies.
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1 Introduction
Genetically modified organisms are recently widely
used for laboratory production of substances in
biotechnological and pharmaceutical industry. The
genetic modification is typically carried out by in-
sertion of a DNA molecule into the cell in the form
of a plasmid. These plasmid-bearing (parental) or-
ganisms are then growing in the chemostat. During
the growth process the parental cells may lose the
plasmid and revert to plasmid-free cells or cells that
contain even modified plasmids. In most cases these
revertant cells do not produce the desired product.
The process is irreversible: if a cell has lost the plas-
mid, it is not possible to acquire it again. Examples
reporting on this kind of instability for recombinant
cell strains like Escherichia coli, Bacillus subtilis,
Saccharomyces cerevisiae etc. can be found e. g. in
[16], [24], [27] and the references therein. In large-
scale production of recombinant DNA products the
instability of the plasmid cell population is a ma-
jor problem due to the great importance concerning
the efficiency of the production processes, especially
when the product is related to drug production for
human use, quality of life and ecology, cf. [15], [18],
[28].

The reason for plasmid instability during pro-
longed cultivation is not completely understood by
theoretical biologists even at present time. The in-
stability may be caused e. g. by the growth dis-
advantage of the parental cells in comparison with

their plasmid-free variants: it has been experimen-
tally validated that the plasmid-bearing cells have
at least for some substrate concentrations a lower
maximum specific growth rate than the plasmid-
free counterparts (cf. [12], [14] and the references
therein).

Lot of mathematical models are known in the
literature to describe the dynamics of recombinant
DNA in continuous culture [7], [16], [24], [30]. The
models differ in their complexity but most of them
describe the biological system in terms of com-
petition between plasmid-bearing and plasmid-free
(plasmid-modified) cells in the chemostat. The
main goal in studying the mathematical models is
to establish conditions for global asymptotic stabil-
ity of the system and for persistence of the plasmid-
bearing organism, cf. [6], [13], [27]. A useful ap-
proach for stabilization of highly unstable processes
is based on applying different type of control strate-
gies, cf. [3], [11], [20], [22], [23], [25] and the refer-
ences therein. Among them feedback control is also
a widely used technique for global stabilization [6],
[9]. Feedback control, especially when it provides
extra degrees of freedom, can also be applied to op-
timize the performance and the effectiveness of the
chemostat, cf. [9], [10], [21].

In this paper we investigate the well known
Levin-Stewart model [7], describing plasmid-
bearing plasmid-free competition in the chemostat.
The next Section 2 gives a short overview about ex-
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istence, local stability/instability and bifurcations
of the equilibrium points of the model. The new
results in the paper are given in the following two
sections. Section 3 is devoted to feedback control of
the chemostat model; there we generalize the feed-
back law from [6], [8] to the case of general specific
growth rate functions. Section 4 describes a nu-
merical iterative algorithm for optimizing the pro-
ductivity of the chemostat. Numerical results from
computer simulations are also presented through-
out the paper.

2 Preliminary results: equilibrium
points, stability and bifurcations

We consider the classical mathematical model pro-
posed in [7] which is probably the most widely stud-
ied model in the literature, see e. g. [1], [2], [6], [13],
[17], [27]. The model is described by the following
nonlinear ordinary differential equations

ṡ = u(s0 − s)− x1µ1(s)− x2µ2(s)
ẋ1 = x1 ((1− q)µ1(s)− u) (1)
ẋ2 = x2(µ2(s)− u) + qx1µ1(s),

where s(t), x1(t) and x2(t) are concentrations of
substrate, plasmid-bearing organism and plasmid-
free organism respectively, s0 is the input substrate
concentration, u is the dilution rate in the chemo-
stat, µi(s), i = 1, 2, are the specific growth rates
(uptake functions) of plasmid-bearing and plasmid-
free organism respectively, q is a constant, present-
ing the probability of plasmid loss, 0 < q < 1.

It is assumed that µi(s), i = 1, 2, are continu-
ously differentiable and bounded, with µi(0) = 0,
µi(s) > 0 for all s > 0.

It is not difficult to see that the solutions of (1)
satisfy the following properties:

Theorem 1 (cf. [6], [13]).
(a) All solutions of (1) are nonnegative and

bounded and thus exist for all t ∈ [0, +∞); more-
over, limt→∞(s(t) + x1(t) + x2(t)) = s0.

(b) lim supt→∞ s(t) ≤ s0. ¤

The last property (b) allows us to consider only
values of the substrate concentration s, such that
s ≤ s0.

In general, the number of the equilibrium points
of (1) depends on the shape of the uptake functions
as well as on the values of u and q.

The equilibrium points (of the form (s, x1, x2))
of the model are the following:

E0 = (s0, 0, 0) always exists and is called the
wash-out steady state;

E2 = (α2, 0, s0−α2), F2 = (β2, 0, s0−β2), where
α2 and β2 solve the equation µ2(s) = u;

Ee = (α1, x
e
1, x

e
2), F e = (β1, x̄

e
1, x̄

e
2), where α1

and β1 solve (1− q)µ1(s) = u and

xe
1 =

(s0 − α1)(u− µ2(α1))
µ1(α1)− µ2(α1)

,

xe
2 =

(s0 − α1)qµ1(α1)
µ1(α1)− µ2(α1)

;

x̄e
1 =

(s0 − β1)(u− µ2(β1))
µ1(β1)− µ2(β1)

,

x̄e
2 =

(s0 − β1)qµ1(β1)
µ1(β1)− µ2(β1)

.

The equilibrium F2 does not exist if µ2(s) is mono-
tone increasing (like the Monod law); also if µ1(s)
is monotone increasing then F e does not exist. It
follows from the analytical expressions of xe

i and
x̄e

i , i = 1, 2, that Ee respectively F e exists if
µ2(α1) < u respectively µ2(β1) < u holds true.
The latter inequalities imply µ2(α1) < µ1(α1) and
µ2(β1) < µ1(β1) respectively. There is no equilib-
rium point corresponding to plasmid-bearing organ-
ism only (with x1 > 0) and no plasmid-free organ-
ism (with x2 = 0). This means that the chemostat
can be operated only at a state where both popu-
lations are present [27].

Figures 1 and 2 visualize some particular cases
of mutual disposition of inhibited (like the Haldane
law [26]) uptake functions, as well as values of u
such that the equilibrium points may or may not
exist.

Figure 1. The equilibrium points Ee and F e do
exist
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Figure 2. The equilibrium F e does exist, Ee does
not exist

Stability analysis of the equilibrium points is
presented by many authors. Stephanopoulos and
Lapidos [27] are probably the first who carried out
detailed local stability analysis of the steady states
considering Monod and Haldane kinetics for the
specific growth rates of the organisms. The authors
also reached to the conclusion that both organisms
can survive if there exist ranges of substrate such
that the plasmid-bearing cells have specific growth
rate which is larger than the specific growth rate of
the plasmid-free cells; in this case we say that the
plasmid-bearing organism is a superior competitor
in the chemostat.

Global asymptotic stability of the equilibrium
points is established in [13] under the assumption
that the uptake functions are monotone increasing
for substrate concentrations s ∈ [0, s0]. Later Luo
and Hsu [17] extended the global asymptotic sta-
bility analysis in cases when (i) one of the uptake
functions exhibits inhibition and the other is unin-
hibited, (ii) the specific growth rates of both pop-
ulations are inhibited.

Figures 3 and 4 demonstrate the stability type
of equilibrium points in some particular cases of
shapes and mutual disposition of (1 − q)µ1(s) and
µ2(s). Depending on the values of u (on the vertical
axis) only the locally stable equilibrium points are
marked (on the right-hand side of each plot) in the
corresponding regions of u. For example, see Figure
3, first plot, if u is high, u > u1, then the wash-out
steady state E0 is the unique globally asymptoti-
cally stable equilibrium. If u1 < u < u2, then E0

and E2 are locally asymptotically stable; if u < u2,
then E2 is the locally asymptotically stable equi-
librium. The second plot in Figure 3 shows also a
region for u where E0, E2 and Ee can be locally

stable. It is worth to mention, that F e is always
unstable (saddle point) if it exists.

Bifurcations of the steady states with respect to
the parameter u are established in details in [1], [2].
Bifurcations may occur for example at the thresh-
old values u = u1, u = u2, see Figures 3 and 4.
There exist also Hopf bifurcation points, denoted
by solid circles in the plots.

Figure 3. Locally stable equilibria are displayed;
solid circle – Hopf bifurcation at Ee

Locating Hopf bifurcations is of great importance in
biological systems. This is due to the fact that exis-
tence of limit cycles is very often a route of chaotic
behaviour in dynamical models [19]. In [1], [2] the
authors give a condition for the existence of a Hopf
bifurcation point, namely: the model (1) can pre-

dict a Hopf point if the inequalities
d

ds
µ1(s) > 0

and
d

ds
µ2(s) < 0 at that point are simultaneously

satisfied. Further, considering the Monod and the
Haldane law as particular examples of uninhibited
and inhibited specific growth rates, the authors de-
termine a large number of regions in the parame-
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ter space of the model (including the kinetic pa-
rameters in the uptake functions) where a variety
of one-parameter local bifurcations (saddle-node,
transcritical, Hopf bifurcations) can occur.

Figure 4. Locally stable equilibria are displayed;
solid circle – Hopf bifurcation at Ee

3 Feedback control:
general uptake functions

As mentioned above, it is not possible to achieve
total efficiency of the chemostat by excluding the
plasmid-free organisms [6], [13]. The best that
can be done is to operate the chemostat in such
a way, that both populations survive. This is
possible by implementing the dilution rate u as
a feedback law, depending on the system states,
i. e. u = u(s, x1, x2). Such a feedback is proposed
in [6]. Thereby global stabilization of the model (1)
and persistence of the plasmid-bearing organisms
are proved in the case when the uptake functions
satisfy the following conditions:

Figure 5. Monotone uptake functions

(a1) µi(s), i = 1, 2, are monotone increasing, the
graphs of (1− q)µ1(s) and µ2(s) intersect once at a
point s∗ ∈ (0, s0), i. e. (1− q)µ1(s∗) = µ2(s∗) = u∗;

(a2) (1 − q)µ1(s) < µ2(s) for s ∈ (0, s∗) and
(1− q)µ1(s) > µ2(s) for s > s∗.

Condition (a2) means that for high substrate
concentration (s > s∗) the plasmid-bearing organ-
ism is a superior competitor, while for low levels
of s, s < s∗, the plasmid-free organism is supe-
rior, see Figure 5. Practical experiments show [27]
that when the plasmid-bearing organism is supe-
rior, then coexistence of both organisms is possible.

We formulate the main result of [6] in the next
theorem.

Theorem 2 [6]. Let the uptake functions µ1

and µ2 satisfy assumptions (a1) and (a2). Further

for any ε ∈ (0, u∗) and k > k∗ with k∗ =
u∗ − ε

s0 − s∗
define the following feedback

u(x1, x2) = k(x1 + x2) + ε. (2)

Then there exists an equilibrium point P =
(sp, xp

1, x
p
2) > 0 which is globally asymptotically sta-

ble for the closed-loop system (i. e. the system ob-
tained from (1) by substituting u by the feedback
u(x1, x2) form (2)) with respect to initial conditions
s(0) ≥ 0, x1(0) > 0, x2(0)) > 0. ¤

In this section we shall generalize Theorem 2 for
the case of nonmonotone uptake functions.

Denote by s∗1 and s∗2, s∗1 < s∗2, the crossing points
(if exist) of the graphs of (1 − q)µ1(s) and µ2(s);
these points satisfy the equality

(1− q)µ1(s) = µ2(s), s ∈ (0, s0]. (3)

Let us mention that according to our assump-
tion, s = 0 is always a solution of (3).
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Figure 6 visualizes two different situations of
shape and mutual disposition of inhibited uptake
functions. There exist at most two crossing points
s∗1 and s∗2 (despite s = 0) between the graphs
of (1 − q)µ1(s) and µ2(s). In the first plot the
plasmid-bearing organism is a superior competitor
for s ∈ (s∗1, s0). In the second plot the plasmid-
bearing organism is superior for s ∈ (s∗1, s∗2).

Figure 6. Inhibited uptake functions

Define further the values

u∗1 = µ2(s∗1),

u∗2 =
{

µ2(s∗2) if s∗2 < s0,
µ2(s0) if s∗2 ≥ s0;

(4)

u∗ = min{u∗1, u∗2}

and the constants

m = min
{

min
[0,s0]

d

ds
µ1(s), min

[0,s0]

d

ds
µ2(s)

}
(5)

δ =
{

u∗ + (s0 − s∗1) ·m if m < 0,
u∗ if m ≥ 0.

(6)

Assume that δ > 0. Let d ∈ [0, δ) and define the
feedback

κ(x1, x2) = k (x1 + x2) + d, (7)

where the constant k > 0 is chosen according to the
following scheme:

k-determining scheme

I. If 0 < s∗1 < s0 ≤ s∗2, define

k1 =
u∗1 − d

s0 − s∗1
;

Ia. If (1−q)µ1(s) > µ2(s) for s ∈ (0, s∗1) then
choose k < k1;

Ib. If (1 − q)µ1(s) > µ2(s) for s ∈ (s∗1, s0)
then choose k > k1;

II. If 0 < s∗1 < s∗2 < s0, define

k1 =
u∗1 − d

s0 − s∗1
, k2 =

u∗2 − d

s0 − s∗2
;

IIa. If (1 − q)µ1(s) > µ2(s) for s ∈ (s∗1, s∗2)
then choose k ∈ (k1, k2);

IIb. If (1− q)µ1(s) > µ2(s) for s ∈ (0, s∗1)∪
(s∗2, s0] then choose

k

{
< k1, if s ∈ (0, s∗1)
> k2, if s ∈ (s∗2, s

0).

Remark 1. The inequality m > 0 in (6) means
that µ1(s) and µ2(s) are monotone increasing (un-
inhibited) functions in [0, s0].

Remark 2. The assumption δ > 0 seems to be
rather restrictive but it is not. If µ1(s) and µ2(s)
are monotone increasing then δ > 0 is always satis-
fied. In the case when at least one of µ1(s), µ2(s) is
inhibited, this assumption is satisfied for all practi-
cally known specific growth rates if the input sub-
strate concentration s0 is not too large (which is
also practically the case).

Denote by Σ the closed-loop system, which is ob-
tained from (1) by substituting u by the feedback
κ(x1, x2) from (7):

ṡ = κ(x1, x2) (s0 − s)− x1µ1(s)− x2µ2(s)
ẋ1 = x1 ((1− q)µ1(s)− κ(x1, x2)) (8)
ẋ2 = x2 (µ2(s)− κ(x1, x2)) + qx1µ1(s).
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Theorem 3. Let the feedback κ(x1, x2) be de-
fined according to (7) with all constants determined
by (4)–(6) and the k-determining scheme. Then
there exists an equilibrium point Ec = (sc, xc

1, x
c
2) >

0 which is globally asymptotically stable for the
closed-loop system Σ with respect to initial con-
ditions s(0) ≥ 0, x1(0) > 0, x2(0) > 0.

Proof. The proof is similar to that of Theorem
2 (see [6]). We present below the main steps of the
proof for the case IIa; the other cases are treated
similarly. Let (s(t), x1(t), x2(t)) be any solution of
(8) starting from (s(0), x1(0), x2(0)). According to
Theorem 1(a), limt→∞(s(t) + x1(t) + x2(t)) = s0

holds true. This means that the ω-limit set of eve-
ry solution belongs to the set

Ωr =
{
(s, x1, x2) : s + x1 + x2 = s0

}
,

i. e. Ωr is positively invariant for Σ. On Ωr, the
feedback can be presented in the form

κ(x1, x2) = κ(s) = k(s0 − s) + d.

Geometrically, the coefficient k in κ(s) represents
the slope of a straight line, which is shown in Fig-
ure 7 as solid line, together with the boundary lines
(the dash-dot lines) with slopes k1 and k2.

The system Σ possesses three equilibrium points:
E0 = (s0, 0, 0);
E2 = (αc

2, 0, s0 − αc
2), where αc

2 is the unique
solution of µ2(s) = k(s0 − s) + d;

Ec = (sc, xc
1, x

c
2), where sc is the unique solution

of (1− q)µ1(s) = k(s0 − s) + d and

xc
1 =

(s0 − sc)((1− q)µ1(sc)− µ2(sc))
µ1(sc)− µ2(sc)

,

xc
2 = s0 − sc − xc

1.

Consider the restriction Σr of Σ on Ωr by replac-
ing s by s0 − x1 − x2:

ẋ1 = x1

(
(1−q)µ1(s0−x1−x2)−κ(x1, x2)

)

ẋ2 = x2

(
µ2(s0 − x1 − x2)− κ(x1, x2)

)

+ qx1µ1(s0 − x1 − x2)

(9)

within x1(0) > 0, x2(0) > 0, x1(0) + x2(0) ≤ s0.

The equilibrium points of (9) are

Er
0 = (0, 0), Er

2 = (0, s0 − αc
2), Er

c = (xc
1, x

c
2).

Denote the vector field in the right-hand side of (9)
by f(x1, x2). By calculating the Jacobian matrices
of f(x1, x2) at the three steady states Er

0 , Er
2 , Er

c ,
it follows that

Figure 7. Graphical interpretation of the choice of
k: k1 < k < k2 (first plot), k > k1 (second plot),
k < k1 (third plot). The solid lines have a slope k
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Er
0 is a repeller,

Er
2 is a saddle point (unstable),

Er
c is locally asymptotically stable (attractor).

The Butler–McGehee theorem [26] implies that Er
2

cannot belong to the ω-limit set of solutions with
positive initial conditions xi(0) > 0, i = 1, 2. Fur-
ther, the existence of nontrivial periodic solutions
for Σr can also be excluded by means of the Du-
lac criterion [26]: the divergence of the vector field

1
x1x2

f(x1, x2) is equal to

div
1

x1x2
f(x1, x2)

= − 1
x2

(
dµ1

ds
(s0 − x1 − x2) + k

)

− 1
x1

(
dµ2

ds
(s0 − x1 − x2) + k

)

−qµ1(s0 − x1 − x2)
x2

2

.

According to the choice of the constants m, δ, d and
k, we have consecutively

d < δ = u∗ + (s0 − s∗1)m ≤ u∗1 + (s0 − s∗1)m
u∗1 − d > −(s0 − s∗1)m

u∗1 − d

s0 − s∗1
> −m

k1 + m > 0
k + m > k1 + m > 0.

The last inequality leads to
d

ds
µi(s0−x1−x2)+k >

0, i = 1, 2, thus

div
1

x1x2
f(x1, x2) < 0.

Using the Dulac criterion we obtain that there
are no nontrivial periodic orbits around Er

c . The
Poincaré-Bendixon theorem [26] further implies
that the equilibrium Er

c is globally asymptoti-
cally stable for Σr. Finally, using an extension of
LaSalle’s invariance principle [4], we obtain that Ec

is globally asymptotically stable equilibrium for Σ.
¤

Numerical simulation. To demonstrate the
advantages of the feedback control, we consider a
numerical example with two Haldane uptake func-
tions

µ1(s) =
m1s

a1 + s + γ1s2
,

µ2(s) =
m2s

a2 + s + γ2s2
,

where

m1 = 1, a1 = 1, γ1 = 0.16,
m2 = 0.5, a2 = 0.015, γ2 = 0.04;

The uptake functions are visualized in Figure 3,
second plot.

Several trajectories of the open-loop system (1)
in the (x1, x2)-plane are displayed in the first plot
of Figure 8. Depending on the initial conditions, we
observe the existence of a limit cycle (Hopf bifurca-
tion) as well as of wash-out of the plasmid-bearing
organisms in the first plot. The second plot shows
the trajectories of the closed-loop system (8) with
the same initial conditions; the parameter k in the
feedback (7) is chosen in such a way that the global
attractor Ec of (8) coincides with the Hopf bifurca-
tion point of (1) (the solid circle in both plots).

Figure 8. First plot: trajectories of the open-loop
system; solid circle – Hopf bifurcation point. Sec-
ond plot: trajectories of the closed-loop system;
solid circle – the global attractor Ec

WSEAS TRANSACTIONS on BIOLOGY 
and BIOMEDICINE Neli S. Dimitrova

E-ISSN: 2224-2902 18 Issue 1, Volume 10, January 2013



4 Model-based optimization
of the chemostat dynamics

We have already seen that the chemostat can
be operated only at a steady state, where both
plasmid-bearing and plasmid-free organisms exist
together. An open problem posed in [13] is whether
it is possible to maximize the concentration of the
plasmid-bearing organisms. Here we present a so-
lution of this problem. We shall use the fact that
Ec is globally asymptotically stable for any choice
of k according to the above k-determining scheme.
It is easy to see that the steady state component
xc

1 = xc
1(k) of Ec = Ec(k), considered as a func-

tion of the parameter k, possesses a maximum
xc

1,max = xc
1(k

m) at a unique (and unknown) value
of k = km, independently on the shapes of the up-
take functions, see the first plot in Figure 9.

To maximize the concentration x1(t) of the
plasmid-bearing organisms in real time we shall
use a model-based iterative extremum seeking al-
gorithm.

Optimization via extremum (peek) seeking is an-
other control approach extensively used in the last
decade to optimize the productivity of a continu-
ously stirred tank bioreactor. In the literature [5],
[29], the extremum seeking approach is not model-
based: the algorithm is usually presented in the
form of a block-scheme to iteratively adjust the di-
lution rate directly in the bioreactor in order to
steer the process to a point, where optimal value of
the output is achieved. The main restriction in ap-
plying this model-free extremum seeking approach
is that the dynamics should be open-loop stable;
otherwise, a locally stabilizing controller is needed
to stabilize the equilibrium points around the opti-
mal operating point.

Our approach is different; we first stabilize glob-
ally the dynamical system via feedback control and
then apply the extremum seeking method to drive
the dynamics towards the desired state. The nu-
merical extremum seeking algorithm was originally
designed to solve an optimization problem for a
two-dimensional bioreactor model [9] and further
extended for models of wastewater treatment pro-
cesses [10]. Here the algorithm is adapted and ap-
plied to this model.

The algorithm is executed in two main stages.
In the first stage, an interval [K] = [K−,K+] is

determined, such that km ∈ [K]; this is achieved by
constructing in a proper way a sequence of points
k(0), k(1), . . . , k(i), . . ., of the form k(i) = k(i−1)+σh,
σ = ±1, h > 0, such that for any k(i) there exists
xc

1(k
(i)), and Ec(k(i)) is a globally stable equilib-

rium according to Theorem 3.

Figure 9. First plot: the steady state component
xc

1 = xc
1(k) of the global attractor Ec. Second and

third plot: time evolution of x1(t) and x2(t); the
dashed lines pass through xc

1,max = xc
1(k

m) and
xc

2(k
m) respectively
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In the second stage the interval [K] is refined by
means of Fibonacci elimination techniques to ob-
tain a subinterval [Km] = [Km−,Km+] ⊂ [K] such
that km ∈ [Km] with Km+−Km− ≤ ε, where ε > 0
is a user-defined tolerance.

The second and third plots in Figure 9 show
results from numerical simulation within Haldane
specific growth rates, visualized in the first plot of
Figure 7. The “jumps” in the solutions correspond
to the different choice of the constants k(i) in the
extremum seeking algorithm

The extremum seeking algorithm is applicable to
any uptake functions µ1 and µ2, exhibiting or not
inhibition. The only information needed is about
the existence of at least one crossing point s∗1 < s0

such that the plasmid-bearing organism is a supe-
rior competitor for s > s∗1 or s < s∗1.

The algorithm can be implemented to work on-
line.

5 Conclusion

The paper investigates the classical Levin-Stewart
model for plasmid-bearing plasmid-free competition
in the chemostat. The feedback control law, pro-
posed in [6] for uninhibited specific growth rates of
the organisms, is extended for the case of general
uptake functions µ1(s) and µ2(s). The main differ-
ence is in the choice of the parameter k. The new
feedback stabilizes globally the closed loop system
towards an equilibrium point, where persistence of
both organisms is enhanced in the chemostat. Us-
ing the freedom in choosing k an extremum seeking
algorithm is applied to optimize the chemostat pro-
ductivity. The theoretical results are illustrated on
numerical examples.
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